//===--- CastOptimizer.cpp ------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// /// /// \file /// /// This file contains local cast optimizations and simplifications. /// //===----------------------------------------------------------------------===// #include "swift/SILOptimizer/Utils/CastOptimizer.h" #include "swift/AST/GenericSignature.h" #include "swift/AST/Module.h" #include "swift/AST/SubstitutionMap.h" #include "swift/SIL/BasicBlockUtils.h" #include "swift/SIL/DebugUtils.h" #include "swift/SIL/DynamicCasts.h" #include "swift/SIL/InstructionUtils.h" #include "swift/SIL/SILArgument.h" #include "swift/SIL/SILBuilder.h" #include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h" #include "swift/SIL/SILModule.h" #include "swift/SIL/SILUndef.h" #include "swift/SIL/TypeLowering.h" #include "swift/SILOptimizer/Analysis/ARCAnalysis.h" #include "swift/SILOptimizer/Analysis/Analysis.h" #include "swift/SILOptimizer/Analysis/DominanceAnalysis.h" #include "swift/SILOptimizer/Utils/CFG.h" #include "swift/SILOptimizer/Utils/Local.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include using namespace swift; static SILFunction * getObjCToSwiftBridgingFunction(SILOptFunctionBuilder &funcBuilder, SILDynamicCastInst dynamicCast) { // inline constructor. auto *bridgeFuncDecl = [&]() -> FuncDecl * { auto &astContext = dynamicCast.getModule().getASTContext(); if (dynamicCast.isConditional()) { return astContext.getConditionallyBridgeFromObjectiveCBridgeable(); } return astContext.getForceBridgeFromObjectiveCBridgeable(); }(); assert(bridgeFuncDecl && "Bridging function doesn't exist?!"); SILDeclRef funcDeclRef(bridgeFuncDecl, SILDeclRef::Kind::Func); // Lookup a function from the stdlib. return funcBuilder.getOrCreateFunction(dynamicCast.getLocation(), funcDeclRef, ForDefinition_t::NotForDefinition); } static SubstitutionMap lookupBridgeToObjCProtocolSubs(SILModule &mod, CanType target) { auto bridgedProto = mod.getASTContext().getProtocol(KnownProtocolKind::ObjectiveCBridgeable); auto conf = *mod.getSwiftModule()->lookupConformance(target, bridgedProto); return SubstitutionMap::getProtocolSubstitutions(conf.getRequirement(), target, conf); } /// Given that our insertion point is at the cast that we are trying to /// optimize, convert our incoming value to something that can be passed to the /// bridge call. static std::pair convertObjectToLoadableBridgeableType(SILBuilderWithScope &builder, SILDynamicCastInst dynamicCast, SILValue src) { auto *f = dynamicCast.getFunction(); auto loc = dynamicCast.getLocation(); bool isConditional = dynamicCast.isConditional(); SILValue load = builder.createLoad(loc, src, LoadOwnershipQualifier::Unqualified); SILType silBridgedTy = *dynamicCast.getLoweredBridgedTargetObjectType(); // If we are not conditional... if (!isConditional) { // and our loaded type is our bridged type, just return the load as our // SILValue and signal to our caller that we did not create a new cast // instruction by returning nullptr as second. if (load->getType() == silBridgedTy) { return {load, nullptr}; } // Otherwise, just perform an unconditional checked cast to the sil bridged // ty. We return the cast as our value and as our new cast instruction. auto *cast = builder.createUnconditionalCheckedCast(loc, load, silBridgedTy); return {cast, cast}; } // If we /are/ conditional and we do not need to bridge the load to the sil, // then we just create our cast success block and branch from the end of the // cast instruction block to the cast success block. We leave our insertion // point in the cast success block since when we return, we are going to // insert the bridge call/switch there. We return the argument of the cast // success block as the value to be passed to the bridging function. if (load->getType() == silBridgedTy) { SILBasicBlock *castSuccessBB = f->createBasicBlock(); castSuccessBB->createPhiArgument(silBridgedTy, ValueOwnershipKind::Owned); builder.createBranch(loc, castSuccessBB, load); builder.setInsertionPoint(castSuccessBB); return {castSuccessBB->getArgument(0), nullptr}; } auto *castFailBB = ([&]() -> SILBasicBlock * { auto *failureBB = dynamicCast.getFailureBlock(); SILBuilderWithScope failureBBBuilder(&(*failureBB->begin()), builder); return splitBasicBlockAndBranch(failureBBBuilder, &(*failureBB->begin()), nullptr, nullptr); }()); // Ok, we need to perform the full cast optimization. This means that we are // going to replace the cast terminator in inst_block with a // checked_cast_br. This in turn means auto *castSuccessBB = f->createBasicBlock(); castSuccessBB->createPhiArgument(silBridgedTy, ValueOwnershipKind::Owned); auto *ccbi = builder.createCheckedCastBranch(loc, false, load, silBridgedTy, castSuccessBB, castFailBB); splitEdge(ccbi, /* EdgeIdx to CastFailBB */ 1); builder.setInsertionPoint(castSuccessBB); return {castSuccessBB->getArgument(0), ccbi}; } /// Create a call of _forceBridgeFromObjectiveC_bridgeable or /// _conditionallyBridgeFromObjectiveC_bridgeable which converts an ObjC /// instance into a corresponding Swift type, conforming to /// _ObjectiveCBridgeable. /// /// Control Flow Modification Model /// =============================== /// /// NOTE: In the following we assume that our src type is not address only. We /// do not support optimizing such source types today. /// /// Unconditional Casts /// ------------------- /// /// In the case of unconditional casts, we do not touch the CFG at all. We /// perform the following optimizations: /// /// 1. If the bridged type and the src type equal, we replace the cast with the /// apply. /// /// 2. If src is an address and bridged type has the matching object type to /// src, just load the value and again replace the cast with the apply. /// /// 3. If src is an address and after loading still doesn't match bridged type, /// insert an unconditional_checked_cast before calling the apply. /// /// Conditional Casts /// ----------------- /// /// In the case of a conditional const (i.e. checked_cast_addr_br), we transform /// the following CFG: /// /// ``` /// InstBlock (checked_cast_addr_br) -> FailureBB -> FailureSucc /// \ /// \----------------------------> SuccessBB -> SuccessSucc /// ``` /// /// to a CFG of the following form: /// /// ``` /// InstBlock (checked_cast_br) -> CastFailBB -> FailureBB -> FailureSucc /// | ^ /// \-> CastSuccessBB (bridge