//===--- PredictableMemOpt.cpp - Perform predictable memory optzns --------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "predictable-memopt" #include "PMOMemoryUseCollector.h" #include "swift/Basic/Assertions.h" #include "swift/Basic/BlotMapVector.h" #include "swift/Basic/BlotSetVector.h" #include "swift/Basic/FrozenMultiMap.h" #include "swift/Basic/STLExtras.h" #include "swift/SIL/BasicBlockBits.h" #include "swift/SIL/BasicBlockUtils.h" #include "swift/SIL/LinearLifetimeChecker.h" #include "swift/SIL/OSSALifetimeCompletion.h" #include "swift/SIL/OwnershipUtils.h" #include "swift/SIL/SILBuilder.h" #include "swift/SILOptimizer/PassManager/Passes.h" #include "swift/SILOptimizer/PassManager/Transforms.h" #include "swift/SILOptimizer/Utils/CFGOptUtils.h" #include "swift/SILOptimizer/Utils/InstOptUtils.h" #include "swift/SILOptimizer/Utils/OwnershipOptUtils.h" #include "swift/SILOptimizer/Utils/SILSSAUpdater.h" #include "swift/SILOptimizer/Utils/ValueLifetime.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" using namespace swift; STATISTIC(NumLoadPromoted, "Number of loads promoted"); STATISTIC(NumLoadTakePromoted, "Number of load takes promoted"); STATISTIC(NumDestroyAddrPromoted, "Number of destroy_addrs promoted"); STATISTIC(NumAllocRemoved, "Number of allocations completely removed"); //===----------------------------------------------------------------------===// // Subelement Analysis //===----------------------------------------------------------------------===// // We can only analyze components of structs whose storage is fully accessible // from Swift. static StructDecl * getFullyReferenceableStruct(SILType Ty) { auto SD = Ty.getStructOrBoundGenericStruct(); if (!SD || SD->hasUnreferenceableStorage()) return nullptr; return SD; } static unsigned getNumSubElements(SILType T, SILModule &M, TypeExpansionContext context) { if (auto TT = T.getAs()) { unsigned NumElements = 0; for (auto index : indices(TT.getElementTypes())) NumElements += getNumSubElements(T.getTupleElementType(index), M, context); return NumElements; } if (auto *SD = getFullyReferenceableStruct(T)) { unsigned NumElements = 0; for (auto *D : SD->getStoredProperties()) NumElements += getNumSubElements(T.getFieldType(D, M, context), M, context); return NumElements; } // If this isn't a tuple or struct, it is a single element. return 1; } /// getAccessPathRoot - Given an address, dive through any tuple/struct element /// addresses to get the underlying value. static SILValue getAccessPathRoot(SILValue pointer) { while (true) { if (auto *TEAI = dyn_cast(pointer)) { pointer = TEAI->getOperand(); continue; } if (auto *SEAI = dyn_cast(pointer)) { pointer = SEAI->getOperand(); continue; } if (auto *BAI = dyn_cast(pointer)) { pointer = BAI->getSource(); continue; } return pointer; } } /// Compute the subelement number indicated by the specified pointer (which is /// derived from the root by a series of tuple/struct element addresses) by /// treating the type as a linearized namespace with sequential elements. For /// example, given: /// /// root = alloc { a: { c: i64, d: i64 }, b: (i64, i64) } /// tmp1 = struct_element_addr root, 1 /// tmp2 = tuple_element_addr tmp1, 0 /// /// This will return a subelement number of 2. /// /// If this pointer is to within an existential projection, it returns ~0U. static unsigned computeSubelement(SILValue Pointer, SingleValueInstruction *RootInst) { unsigned SubElementNumber = 0; SILModule &M = RootInst->getModule(); while (1) { // If we got to the root, we're done. if (RootInst == Pointer) return SubElementNumber; if (auto *PBI = dyn_cast(Pointer)) { Pointer = PBI->getOperand(); continue; } if (auto *BAI = dyn_cast(Pointer)) { Pointer = BAI->getSource(); continue; } if (auto *TEAI = dyn_cast(Pointer)) { SILType TT = TEAI->getOperand()->getType(); // Keep track of what subelement is being referenced. for (unsigned i = 0, e = TEAI->getFieldIndex(); i != e; ++i) { SubElementNumber += getNumSubElements(TT.getTupleElementType(i), M, TypeExpansionContext(*RootInst->getFunction())); } Pointer = TEAI->getOperand(); continue; } if (auto *SEAI = dyn_cast(Pointer)) { SILType ST = SEAI->getOperand()->getType(); // Keep track of what subelement is being referenced. StructDecl *SD = SEAI->getStructDecl(); for (auto *D : SD->getStoredProperties()) { if (D == SEAI->getField()) break; auto context = TypeExpansionContext(*RootInst->getFunction()); SubElementNumber += getNumSubElements(ST.getFieldType(D, M, context), M, context); } Pointer = SEAI->getOperand(); continue; } // This fails when we visit unchecked_take_enum_data_addr. We should just // add support for enums. assert(isa(Pointer) && "Unknown access path instruction"); // Cannot promote loads and stores from within an existential projection. return ~0U; } } //===----------------------------------------------------------------------===// // Available Value //===----------------------------------------------------------------------===// namespace { class AvailableValueAggregator; struct AvailableValue { friend class AvailableValueAggregator; SILValue Value; unsigned SubElementNumber; /// If this gets too expensive in terms of copying, we can use an arena and a /// FrozenPtrSet like we do in ARC. llvm::SmallSetVector InsertionPoints; /// Just for updating. SmallVectorImpl *Uses; public: AvailableValue() = default; /// Main initializer for available values. /// /// *NOTE* We assume that all available values start with a singular insertion /// point and insertion points are added by merging. AvailableValue(SILValue Value, unsigned SubElementNumber, StoreInst *InsertPoint) : Value(Value), SubElementNumber(SubElementNumber), InsertionPoints() { InsertionPoints.insert(InsertPoint); } /// Deleted copy constructor. This is a move only type. AvailableValue(const AvailableValue &) = delete; /// Deleted copy operator. This is a move only type. AvailableValue &operator=(const AvailableValue &) = delete; /// Move constructor. AvailableValue(AvailableValue &&Other) : Value(nullptr), SubElementNumber(~0), InsertionPoints() { std::swap(Value, Other.Value); std::swap(SubElementNumber, Other.SubElementNumber); std::swap(InsertionPoints, Other.InsertionPoints); } /// Move operator. AvailableValue &operator=(AvailableValue &&Other) { std::swap(Value, Other.Value); std::swap(SubElementNumber, Other.SubElementNumber); std::swap(InsertionPoints, Other.InsertionPoints); return *this; } operator bool() const { return bool(Value); } bool operator==(const AvailableValue &Other) const { return Value == Other.Value && SubElementNumber == Other.SubElementNumber; } bool operator!=(const AvailableValue &Other) const { return !(*this == Other); } SILValue getValue() const { return Value; } SILType getType() const { return Value->getType(); } unsigned getSubElementNumber() const { return SubElementNumber; } ArrayRef getInsertionPoints() const { return InsertionPoints.getArrayRef(); } void mergeInsertionPoints(const AvailableValue &Other) & { assert(Value == Other.Value && SubElementNumber == Other.SubElementNumber); InsertionPoints.set_union(Other.InsertionPoints); } void addInsertionPoint(StoreInst *si) & { InsertionPoints.insert(si); } AvailableValue emitStructExtract(SILBuilder &B, SILLocation Loc, VarDecl *D, unsigned SubElementNumber) const { SILValue NewValue = B.emitStructExtract(Loc, Value, D); return {NewValue, SubElementNumber, InsertionPoints}; } AvailableValue emitTupleExtract(SILBuilder &B, SILLocation Loc, unsigned EltNo, unsigned SubElementNumber) const { SILValue NewValue = B.emitTupleExtract(Loc, Value, EltNo); return {NewValue, SubElementNumber, InsertionPoints}; } AvailableValue emitBeginBorrow(SILBuilder &b, SILLocation loc) const { // If we do not have ownership or already are guaranteed, just return a copy // of our state. if (!b.hasOwnership() || Value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed)) { return {Value, SubElementNumber, InsertionPoints}; } // Otherwise, return newValue. return {b.createBeginBorrow(loc, Value), SubElementNumber, InsertionPoints}; } void dump() const LLVM_ATTRIBUTE_USED; void print(llvm::raw_ostream &os) const; private: /// Private constructor. AvailableValue(SILValue Value, unsigned SubElementNumber, const decltype(InsertionPoints) &InsertPoints) : Value(Value), SubElementNumber(SubElementNumber), InsertionPoints(InsertPoints) {} }; } // end anonymous namespace void AvailableValue::dump() const { print(llvm::dbgs()); } void AvailableValue::print(llvm::raw_ostream &os) const { os << "Available Value Dump. Value: "; if (getValue()) { os << getValue(); } else { os << "NoValue;\n"; } os << "SubElementNumber: " << getSubElementNumber() << "\n"; os << "Insertion Points:\n"; for (auto *I : getInsertionPoints()) { os << *I; } } namespace llvm { llvm::raw_ostream &operator<<(llvm::raw_ostream &os, const AvailableValue &V) { V.print(os); return os; } } // end llvm namespace //===----------------------------------------------------------------------===// // Subelement Extraction //===----------------------------------------------------------------------===// /// Given an aggregate value and an access path, non-destructively extract the /// value indicated by the path. static SILValue nonDestructivelyExtractSubElement(const AvailableValue &Val, SILBuilder &B, SILLocation Loc) { SILType ValTy = Val.getType(); unsigned SubElementNumber = Val.SubElementNumber; // Extract tuple elements. if (auto TT = ValTy.getAs()) { for (unsigned EltNo : indices(TT.getElementTypes())) { // Keep track of what subelement is being referenced. SILType EltTy = ValTy.getTupleElementType(EltNo); unsigned NumSubElt = getNumSubElements( EltTy, B.getModule(), TypeExpansionContext(B.getFunction())); if (SubElementNumber < NumSubElt) { auto BorrowedVal = Val.emitBeginBorrow(B, Loc); auto NewVal = BorrowedVal.emitTupleExtract(B, Loc, EltNo, SubElementNumber); SILValue result = nonDestructivelyExtractSubElement(NewVal, B, Loc); // If our original value wasn't guaranteed and we did actually perform a // borrow as a result, insert the end_borrow. if (BorrowedVal.getValue() != Val.getValue()) B.createEndBorrow(Loc, BorrowedVal.getValue()); return result; } SubElementNumber -= NumSubElt; } llvm_unreachable("Didn't find field"); } // Extract struct elements. if (auto *SD = getFullyReferenceableStruct(ValTy)) { for (auto *D : SD->getStoredProperties()) { auto fieldType = ValTy.getFieldType( D, B.getModule(), TypeExpansionContext(B.getFunction())); unsigned NumSubElt = getNumSubElements( fieldType, B.getModule(), TypeExpansionContext(B.getFunction())); if (SubElementNumber < NumSubElt) { auto BorrowedVal = Val.emitBeginBorrow(B, Loc); auto NewVal = BorrowedVal.emitStructExtract(B, Loc, D, SubElementNumber); SILValue result = nonDestructivelyExtractSubElement(NewVal, B, Loc); // If our original value wasn't guaranteed and we did actually perform a // borrow as a result, insert the end_borrow. if (BorrowedVal.getValue() != Val.getValue()) B.createEndBorrow(Loc, BorrowedVal.getValue()); return result; } SubElementNumber -= NumSubElt; } llvm_unreachable("Didn't find field"); } // Otherwise, we're down to a scalar. If we have ownership enabled, // we return a copy. Otherwise, there we can ignore ownership // issues. This is ok since in [ossa] we are going to eliminate a // load [copy] or a load [trivial], while in non-[ossa] SIL we will // be replacing unqualified loads. assert(SubElementNumber == 0 && "Miscalculation indexing subelements"); if (!B.hasOwnership()) return Val.getValue(); return B.emitCopyValueOperation(Loc, Val.getValue()); } //===----------------------------------------------------------------------===// // Available Value Aggregation //===----------------------------------------------------------------------===// static bool anyMissing(unsigned StartSubElt, unsigned NumSubElts, ArrayRef &Values) { while (NumSubElts) { if (!Values[StartSubElt]) return true; ++StartSubElt; --NumSubElts; } return false; } namespace { enum class AvailableValueExpectedOwnership { Take, Borrow, Copy, }; /// A class that aggregates available values, loading them if they are not /// available. class AvailableValueAggregator { SILModule &M; SILBuilderWithScope B; SILLocation Loc; MutableArrayRef AvailableValueList; SmallVectorImpl &Uses; DeadEndBlocks &deadEndBlocks; AvailableValueExpectedOwnership expectedOwnership; /// Keep track of all instructions that we have added. Once we are done /// promoting a value, we need to make sure that if we need to balance any /// copies (to avoid leaks), we do so. This is not used if we are performing a /// take. SmallVector insertedInsts; /// The list of phi nodes inserted by the SSA updater. SmallVector insertedPhiNodes; /// A set of copy_values