call + switch) --| /// | /// \-> BridgeSuccessBB -> SuccessBB -> SuccessSucc /// ``` /// /// NOTE: That if the underlying src type matches the type of the underlying /// bridge source object, we can omit the initial checked_cast_br and just load /// the value + branch to the CastSuccessBB. This results instead in the /// following CFG: /// /// ``` /// InstBlock (br) FailureBB -> FailureSucc /// | ^ /// \-> CastSuccessBB (bridge call + switch) --| /// | /// \-> BridgeSuccessBB -> SuccessBB -> SuccessSucc /// ``` /// SILInstruction * CastOptimizer::optimizeBridgedObjCToSwiftCast(SILDynamicCastInst dynamicCast) { auto kind = dynamicCast.getKind(); (void)kind; assert(((kind == SILDynamicCastKind::CheckedCastAddrBranchInst) || (kind == SILDynamicCastKind::UnconditionalCheckedCastAddrInst)) && "Unsupported dynamic cast kind"); CanType target = dynamicCast.getTargetType(); auto &mod = dynamicCast.getModule(); // AnyHashable is a special case that we do not handle since we only handle // objc targets in this function. Bailout early. if (auto dt = target.getNominalOrBoundGenericNominal()) { if (dt == mod.getASTContext().getAnyHashableDecl()) { return nullptr; } } SILValue src = dynamicCast.getSource(); // Check if we have a source type that is address only. We do not support that // today. if (src->getType().isAddressOnly(mod)) { return nullptr; } SILInstruction *Inst = dynamicCast.getInstruction(); bool isConditional = dynamicCast.isConditional(); SILValue Dest = dynamicCast.getDest(); SILBasicBlock *SuccessBB = dynamicCast.getSuccessBlock(); SILBasicBlock *FailureBB = dynamicCast.getFailureBlock(); auto *F = Inst->getFunction(); auto Loc = Inst->getLoc(); // The conformance to _BridgedToObjectiveC is statically known. // Retrieve the bridging operation to be used if a static conformance // to _BridgedToObjectiveC can be proven. SILFunction *bridgingFunc = getObjCToSwiftBridgingFunction(functionBuilder, dynamicCast); if (!bridgingFunc) return nullptr; auto paramTypes = bridgingFunc->getLoweredFunctionType()->getParameters(); (void)paramTypes; assert(paramTypes[0].getConvention() == ParameterConvention::Direct_Guaranteed && "Parameter should be @guaranteed"); SILBuilderWithScope Builder(Inst, builderContext); // Generate a load for the source argument since as part of our optimization // we are going to promote the cast to work with objects instead of // addresses. Additionally, if we have an objc object that is not bridgeable, // but that could be converted to something that is bridgeable, we try to // convert to the bridgeable type. SILValue srcOp; SILInstruction *newI; std::tie(srcOp, newI) = convertObjectToLoadableBridgeableType(Builder, dynamicCast, src); // Now emit the a cast from the casted ObjC object into a target type. // This is done by means of calling _forceBridgeFromObjectiveC or // _conditionallyBridgeFromObjectiveC_bridgeable from the Target type. auto *funcRef = Builder.createFunctionRef(Loc, bridgingFunc); SubstitutionMap subMap = lookupBridgeToObjCProtocolSubs(mod, target); auto MetaTy = MetatypeType::get(target, MetatypeRepresentation::Thick); auto SILMetaTy = F->getTypeLowering(MetaTy).getLoweredType(); auto *MetaTyVal = Builder.createMetatype(Loc, SILMetaTy); // Temporary to hold the intermediate result. AllocStackInst *Tmp = nullptr; CanType OptionalTy; SILValue InOutOptionalParam; if (isConditional) { // Create a temporary OptionalTy = OptionalType::get(Dest->getType().getASTType()) ->getImplementationType() ->getCanonicalType(); Tmp = Builder.createAllocStack(Loc, SILType::getPrimitiveObjectType(OptionalTy)); InOutOptionalParam = Tmp; } else { InOutOptionalParam = Dest; } // Emit a retain. Builder.createRetainValue(Loc, srcOp, Builder.getDefaultAtomicity()); SmallVector Args; Args.push_back(InOutOptionalParam); Args.push_back(srcOp); Args.push_back(MetaTyVal); auto *AI = Builder.createApply(Loc, funcRef, subMap, Args, false); // If we have guaranteed normal arguments, insert the destroy. // // TODO: Is it safe to just eliminate the initial retain? Builder.createReleaseValue(Loc, srcOp, Builder.getDefaultAtomicity()); // If the source of a cast should be destroyed, emit a release. if (isa(Inst)) { Builder.createReleaseValue(Loc, srcOp, Builder.getDefaultAtomicity()); } if (auto *CCABI = dyn_cast(Inst)) { switch (CCABI->getConsumptionKind()) { case CastConsumptionKind::TakeAlways: Builder.createReleaseValue(Loc, srcOp, Builder.getDefaultAtomicity()); break; case CastConsumptionKind::TakeOnSuccess: // Insert a release in the success BB. Builder.setInsertionPoint(SuccessBB->begin()); Builder.createReleaseValue(Loc, srcOp, Builder.getDefaultAtomicity()); break; case CastConsumptionKind::BorrowAlways: llvm_unreachable("checked_cast_addr_br never has BorrowAlways"); case CastConsumptionKind::CopyOnSuccess: break; } } // Results should be checked in case we process a conditional // case. E.g. casts from NSArray into [SwiftType] may fail, i.e. return .None. if (isConditional) { // Copy the temporary into Dest. // Load from the optional. auto *SomeDecl = Builder.getASTContext().getOptionalSomeDecl(); SILBasicBlock *BridgeSuccessBB = Inst->getFunction()->createBasicBlock(); SmallVector, 2> CaseBBs; CaseBBs.emplace_back(mod.getASTContext().getOptionalNoneDecl(), FailureBB); Builder.createSwitchEnumAddr(Loc, InOutOptionalParam, BridgeSuccessBB, CaseBBs); Builder.setInsertionPoint(FailureBB->begin()); Builder.createDeallocStack(Loc, Tmp); Builder.setInsertionPoint(BridgeSuccessBB); auto Addr = Builder.createUncheckedTakeEnumDataAddr(Loc, InOutOptionalParam, SomeDecl); Builder.createCopyAddr(Loc, Addr, Dest, IsTake, IsInitialization); Builder.createDeallocStack(Loc, Tmp); SmallVector SuccessBBArgs; Builder.createBranch(Loc, SuccessBB, SuccessBBArgs); } eraseInstAction(Inst); return (newI) ? newI : AI; } static bool canOptimizeCast(const swift::Type &BridgedTargetTy, swift::SILModule &M, swift::SILFunctionConventions &substConv) { // DestTy is the type which we want to convert to SILType DestTy = SILType::getPrimitiveObjectType(BridgedTargetTy->getCanonicalType()); // ConvTy is the return type of the _bridgeToObjectiveCImpl() auto ConvTy = substConv.getSILResultType().getObjectType(); if (ConvTy == DestTy) { // Destination is the same type return true; } // Check if a superclass/subclass of the source operand if (DestTy.isExactSuperclassOf(ConvTy)) { return true; } if (ConvTy.isExactSuperclassOf(DestTy)) { return true; } // check if it is a bridgeable CF type if (ConvTy.getASTType() == getNSBridgedClassOfCFClass(M.getSwiftModule(), DestTy.getASTType())) { return true; } if (DestTy.getASTType() == getNSBridgedClassOfCFClass(M.getSwiftModule(), ConvTy.getASTType())) { return true; } // All else failed - can't optimize this case return false; } static Optional> findBridgeToObjCFunc(SILOptFunctionBuilder &functionBuilder, SILDynamicCastInst dynamicCast) { CanType sourceType = dynamicCast.getSourceType(); auto loc = dynamicCast.getLocation(); auto &mod = dynamicCast.getModule(); auto bridgedProto = mod.getASTContext().getProtocol(KnownProtocolKind::ObjectiveCBridgeable); auto conf = mod.getSwiftModule()->lookupConformance(sourceType, bridgedProto); assert(conf && "_ObjectiveCBridgeable conformance should exist"); (void)conf; // Generate code to invoke _bridgeToObjectiveC auto *ntd = sourceType.getNominalOrBoundGenericNominal(); assert(ntd); auto members = ntd->lookupDirect(mod.getASTContext().Id_bridgeToObjectiveC); if (members.empty()) { SmallVector foundMembers; if (ntd->getDeclContext()->lookupQualified( ntd, mod.getASTContext().Id_bridgeToObjectiveC, NLOptions::NL_ProtocolMembers, foundMembers)) { // Returned members are starting with the most specialized ones. // Thus, the first element is what we are looking for. members.push_back(foundMembers.front()); } } // There should be exactly one implementation of _bridgeToObjectiveC. if (members.size() != 1) return None; auto bridgeFuncDecl = members.front(); ModuleDecl *modDecl = mod.getASTContext().getLoadedModule(mod.getASTContext().Id_Foundation); if (!modDecl) return None; SmallVector results; modDecl->lookupMember(results, sourceType.getNominalOrBoundGenericNominal(), mod.getASTContext().Id_bridgeToObjectiveC, Identifier()); ArrayRef resultsRef(results); if (resultsRef.empty()) { mod.getSwiftModule()->lookupMember( results, sourceType.getNominalOrBoundGenericNominal(), mod.getASTContext().Id_bridgeToObjectiveC, Identifier()); resultsRef = results; } if (resultsRef.size() != 1) return None; auto *resultDecl = results.front(); auto memberDeclRef = SILDeclRef(resultDecl); auto *bridgedFunc = functionBuilder.getOrCreateFunction( loc, memberDeclRef, ForDefinition_t::NotForDefinition); // Get substitutions, if source is a bound generic type. auto subMap = sourceType->getContextSubstitutionMap( mod.getSwiftModule(), bridgeFuncDecl->getDeclContext()); // Implementation of _bridgeToObjectiveC could not be found. if (!bridgedFunc) return None; if (dynamicCast.getFunction()->isSerialized() && !bridgedFunc->hasValidLinkageForFragileRef()) return None; if (bridgedFunc->getLoweredFunctionType() ->getSingleResult() .isFormalIndirect()) return None; return std::make_pair(bridgedFunc, subMap); } /// Create a call of _bridgeToObjectiveC which converts an _ObjectiveCBridgeable /// instance into a bridged ObjC type. SILInstruction * CastOptimizer::optimizeBridgedSwiftToObjCCast(SILDynamicCastInst dynamicCast) { SILInstruction *Inst = dynamicCast.getInstruction(); CastConsumptionKind ConsumptionKind = dynamicCast.getBridgedConsumptionKind(); bool isConditional = dynamicCast.isConditional(); SILValue Src = dynamicCast.getSource(); SILValue Dest = dynamicCast.getDest(); CanType BridgedTargetTy = dynamicCast.getBridgedTargetType(); SILBasicBlock *SuccessBB = dynamicCast.getSuccessBlock(); SILBasicBlock *FailureBB = dynamicCast.getFailureBlock(); auto &M = Inst->getModule(); auto Loc = Inst->getLoc(); bool AddressOnlyType = false; if (!Src->getType().isLoadable(M) || !Dest->getType().isLoadable(M)) { AddressOnlyType = true; } // Find the _BridgedToObjectiveC protocol. SILFunction *bridgedFunc = nullptr; SubstitutionMap subMap; { auto result = findBridgeToObjCFunc(functionBuilder, dynamicCast); if (!result) return nullptr; std::tie(bridgedFunc, subMap) = result.getValue(); } SILType SubstFnTy = bridgedFunc->getLoweredType().substGenericArgs(M, subMap); SILFunctionConventions substConv(SubstFnTy.castTo(), M); // check that we can go through with the optimization if (!canOptimizeCast(BridgedTargetTy, M, substConv)) { return nullptr; } SILBuilderWithScope Builder(Inst, builderContext); auto FnRef = Builder.createFunctionRef(Loc, bridgedFunc); auto ParamTypes = SubstFnTy.castTo()->getParameters(); if (Src->getType().isAddress() && !substConv.isSILIndirect(ParamTypes[0])) { // Create load Src = Builder.createLoad(Loc, Src, LoadOwnershipQualifier::Unqualified); } // Compensate different owning conventions of the replaced cast instruction // and the inserted conversion function. bool needRetainBeforeCall = false; bool needReleaseAfterCall = false; bool needReleaseInSuccess = false; switch (ParamTypes[0].getConvention()) { case ParameterConvention::Direct_Guaranteed: case ParameterConvention::Indirect_In_Guaranteed: switch (ConsumptionKind) { case CastConsumptionKind::TakeAlways: needReleaseAfterCall = true; break; case CastConsumptionKind::TakeOnSuccess: needReleaseInSuccess = true; break; case CastConsumptionKind::BorrowAlways: case CastConsumptionKind::CopyOnSuccess: // Conservatively insert a retain/release pair around the conversion // function because the conversion function could decrement the // (global) reference count of the source object. // // %src = load %global_var // apply %conversion_func(@guaranteed %src) // // sil conversion_func { // %old_value = load %global_var // store %something_else, %global_var // strong_release %old_value // } needRetainBeforeCall = true; needReleaseAfterCall = true; break; } break; case ParameterConvention::Direct_Owned: case ParameterConvention::Indirect_In: case ParameterConvention::Indirect_In_Constant: // Currently this // cannot appear, because the _bridgeToObjectiveC protocol witness method // always receives the this pointer (= the source) as guaranteed. // If it became possible (perhaps with the advent of ownership and // explicit +1 annotations), the implementation should look something // like this: /* switch (ConsumptionKind) { case CastConsumptionKind::TakeAlways: break; case CastConsumptionKind::TakeOnSuccess: needRetainBeforeCall = true; needReleaseInSuccess = true; break; case CastConsumptionKind::CopyOnSuccess: needRetainBeforeCall = true; break; } break; */ llvm_unreachable("this should never happen