whose lifetime we balanced while inserting phi /// nodes. This means that these copy_value must be skipped in /// addMissingDestroysForCopiedValues. SmallPtrSet copyValueProcessedWithPhiNodes; public: AvailableValueAggregator(SILInstruction *Inst, MutableArrayRef AvailableValueList, SmallVectorImpl &Uses, DeadEndBlocks &deadEndBlocks, AvailableValueExpectedOwnership expectedOwnership) : M(Inst->getModule()), B(Inst), Loc(Inst->getLoc()), AvailableValueList(AvailableValueList), Uses(Uses), deadEndBlocks(deadEndBlocks), expectedOwnership(expectedOwnership) {} // This is intended to be passed by reference only once constructed. AvailableValueAggregator(const AvailableValueAggregator &) = delete; AvailableValueAggregator(AvailableValueAggregator &&) = delete; AvailableValueAggregator & operator=(const AvailableValueAggregator &) = delete; AvailableValueAggregator &operator=(AvailableValueAggregator &&) = delete; SILValue aggregateValues(SILType LoadTy, SILValue Address, unsigned FirstElt, bool isTopLevel = true); bool canTake(SILType loadTy, unsigned firstElt) const; void print(llvm::raw_ostream &os) const; void dump() const LLVM_ATTRIBUTE_USED; bool isTake() const { return expectedOwnership == AvailableValueExpectedOwnership::Take; } bool isBorrow() const { return expectedOwnership == AvailableValueExpectedOwnership::Borrow; } bool isCopy() const { return expectedOwnership == AvailableValueExpectedOwnership::Copy; } /// Given a load_borrow that we have aggregated a new value for, fixup the /// reference counts of the intermediate copies and phis to ensure that all /// forwarding operations in the CFG are strongly control equivalent (i.e. run /// the same number of times). void fixupOwnership(SILInstruction *load, SILValue newVal) { assert(isa(load) || isa(load)); addHandOffCopyDestroysForPhis(load, newVal); addMissingDestroysForCopiedValues(load, newVal); } private: SILValue aggregateFullyAvailableValue(SILType loadTy, unsigned firstElt); SILValue aggregateTupleSubElts(TupleType *tt, SILType loadTy, SILValue address, unsigned firstElt); SILValue aggregateStructSubElts(StructDecl *sd, SILType loadTy, SILValue address, unsigned firstElt); SILValue handlePrimitiveValue(SILType loadTy, SILValue address, unsigned firstElt); bool isFullyAvailable(SILType loadTy, unsigned firstElt) const; /// If as a result of us copying values, we may have unconsumed destroys, find /// the appropriate location and place the values there. Only used when /// ownership is enabled. void addMissingDestroysForCopiedValues(SILInstruction *load, SILValue newVal); /// As a result of us using the SSA updater, insert hand off copy/destroys at /// each phi and make sure that intermediate phis do not leak by inserting /// destroys along paths that go through the intermediate phi that do not also /// go through the void addHandOffCopyDestroysForPhis(SILInstruction *load, SILValue newVal); }; } // end anonymous namespace void AvailableValueAggregator::dump() const { print(llvm::dbgs()); } void AvailableValueAggregator::print(llvm::raw_ostream &os) const { os << "Available Value List, N = " << AvailableValueList.size() << ". Elts:\n"; for (auto &V : AvailableValueList) { os << V; } } bool AvailableValueAggregator::isFullyAvailable(SILType loadTy, unsigned firstElt) const { if (firstElt >= AvailableValueList.size()) { // #Elements may be zero. return false; } auto &firstVal = AvailableValueList[firstElt]; // Make sure that the first element is available and is the correct type. if (!firstVal || firstVal.getType() != loadTy) return false; return llvm::all_of(range(getNumSubElements( loadTy, M, TypeExpansionContext(B.getFunction()))), [&](unsigned index) -> bool { auto &val = AvailableValueList[firstElt + index]; return val.getValue() == firstVal.getValue() && val.getSubElementNumber() == index; }); } // We can only take if we never have to split a larger value to promote this // address. bool AvailableValueAggregator::canTake(SILType loadTy, unsigned firstElt) const { // If we do not have ownership, we can always take since we do not need to // keep any ownership invariants up to date. In the future, we should be able // to chop up larger values before they are being stored. if (!B.hasOwnership()) return