so is currently untestable"); case ParameterConvention::Direct_Unowned: assert(!AddressOnlyType && "AddressOnlyType with Direct_Unowned is not supported"); break; case ParameterConvention::Indirect_Inout: case ParameterConvention::Indirect_InoutAliasable: // TODO handle remaining indirect argument types return nullptr; } bool needStackAllocatedTemporary = false; if (needRetainBeforeCall) { if (AddressOnlyType) { needStackAllocatedTemporary = true; auto NewSrc = Builder.createAllocStack(Loc, Src->getType()); Builder.createCopyAddr(Loc, Src, NewSrc, IsNotTake, IsInitialization); Src = NewSrc; } else { Builder.createRetainValue(Loc, Src, Builder.getDefaultAtomicity()); } } // Generate a code to invoke the bridging function. auto *NewAI = Builder.createApply(Loc, FnRef, subMap, Src, false); auto releaseSrc = [&](SILBuilder &Builder) { if (AddressOnlyType) { Builder.createDestroyAddr(Loc, Src); } else { Builder.createReleaseValue(Loc, Src, Builder.getDefaultAtomicity()); } }; Optional SuccBuilder; if (needReleaseInSuccess || needStackAllocatedTemporary) SuccBuilder.emplace(SuccessBB->begin()); if (needReleaseAfterCall) { releaseSrc(Builder); } else if (needReleaseInSuccess) { if (SuccessBB) { releaseSrc(*SuccBuilder); } else { // For an unconditional cast, success is the only defined path releaseSrc(Builder); } } // Pop the temporary stack slot for a copied temporary. if (needStackAllocatedTemporary) { assert((bool)SuccessBB == (bool)FailureBB); if (SuccessBB) { SuccBuilder->createDeallocStack(Loc, Src); SILBuilder FailBuilder(FailureBB->begin()); FailBuilder.createDeallocStack(Loc, Src); } else { Builder.createDeallocStack(Loc, Src); } } SILInstruction *NewI = NewAI; if (Dest) { // If it is addr cast then store the result. auto ConvTy = NewAI->getType(); auto DestTy = Dest->getType().getObjectType(); assert(DestTy == SILType::getPrimitiveObjectType( BridgedTargetTy->getCanonicalType()) && "Expected Dest Type to be the same as BridgedTargetTy"); SILValue CastedValue; if (ConvTy == DestTy) { CastedValue = NewAI; } else if (DestTy.isExactSuperclassOf(ConvTy)) { CastedValue = Builder.createUpcast(Loc, NewAI, DestTy); } else if (ConvTy.isExactSuperclassOf(DestTy)) { // The downcast from a base class to derived class may fail. if (isConditional) { // In case of a conditional cast, we should handle it gracefully. auto CondBrSuccessBB = NewAI->getFunction()->createBasicBlockAfter(NewAI->getParent()); CondBrSuccessBB->createPhiArgument(DestTy, ValueOwnershipKind::Owned, nullptr); Builder.createCheckedCastBranch(Loc, /* isExact*/ false, NewAI, DestTy, CondBrSuccessBB, FailureBB); Builder.setInsertionPoint(CondBrSuccessBB, CondBrSuccessBB->begin()); CastedValue = CondBrSuccessBB->getArgument(0); } else { CastedValue = SILValue( Builder.createUnconditionalCheckedCast(Loc, NewAI, DestTy)); } } else if (ConvTy.getASTType() == getNSBridgedClassOfCFClass(M.getSwiftModule(), DestTy.getASTType()) || DestTy.getASTType() == getNSBridgedClassOfCFClass(M.getSwiftModule(), ConvTy.getASTType())) { // Handle NS <-> CF toll-free bridging here. CastedValue = SILValue(Builder.createUncheckedRefCast(Loc, NewAI, DestTy)); } else { llvm_unreachable("optimizeBridgedSwiftToObjCCast: should never reach " "this condition: if the Destination does not have the " "same type, is not a bridgeable CF type and isn't a " "superclass/subclass of the source operand we should " "have bailed earlier"); } NewI = Builder.createStore(Loc, CastedValue, Dest, StoreOwnershipQualifier::Unqualified); if (isConditional && NewI->getParent() != NewAI->getParent()) { Builder.createBranch(Loc, SuccessBB); } } if (Dest) { eraseInstAction(Inst); } return NewI; } /// Make use of the fact that some of these casts cannot fail. For /// example, if the ObjC type is exactly the expected _ObjectiveCType /// type, then it would always succeed for NSString, NSNumber, etc. /// Casts from NSArray, NSDictionary and NSSet may fail. /// /// If ObjC class is not exactly _ObjectiveCType, then its conversion /// to a required _ObjectiveCType may fail. SILInstruction * CastOptimizer::optimizeBridgedCasts(SILDynamicCastInst dynamicCast) { CanType source = dynamicCast.getSourceType(); CanType target = dynamicCast.getTargetType(); auto &M = dynamicCast.getModule(); // To apply the bridged optimizations, we should ensure that types are not // existential (and keep in mind that generic parameters can be existentials), // and that one of the types is a class and another one is a struct. if (source.isAnyExistentialType() || target.isAnyExistentialType() || source->is() || target->is() || (source.getClassOrBoundGenericClass() && !target.getStructOrBoundGenericStruct()) || (target.getClassOrBoundGenericClass() && !source.getStructOrBoundGenericStruct())) return nullptr; // Casts involving non-bound generic types cannot be optimized. if (source->hasArchetype() || target->hasArchetype()) return nullptr; CanType CanBridgedSourceTy = dynamicCast.getBridgedSourceType(); CanType CanBridgedTargetTy = dynamicCast.getBridgedTargetType(); // If we were unable to bridge either of our source/target types, return // nullptr. if (!CanBridgedSourceTy || !CanBridgedTargetTy) return nullptr; if (CanBridgedSourceTy == source && CanBridgedTargetTy == target) { // Both source and target type are ObjC types. return nullptr; } if (CanBridgedSourceTy != source && CanBridgedTargetTy != target) { // Both source and target type are Swift types. return nullptr; } if ((CanBridgedSourceTy && CanBridgedSourceTy->getAnyNominal() == M.getASTContext().getNSErrorDecl()) || (CanBridgedTargetTy && CanBridgedSourceTy->getAnyNominal() == M.getASTContext().getNSErrorDecl())) { // FIXME: Can't optimize bridging with NSError. return nullptr; } // Check what kind of conversion it is? ObjC->Swift or Swift-ObjC? if (CanBridgedTargetTy != target) { // This is an ObjC to Swift cast. return optimizeBridgedObjCToSwiftCast(dynamicCast); } else { // This is a Swift to ObjC cast return optimizeBridgedSwiftToObjCCast(dynamicCast); } llvm_unreachable("Unknown kind of bridging"); } SILInstruction *CastOptimizer::simplifyCheckedCastAddrBranchInst( CheckedCastAddrBranchInst *Inst) { if (auto *I = optimizeCheckedCastAddrBranchInst(Inst)) Inst = dyn_cast(I); if (!Inst) return nullptr; SILDynamicCastInst dynamicCast(Inst); auto Loc = dynamicCast.getLocation(); auto Src = dynamicCast.getSource(); auto