true; // If we are trivially fully available, just return true. if (isFullyAvailable(loadTy, firstElt)) return true; // Otherwise see if we are an aggregate with fully available leaf types. if (TupleType *tt = loadTy.getAs()) { return llvm::all_of(indices(tt->getElements()), [&](unsigned eltNo) { SILType eltTy = loadTy.getTupleElementType(eltNo); unsigned numSubElt = getNumSubElements(eltTy, M, TypeExpansionContext(B.getFunction())); bool success = canTake(eltTy, firstElt); firstElt += numSubElt; return success; }); } if (auto *sd = getFullyReferenceableStruct(loadTy)) { return llvm::all_of(sd->getStoredProperties(), [&](VarDecl *decl) -> bool { auto context = TypeExpansionContext(B.getFunction()); SILType eltTy = loadTy.getFieldType(decl, M, context); unsigned numSubElt = getNumSubElements(eltTy, M, context); bool success = canTake(eltTy, firstElt); firstElt += numSubElt; return success; }); } // Otherwise, fail. The value is not fully available at its leafs. We can not // perform a take. return false; } /// Given a bunch of primitive subelement values, build out the right aggregate /// type (LoadTy) by emitting tuple and struct instructions as necessary. SILValue AvailableValueAggregator::aggregateValues(SILType LoadTy, SILValue Address, unsigned FirstElt, bool isTopLevel) { // If we are performing a take, make sure that we have available values for // /all/ of our values. Otherwise, bail. if (isTopLevel && isTake() && !canTake(LoadTy, FirstElt)) { return SILValue(); } // Check to see if the requested value is fully available, as an aggregate. // This is a super-common case for single-element structs, but is also a // general answer for arbitrary structs and tuples as well. if (SILValue Result = aggregateFullyAvailableValue(LoadTy, FirstElt)) { return Result; } // If we have a tuple type, then aggregate the tuple's elements into a full // tuple value. if (TupleType *tupleType = LoadTy.getAs()) { SILValue result = aggregateTupleSubElts(tupleType, LoadTy, Address, FirstElt); if (isTopLevel && result->getOwnershipKind() == OwnershipKind::Guaranteed) { SILValue borrowedResult = result; SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts); result = builder.emitCopyValueOperation(Loc, borrowedResult); SmallVector introducers; bool foundIntroducers = getAllBorrowIntroducingValues(borrowedResult, introducers); (void)foundIntroducers; assert(foundIntroducers); for (auto value : introducers) { builder.emitEndBorrowOperation(Loc, value.value); } } return result; } // If we have a struct type, then aggregate the struct's elements into a full // struct value. if (auto *structDecl = getFullyReferenceableStruct(LoadTy)) { SILValue result = aggregateStructSubElts(structDecl, LoadTy, Address, FirstElt); if (isTopLevel && result->getOwnershipKind() == OwnershipKind::Guaranteed) { SILValue borrowedResult = result; SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts); result = builder.emitCopyValueOperation(Loc, borrowedResult); SmallVector introducers; bool foundIntroducers = getAllBorrowIntroducingValues(borrowedResult, introducers); (void)foundIntroducers; assert(foundIntroducers); for (auto value : introducers) { builder.emitEndBorrowOperation(Loc, value.value); } } return result; } // Otherwise, we have a non-aggregate primitive. Load or extract the value. // // NOTE: We should never call this when taking since when taking we know that // our underlying value is always fully available. assert(!isTake()); return handlePrimitiveValue(LoadTy, Address, FirstElt); } // See if we have this value is fully available. In such a case, return it as an // aggregate. This is a super-common case for single-element structs, but is // also a general answer for arbitrary structs and tuples as well. SILValue AvailableValueAggregator::aggregateFullyAvailableValue(SILType loadTy, unsigned firstElt) { // Check if our underlying type is fully available. If it isn't, bail. if (!isFullyAvailable(loadTy, firstElt)) return SILValue(); // Ok, grab out first value. (note: any actually will do). auto &firstVal = AvailableValueList[firstElt]; // Ok, we know that all of our available values are all parts of the same // value. Without ownership, we can just return the underlying first value. if (!B.hasOwnership()) return firstVal.getValue(); // Otherwise, we need to put in a copy. This is b/c we only propagate along +1 // values and we are eliminating a load [copy]. ArrayRef insertPts = firstVal.getInsertionPoints(); if (insertPts.size() == 1) { // Use the scope and location of the store at the insertion point. SILBuilderWithScope builder(insertPts[0], &insertedInsts); SILLocation loc = insertPts[0]->getLoc(); // If we have a take, just return the value. if (isTake()) return firstVal.getValue(); // Otherwise, return a copy of the value. return builder.emitCopyValueOperation(loc, firstVal.getValue()); } // If we have multiple insertion points, put copies at each point and use the // SSA updater to get a value. The reason why this is safe is that we can only // have multiple insertion points if we are storing exactly the same value // implying that we can just copy firstVal at each insertion point. SILSSAUpdater updater(&insertedPhiNodes); updater.initialize(&B.getFunction(), loadTy, B.hasOwnership() ? OwnershipKind::Owned : OwnershipKind::None); std::optional singularValue; for (auto *insertPt : insertPts) { // Use the scope and location of the store at the insertion point. SILBuilderWithScope builder(insertPt, &insertedInsts); SILLocation loc = insertPt->getLoc(); SILValue eltVal = firstVal.getValue(); // If we are not taking, copy the element value. if (!isTake()) { eltVal = builder.emitCopyValueOperation(loc, eltVal); } if (!singularValue.has_value()) { singularValue = eltVal; } else if (*singularValue != eltVal) { singularValue = SILValue(); } // And then put the value into the SSA updater. updater.addAvailableValue(insertPt->getParent(), eltVal); } // If we only are tracking a singular value, we do not need to construct // SSA. Just return that value. if (auto val = singularValue.value_or(SILValue())) { // This assert documents that we are expecting that if we are in ossa, have // a non-trivial value, and are not taking, we should never go down this // code path. If we did, we would need to insert a copy here. The reason why // we know we will never go down this code path is since we have been // inserting copy_values implying that our potential singular value would be // of the copy_values which are guaranteed to all be different. assert((!B.hasOwnership() || isTake() || val->getType().isTrivial(*B.getInsertionBB()->getParent())) && "Should never reach this code path if we are in ossa and have a " "non-trivial value"); return val; } // Finally, grab the value from the SSA updater. SILValue result = updater.getValueInMiddleOfBlock(B.getInsertionBB()); assert(result->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned)); if (isTake() || !B.hasOwnership()) { return result; } // Be careful with this value and insert a copy in our load block to prevent // any weird control equivalence issues. SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts); return builder.emitCopyValueOperation(Loc, result); } SILValue AvailableValueAggregator::aggregateTupleSubElts(TupleType *TT, SILType LoadTy, SILValue Address, unsigned FirstElt) { SmallVector ResultElts; for (unsigned EltNo : indices(TT->getElements())) { SILType EltTy = LoadTy.getTupleElementType(EltNo); unsigned NumSubElt = getNumSubElements(EltTy, M, TypeExpansionContext(B.getFunction())); // If we are missing any of the available values in this struct element, // compute an address to load from. SILValue EltAddr; if (anyMissing(FirstElt, NumSubElt, AvailableValueList)) { assert(!isTake() && "When taking, values should never be missing?!"); EltAddr = B.createTupleElementAddr(Loc, Address, EltNo, EltTy.getAddressType()); } ResultElts.push_back( aggregateValues(EltTy, EltAddr, FirstElt, /*isTopLevel*/ false)); FirstElt += NumSubElt; } // If we are going to use this to promote a borrowed value, insert borrow // operations. Eventually I am going to do this for everything, but this // should make it easier to bring up. if (!isTake()) { for (unsigned i : indices(ResultElts)) { ResultElts[i] = B.emitBeginBorrowOperation(Loc, ResultElts[i]); } } return B.createTuple(Loc, LoadTy, ResultElts); } SILValue AvailableValueAggregator::aggregateStructSubElts(StructDecl *sd, SILType loadTy, SILValue address, unsigned firstElt) { SmallVector