Dest = dynamicCast.getDest(); auto *SuccessBB = dynamicCast.getSuccessBlock(); auto *FailureBB = dynamicCast.getFailureBlock(); SILBuilderWithScope Builder(Inst, builderContext); // Check if we can statically predict the outcome of the cast. auto Feasibility = dynamicCast.classifyFeasibility(true /*allow whole module*/); if (Feasibility == DynamicCastFeasibility::WillFail) { if (shouldDestroyOnFailure(Inst->getConsumptionKind())) { auto &srcTL = Builder.getTypeLowering(Src->getType()); srcTL.emitDestroyAddress(Builder, Loc, Src); } auto NewI = Builder.createBranch(Loc, FailureBB); eraseInstAction(Inst); willFailAction(); return NewI; } bool ResultNotUsed = isa(Dest); if (ResultNotUsed) { for (auto Use : Dest->getUses()) { auto *User = Use->getUser(); if (isa(User) || User == Inst) continue; ResultNotUsed = false; break; } } auto *BB = Inst->getParent(); SILInstruction *BridgedI = nullptr; // To apply the bridged optimizations, we should // ensure that types are not existential, // and that not both types are classes. BridgedI = optimizeBridgedCasts(dynamicCast); if (!BridgedI) { // If the cast may succeed or fail, and it can't be optimized into a // bridging operation, then let it be. if (Feasibility == DynamicCastFeasibility::MaySucceed) { return nullptr; } assert(Feasibility == DynamicCastFeasibility::WillSucceed); // Replace by unconditional_addr_cast, followed by a branch. // The unconditional_addr_cast can be skipped, if the result of a cast // is not used afterwards. if (ResultNotUsed) { if (shouldTakeOnSuccess(Inst->getConsumptionKind())) { auto &srcTL = Builder.getTypeLowering(Src->getType()); srcTL.emitDestroyAddress(Builder, Loc, Src); } eraseInstAction(Inst); Builder.setInsertionPoint(BB); auto *NewI = Builder.createBranch(Loc, SuccessBB); willSucceedAction(); return NewI; } // Since it is an addr cast, only address types are handled here. if (!Src->getType().isAddress() || !Dest->getType().isAddress()) { return nullptr; } // For CopyOnSuccess casts, we could insert an explicit copy here, but this // case does not happen in practice. // // Both TakeOnSuccess and TakeAlways can be reduced to an // UnconditionalCheckedCast, since the failure path is irrelevant. switch (Inst->getConsumptionKind()) { case CastConsumptionKind::BorrowAlways: llvm_unreachable("checked_cast_addr_br never has BorrowAlways"); case CastConsumptionKind::CopyOnSuccess: return nullptr; case CastConsumptionKind::TakeAlways: case CastConsumptionKind::TakeOnSuccess: break; } if (!emitSuccessfulIndirectUnconditionalCast(Builder, Loc, dynamicCast)) { // No optimization was possible. return nullptr; } eraseInstAction(Inst); } SILInstruction *NewI = &BB->back(); if (!isa(NewI)) { Builder.setInsertionPoint(BB); NewI = Builder.createBranch(Loc, SuccessBB); } willSucceedAction(); return NewI; } SILInstruction * CastOptimizer::simplifyCheckedCastBranchInst(CheckedCastBranchInst *Inst) { if (Inst->isExact()) { SILDynamicCastInst dynamicCast(Inst); auto *ARI = dyn_cast(stripUpCasts(dynamicCast.getSource())); if (!ARI) return nullptr; // We know the dynamic type of the operand. SILBuilderWithScope Builder(Inst, builderContext); auto Loc = dynamicCast.getLocation(); if (ARI->getType() == dynamicCast.getLoweredTargetType()) { // This exact cast will succeed. SmallVector Args; Args.push_back(ARI); auto *NewI = Builder.createBranch(Loc, dynamicCast.getSuccessBlock(), Args); eraseInstAction(Inst); willSucceedAction(); return NewI; } // This exact cast will fail. With ownership enabled, we pass a copy of the // original casts value to the failure block. TinyPtrVector Args; if (Builder.hasOwnership()) Args.push_back(dynamicCast.getSource()); auto *NewI = Builder.createBranch(Loc, dynamicCast.getFailureBlock(), Args); eraseInstAction(Inst); willFailAction(); return NewI; } if (auto *I = optimizeCheckedCastBranchInst(Inst)) Inst = dyn_cast(I); if (!Inst) return nullptr; SILDynamicCastInst dynamicCast(Inst); auto LoweredTargetType = dynamicCast.getLoweredTargetType(); auto Loc = dynamicCast.getLocation(); auto *SuccessBB = dynamicCast.getSuccessBlock(); auto Op = dynamicCast.getSource(); auto *F = dynamicCast.getFunction(); // Check if we can statically predict the outcome of the cast. auto Feasibility = dynamicCast.classifyFeasibility(false /*allow whole module*/); SILBuilderWithScope Builder(Inst, builderContext); if (Feasibility == DynamicCastFeasibility::WillFail) { TinyPtrVector Args; if (Builder.hasOwnership()) Args.push_back(Inst->getOperand()); auto *NewI = Builder.createBranch(Loc, dynamicCast.getFailureBlock(), Args); eraseInstAction(Inst); willFailAction(); return NewI; } bool ResultNotUsed = SuccessBB->getArgument(0)->use_empty(); SILValue CastedValue; if (Op->getType() != LoweredTargetType) { // Apply the bridged cast optimizations. // // TODO: Bridged casts cannot be expressed by checked_cast_br yet. // Should we ever support it, please review this code. auto BridgedI = optimizeBridgedCasts(dynamicCast); if (BridgedI) { llvm_unreachable( "Bridged casts cannot be expressed by checked_cast_br yet"); } else { // If the cast may succeed or fail and can't be turned into a bridging // call, then let it be. if (Feasibility == DynamicCastFeasibility::MaySucceed) { return nullptr; } assert(Feasibility == DynamicCastFeasibility::WillSucceed); // Replace by unconditional_cast, followed by a branch. // The unconditional_cast can be skipped, if the result of a cast // is not used afterwards. if (!ResultNotUsed) { if (!dynamicCast.canUseScalarCheckedCastInstructions()) return nullptr; CastedValue = emitSuccessfulScalarUnconditionalCast(Builder, Loc, dynamicCast); } else { CastedValue = SILUndef::get(LoweredTargetType, *F); } if (!CastedValue) CastedValue = Builder.createUnconditionalCheckedCast(Loc, Op, LoweredTargetType); } } else { // No need to cast. CastedValue = Op; } auto *NewI = Builder.createBranch(Loc, SuccessBB, CastedValue); eraseInstAction(Inst); willSucceedAction(); return NewI; } SILInstruction *CastOptimizer::simplifyCheckedCastValueBranchInst( CheckedCastValueBranchInst *Inst) { if (auto *I = optimizeCheckedCastValueBranchInst(Inst)) Inst = dyn_cast(I); if (!Inst) return nullptr; SILDynamicCastInst dynamicCast(Inst); auto LoweredTargetType = dynamicCast.getLoweredTargetType(); auto Loc = dynamicCast.getLocation(); auto *SuccessBB = dynamicCast.getSuccessBlock(); auto *FailureBB = dynamicCast.getFailureBlock(); auto Op = dynamicCast.getSource(); auto *F = dynamicCast.getFunction(); // Check if we can statically predict the outcome of the cast. auto Feasibility = dynamicCast.classifyFeasibility(false /*allow wmo opts*/); SILBuilderWithScope Builder(Inst, builderContext); if (Feasibility == DynamicCastFeasibility::WillFail) { auto *NewI = Builder.createBranch(Loc, FailureBB); eraseInstAction(Inst); willFailAction(); return NewI; } // Casting will succeed. bool ResultNotUsed = SuccessBB->getArgument(0)->use_empty(); SILValue CastedValue; if (Op->getType() != LoweredTargetType) { // Apply the bridged cast optimizations. // TODO: Bridged casts cannot be expressed by checked_cast_value_br yet. // Once the support for opaque values has landed, please review this // code. auto *BridgedI = optimizeBridgedCasts(dynamicCast); if (BridgedI) { llvm_unreachable( "Bridged casts cannot be expressed by checked_cast_value_br yet"); } else { // If the cast may succeed or fail and can't be turned into a bridging // call, then let it be. if (Feasibility == DynamicCastFeasibility::MaySucceed) { return nullptr; } assert(Feasibility == DynamicCastFeasibility::WillSucceed); // Replace by unconditional_cast, followed by a branch. // The unconditional_cast can be skipped, if the result of a cast // is not used afterwards. if (!dynamicCast.canUseScalarCheckedCastInstructions()) return nullptr; if (!ResultNotUsed) { CastedValue = emitSuccessfulScalarUnconditionalCast(Builder, Loc, dynamicCast); } else { CastedValue = SILUndef::get(LoweredTargetType, *F); } } if (!CastedValue) CastedValue = Builder.createUnconditionalCheckedCastValue( Loc, Op, LoweredTargetType); } else { // No need to cast. CastedValue = Op; } auto *NewI = Builder.createBranch(Loc, SuccessBB, CastedValue); eraseInstAction(Inst); willSucceedAction(); return NewI; } SILInstruction *CastOptimizer::optimizeCheckedCastAddrBranchInst( CheckedCastAddrBranchInst *Inst) { auto Loc = Inst->getLoc(); auto Src = Inst->getSrc(); auto Dest = Inst->getDest(); auto *SuccessBB = Inst->getSuccessBB(); auto *FailureBB = Inst->getFailureBB(); // If there is an unbound generic type involved in the cast, bail. if (Src->getType().hasArchetype() || Dest->getType().hasArchetype()) return nullptr; // %1 = metatype $A.Type // [%2 = init_existential_metatype %1 ...] // %3 = alloc_stack // store %1 to %3 or store %2 to %3 // checked_cast_addr_br %3 to ... // -> // %1 = metatype $A.Type // %c = checked_cast_br %1 to ... // store %c to %3 (if successful) if (auto *ASI = dyn_cast(Src)) { // Check if the value of this alloc_stack is set only once by a store // instruction, used only by CCABI and then deallocated. bool isLegal = true; StoreInst *Store = nullptr; for (auto Use : ASI->getUses()) { auto *User = Use->getUser(); if (isa(User) || User == Inst) continue; if (auto *SI = dyn_cast(User)) { if (!Store) { Store = SI; continue; } } isLegal = false; break; } if (isLegal && Store) { // Check what was the value stored in the allocated stack slot. auto Src = Store->getSrc(); MetatypeInst *MI = nullptr; if (auto *IEMI = dyn_cast(Src)) { MI = dyn_cast(IEMI->getOperand()); } if (!MI) MI = dyn_cast(Src); if (MI) { if (SuccessBB->getSinglePredecessorBlock() && canUseScalarCheckedCastInstructions( Inst->getModule(), MI->getType().getASTType(), Inst->getTargetType())) { SILBuilderWithScope B(Inst, builderContext); auto NewI = B.createCheckedCastBranch( Loc, false /*isExact*/, MI, Dest->getType().getObjectType(), SuccessBB, FailureBB, Inst->getTrueBBCount(), Inst->getFalseBBCount()); SuccessBB->createPhiArgument(Dest->getType().getObjectType(), ValueOwnershipKind::Owned); B.setInsertionPoint(SuccessBB->begin()); // Store the result B.createStore(Loc, SuccessBB->getArgument(0), Dest, StoreOwnershipQualifier::Unqualified); eraseInstAction(Inst); return NewI; } } } } return nullptr; } SILInstruction *CastOptimizer::optimizeCheckedCastValueBranchInst( CheckedCastValueBranchInst *Inst) { // TODO return nullptr; } SILInstruction * CastOptimizer::optimizeCheckedCastBranchInst(CheckedCastBranchInst *Inst) { if (Inst->isExact()) return nullptr; // Local helper we use to simplify replacing a checked_cast_branch with an // optimized checked cast branch. auto replaceCastHelper = [](SILBuilderWithScope &B, SILDynamicCastInst dynamicCast, MetatypeInst *mi) -> SILInstruction * { return B.createCheckedCastBranch( dynamicCast.getLocation(), false /*isExact*/, mi, dynamicCast.getLoweredTargetType(), dynamicCast.getSuccessBlock(), dynamicCast.getFailureBlock(), *dynamicCast.getSuccessBlockCount(), *dynamicCast.getFailureBlockCount()); }; SILDynamicCastInst dynamicCast(Inst); auto Op = dynamicCast.getSource(); // Try to simplify checked_cond_br instructions using existential // metatypes by propagating a concrete type whenever it can be // determined statically. // %0 = metatype $A.Type // %1 = init_existential_metatype ..., %0: $A // checked_cast_br %1, .... // -> // %0 = metatype $A.Type // checked_cast_br %0 to ... if (auto *IEMI = dyn_cast(Op)) { if (auto *MI = dyn_cast(IEMI->getOperand())) { SILBuilderWithScope B(Inst, builderContext); auto *NewI = replaceCastHelper(B, dynamicCast, MI); eraseInstAction(Inst); return NewI; } } if (auto *EMI = dyn_cast(Op)) { // Operand of the existential_metatype instruction. auto Op = EMI->getOperand(); auto EmiTy = EMI->getType(); // %0 = alloc_stack $T // %1 = init_existential_addr %0: $*T, $A // %2 = existential_metatype $T.Type, %0: $*T // checked_cast_br %2 to ... // -> // %1 = metatype $A.Type // checked_cast_br %1 to ... if (auto *ASI = dyn_cast(Op)) { // Should be in the same BB. if (ASI->getParent() != EMI->getParent()) return nullptr; // Check if this alloc_stack is only initialized once by means of // single init_existential_addr. bool isLegal = true; // init_existential instruction used to initialize this alloc_stack. InitExistentialAddrInst *FoundIEI = nullptr; for (auto Use : getNonDebugUses(ASI)) { auto *User = Use->getUser(); if (isa(User) || isa(User) || isa(User)) continue; if (auto *IEI = dyn_cast(User)) { if (!FoundIEI) { FoundIEI = IEI; continue; } } isLegal = false; break; } if (isLegal && FoundIEI) { // Should be in the same BB. if (FoundIEI->getParent() != EMI->getParent()) return nullptr; // Get the type used to initialize the existential. auto LoweredConcreteTy = FoundIEI->getLoweredConcreteType(); // We don't know enough at compile time about existential // and generic type parameters. if (LoweredConcreteTy.isAnyExistentialType() || LoweredConcreteTy.is()) return nullptr; // Get the metatype of this type. auto EMT = EmiTy.castTo(); auto *MetaTy = MetatypeType::get(LoweredConcreteTy.getASTType(), EMT->getRepresentation()); auto CanMetaTy = CanTypeWrapper(MetaTy); auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy); SILBuilderWithScope B(Inst, builderContext); B.getOpenedArchetypes().addOpenedArchetypeOperands( FoundIEI->getTypeDependentOperands()); auto *MI = B.createMetatype(FoundIEI->getLoc(), SILMetaTy); auto *NewI = replaceCastHelper(B, dynamicCast, MI); eraseInstAction(Inst); return NewI; } } // %0 = alloc_ref $A // %1 = init_existential_ref %0: $A, $... // %2 = existential_metatype ..., %1 : ... // checked_cast_br %2, .... // -> // %1 = metatype $A.Type // checked_cast_br %1, .... if (auto *FoundIERI = dyn_cast(Op)) { auto *ASRI = dyn_cast(FoundIERI->getOperand()); if (!ASRI) return nullptr; // Should be in the same BB. if (ASRI->getParent() != EMI->getParent()) return nullptr; // Check if this alloc_stack is only initialized once by means of // a single init_existential_ref. bool isLegal = true; for (auto Use : getNonDebugUses(ASRI)) { auto *User = Use->getUser(); if (isa(User) || isa(User)) continue; if (auto *IERI = dyn_cast(User)) { if (IERI == FoundIERI) { continue; } } isLegal = false; break; } if (isLegal && FoundIERI) { // Should be in the same BB. if (FoundIERI->getParent() != EMI->getParent()) return nullptr; // Get the type used to initialize the existential. auto ConcreteTy = FoundIERI->getFormalConcreteType(); // We don't know enough at compile time about existential // and generic type parameters. if (ConcreteTy.isAnyExistentialType() || ConcreteTy->is()) return nullptr; // Get the SIL metatype of this type. auto EMT = EMI->getType().castTo(); auto *MetaTy = MetatypeType::get(ConcreteTy, EMT->getRepresentation()); auto CanMetaTy = CanTypeWrapper(MetaTy); auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy); SILBuilderWithScope B(Inst, builderContext); B.getOpenedArchetypes().addOpenedArchetypeOperands( FoundIERI->getTypeDependentOperands()); auto *MI = B.createMetatype(FoundIERI->getLoc(), SILMetaTy); auto *NewI = replaceCastHelper(B, dynamicCast, MI); eraseInstAction(Inst); return NewI; } } } return nullptr; } ValueBase *CastOptimizer::optimizeUnconditionalCheckedCastInst( UnconditionalCheckedCastInst *Inst) { SILDynamicCastInst dynamicCast(Inst); auto Loc = dynamicCast.getLocation(); // Check if we can statically predict the outcome of the cast. auto Feasibility = dynamicCast.classifyFeasibility(false /*allowWholeModule*/); if (Feasibility == DynamicCastFeasibility::WillFail) { // Remove the cast and insert a trap, followed by an // unreachable instruction. SILBuilderWithScope Builder(Inst, builderContext); auto *Trap = Builder.createBuiltinTrap(Loc); Inst->replaceAllUsesWithUndef(); eraseInstAction(Inst); Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(Trap))); auto *UnreachableInst = Builder.createUnreachable(ArtificialUnreachableLocation()); // Delete everything after the unreachable except for dealloc_stack which we // move before the trap. deleteInstructionsAfterUnreachable(UnreachableInst, Trap); willFailAction(); return Trap; } if (Feasibility == DynamicCastFeasibility::WillSucceed) { if (Inst->use_empty()) { eraseInstAction(Inst); willSucceedAction(); return nullptr; } } SILBuilderWithScope Builder(Inst, builderContext); // Try to apply the bridged casts optimizations auto NewI = optimizeBridgedCasts(dynamicCast); if (NewI) { // FIXME: I'm not sure why this is true! auto newValue = cast(NewI); replaceInstUsesAction(Inst, newValue); eraseInstAction(Inst); willSucceedAction(); return newValue; } // If the cast may succeed or fail and can't be optimized into a bridging // call, let it be. if (Feasibility == DynamicCastFeasibility::MaySucceed) { return nullptr; } assert(Feasibility == DynamicCastFeasibility::WillSucceed); if (dynamicCast.isBridgingCast()) return nullptr; auto Result = emitSuccessfulScalarUnconditionalCast(Builder, Loc, dynamicCast); if (!Result) { // No optimization was possible. return nullptr; } replaceInstUsesAction(Inst, Result); eraseInstAction(Inst); willSucceedAction(); return Result; } /// Deletes all instructions after \p UnreachableInst except dealloc_stack /// instructions are moved before \p TrapInst. void CastOptimizer::deleteInstructionsAfterUnreachable( SILInstruction *UnreachableInst, SILInstruction *TrapInst) { auto UnreachableInstIt = std::next(SILBasicBlock::iterator(UnreachableInst)); auto *Block = TrapInst->getParent(); while (UnreachableInstIt != Block->end()) { SILInstruction *CurInst = &*UnreachableInstIt; ++UnreachableInstIt; if (auto *DeallocStack = dyn_cast(CurInst)) if (!isa(DeallocStack->getOperand())) { DeallocStack->moveBefore(TrapInst); continue; } CurInst->replaceAllUsesOfAllResultsWithUndef(); eraseInstAction(CurInst); } } /// TODO: Move to emitSuccessfulIndirectUnconditionalCast? /// /// Peephole to avoid runtime calls: /// unconditional_checked_cast_addr T in %0 : $*T to P in %1 : $*P /// -> /// %addr = init_existential_addr %1 : $*P, T /// copy_addr %0 to %addr /// /// where T is a type statically known to conform to P. /// /// In caase P is a class existential type, it generates: /// %val = load %0 : $*T /// %existential = init_existential_ref %val : $T, $T, P /// store %existential to %1 : $*P /// /// Returns true if the optimization was possible and false otherwise. static bool optimizeStaticallyKnownProtocolConformance( UnconditionalCheckedCastAddrInst *Inst) { auto Loc = Inst->getLoc(); auto Src = Inst->getSrc(); auto Dest = Inst->getDest(); auto SourceType = Inst->getSourceType(); auto TargetType = Inst->getTargetType(); auto &Mod = Inst->getModule(); if (TargetType->isAnyExistentialType() && !SourceType->isAnyExistentialType()) { auto &Ctx = Mod.getASTContext(); auto *SM = Mod.getSwiftModule(); auto Proto = dyn_cast(TargetType->getAnyNominal()); if (!Proto) return false; // SourceType is a non-existential type with a non-conditional // conformance to a protocol represented by the TargetType. // // TypeChecker::conformsToProtocol checks any conditional conformances. If // they depend on information not known until runtime, the conformance // will not be returned. For instance, if `X: P` where `T == Int` in `func // foo(_: T) { ... X() as? P ... }`, the cast will succeed for // `foo(0)` but not for `foo("string")`. There are many cases where // everything is completely static (`X() as? P`), in which case a // valid conformance will be returned. auto Conformance = SM->conformsToProtocol(SourceType, Proto); if (!Conformance) return false; SILBuilder B(Inst); SmallVector NewConformances; NewConformances.push_back(Conformance.getValue()); ArrayRef Conformances = Ctx.AllocateCopy(NewConformances); auto ExistentialRepr = Dest->getType().getPreferredExistentialRepresentation(Mod, SourceType); switch (ExistentialRepr) { default: return false; case ExistentialRepresentation::Opaque: { auto ExistentialAddr = B.createInitExistentialAddr( Loc, Dest, SourceType, Src->getType().getObjectType(), Conformances); B.createCopyAddr(Loc, Src, ExistentialAddr, IsTake_t::IsTake, IsInitialization_t::IsInitialization); break; } case ExistentialRepresentation::Class: { auto Value = B.emitLoadValueOperation(Loc, Src, LoadOwnershipQualifier::Take); auto Existential = B.createInitExistentialRef(Loc, Dest->getType().getObjectType(), SourceType, Value, Conformances); B.emitStoreValueOperation(Loc, Existential, Dest, StoreOwnershipQualifier::Init); break; } case ExistentialRepresentation::Boxed: { auto AllocBox = B.createAllocExistentialBox(Loc, Dest->getType(), SourceType, Conformances); auto Projection = B.createProjectExistentialBox(Loc, Src->getType(), AllocBox); // This needs to be a copy_addr (for now) because we must handle // address-only types. B.createCopyAddr(Loc, Src, Projection, IsTake, IsInitialization); B.emitStoreValueOperation(Loc, AllocBox, Dest, StoreOwnershipQualifier::Init); break; } }; return true; } // Not a concrete -> existential cast. return false; } SILInstruction *CastOptimizer::optimizeUnconditionalCheckedCastAddrInst( UnconditionalCheckedCastAddrInst *Inst) { SILDynamicCastInst dynamicCast(Inst); auto Loc = dynamicCast.getLocation(); // Check if we can statically predict the outcome of the cast. auto Feasibility = dynamicCast.classifyFeasibility(false /*allow whole module*/); if (Feasibility == DynamicCastFeasibility::MaySucceed) { // Forced bridged casts can be still simplified here. // If they fail, they fail inside the conversion function. if (!dynamicCast.isBridgingCast()) return nullptr; } if (Feasibility == DynamicCastFeasibility::WillFail) { // Remove the cast and insert a trap, followed by an // unreachable instruction. SILBuilderWithScope Builder(Inst, builderContext); // mem2reg's invariants get unhappy if we don't try to // initialize a loadable result. if (!dynamicCast.getLoweredTargetType().isAddressOnly( Builder.getModule())) { auto undef = SILValue( SILUndef::get(dynamicCast.getLoweredTargetType().getObjectType(), Builder.getFunction())); Builder.emitStoreValueOperation(Loc, undef, dynamicCast.getDest(), StoreOwnershipQualifier::Init); } auto *TrapI = Builder.createBuiltinTrap(Loc); eraseInstAction(Inst); Builder.setInsertionPoint(std::next(TrapI->getIterator())); auto *UnreachableInst = Builder.createUnreachable(ArtificialUnreachableLocation()); // Delete everything after the unreachable except for dealloc_stack which we // move before the trap. deleteInstructionsAfterUnreachable(UnreachableInst, TrapI); willFailAction(); } if (Feasibility == DynamicCastFeasibility::WillSucceed || Feasibility == DynamicCastFeasibility::MaySucceed) { // Check if a result of a cast is unused. If this is the case, the cast can // be removed even if the cast may fail at runtime. // Swift optimizer does not claim to be crash-preserving. SILValue dest = dynamicCast.getDest(); bool ResultNotUsed = isa(dest); DestroyAddrInst *DestroyDestInst = nullptr; if (ResultNotUsed) { for (auto Use : dest->getUses()) { auto *User = Use->getUser(); if (isa(User) || User == Inst) continue; if (isa(User) && !DestroyDestInst) { DestroyDestInst = cast(User); continue; } ResultNotUsed = false; DestroyDestInst = nullptr; break; } } if (ResultNotUsed) { SILBuilderWithScope B(Inst, builderContext); B.createDestroyAddr(Loc, dynamicCast.getSource()); if (DestroyDestInst) eraseInstAction(DestroyDestInst); eraseInstAction(Inst); willSucceedAction(); return nullptr; } // Try to apply the bridged casts optimizations. auto NewI = optimizeBridgedCasts(dynamicCast); if (NewI) { willSucceedAction(); return nullptr; } if (Feasibility == DynamicCastFeasibility::MaySucceed) return nullptr; assert(Feasibility == DynamicCastFeasibility::WillSucceed); if (optimizeStaticallyKnownProtocolConformance(Inst)) { eraseInstAction(Inst); willSucceedAction(); return nullptr; } if (dynamicCast.isBridgingCast()) return nullptr; SILBuilderWithScope Builder(Inst, builderContext); if (!emitSuccessfulIndirectUnconditionalCast(Builder, Loc, dynamicCast)) { // No optimization was possible. return nullptr; } eraseInstAction(Inst); willSucceedAction(); } return nullptr; } /// Simplify conversions between thick and objc metatypes. SILValue CastOptimizer::optimizeMetatypeConversion( ConversionInst *mci, MetatypeRepresentation representation) { SILValue op = mci->getOperand(0); // Instruction has a proper target type already. SILType ty = mci->getType(); auto metatypeTy = op->getType().getAs(); if (metatypeTy->getRepresentation() != representation) return SILValue(); auto loc = mci->getLoc(); // Rematerialize the incoming metatype instruction with the outgoing type. auto replaceCast = [&](SILValue newValue) -> SILValue { assert(ty.getAs()->getRepresentation() == newValue->getType().getAs()->getRepresentation()); replaceValueUsesAction(mci, newValue); eraseInstAction(mci); return newValue; }; if (auto *mi = dyn_cast(op)) { return replaceCast( SILBuilderWithScope(mci, builderContext).createMetatype(loc, ty)); } // For metatype instructions that require an operand, generate the new // metatype at the same position as the original to avoid extending the // lifetime of `op` past its destroy. if (auto *vmi = dyn_cast(op)) { return replaceCast(SILBuilderWithScope(vmi, builderContext) .createValueMetatype(loc, ty, vmi->getOperand())); } if (auto *emi = dyn_cast(op)) { return replaceCast( SILBuilderWithScope(emi, builderContext) .createExistentialMetatype(loc, ty, emi->getOperand())); } return SILValue(); }