resultElts; for (auto *decl : sd->getStoredProperties()) { auto context = TypeExpansionContext(B.getFunction()); SILType eltTy = loadTy.getFieldType(decl, M, context); unsigned numSubElt = getNumSubElements(eltTy, M, context); // If we are missing any of the available values in this struct element, // compute an address to load from. SILValue eltAddr; if (anyMissing(firstElt, numSubElt, AvailableValueList)) { assert(!isTake() && "When taking, values should never be missing?!"); eltAddr = B.createStructElementAddr(Loc, address, decl, eltTy.getAddressType()); } resultElts.push_back( aggregateValues(eltTy, eltAddr, firstElt, /*isTopLevel*/ false)); firstElt += numSubElt; } if (!isTake()) { for (unsigned i : indices(resultElts)) { resultElts[i] = B.emitBeginBorrowOperation(Loc, resultElts[i]); } } return B.createStruct(Loc, loadTy, resultElts); } // We have looked through all of the aggregate values and finally found a value // that is not available without transforming, i.e. a "primitive value". If the // value is available, use it (extracting if we need to), otherwise emit a load // of the value with the appropriate qualifier. SILValue AvailableValueAggregator::handlePrimitiveValue(SILType loadTy, SILValue address, unsigned firstElt) { assert(!isTake() && "Should only take fully available values?!"); // If the value is not available, load the value and update our use list. auto &val = AvailableValueList[firstElt]; if (!val) { LoadInst *load = ([&]() { if (B.hasOwnership()) { SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts); return builder.createTrivialLoadOr(Loc, address, LoadOwnershipQualifier::Copy); } return B.createLoad(Loc, address, LoadOwnershipQualifier::Unqualified); }()); Uses.emplace_back(load, PMOUseKind::Load); return load; } // If we have 1 insertion point, just extract the value and return. // // This saves us from having to spend compile time in the SSA updater in this // case. ArrayRef insertPts = val.getInsertionPoints(); if (insertPts.size() == 1) { // Use the scope and location of the store at the insertion point. SILBuilderWithScope builder(insertPts[0], &insertedInsts); SILLocation loc = insertPts[0]->getLoc(); SILValue eltVal = nonDestructivelyExtractSubElement(val, builder, loc); assert(!builder.hasOwnership() || eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned)); assert(eltVal->getType() == loadTy && "Subelement types mismatch"); if (!builder.hasOwnership()) { return eltVal; } SILBuilderWithScope builder2(&*B.getInsertionPoint(), &insertedInsts); return builder2.emitCopyValueOperation(Loc, eltVal); } // If we have an available value, then we want to extract the subelement from // the borrowed aggregate before each insertion point. Note that since we have // inserted copies at each of these insertion points, we know that we will // never have the same value along all paths unless we have a trivial value // meaning the SSA updater given a non-trivial value must /always/ be used. SILSSAUpdater updater(&insertedPhiNodes); updater.initialize(&B.getFunction(), loadTy, B.hasOwnership() ? OwnershipKind::Owned : OwnershipKind::None); std::optional singularValue; for (auto *i : insertPts) { // Use the scope and location of the store at the insertion point. SILBuilderWithScope builder(i, &insertedInsts); SILLocation loc = i->getLoc(); SILValue eltVal = nonDestructivelyExtractSubElement(val, builder, loc); assert(!builder.hasOwnership() || eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned)); if (!singularValue.has_value()) { singularValue = eltVal; } else if (*singularValue != eltVal) { singularValue = SILValue(); } updater.addAvailableValue(i->getParent(), eltVal); } SILBasicBlock *insertBlock = B.getInsertionBB(); // If we are not in ossa and have a singular value or if we are in ossa and // have a trivial singular value, just return that value. // // This can never happen for non-trivial values in ossa since we never should // visit this code path if we have a take implying that non-trivial values // /will/ have a copy and thus are guaranteed (since each copy yields a // different value) to not be singular values. if (auto val = singularValue.value_or(SILValue())) { assert((!B.hasOwnership() || val->getType().isTrivial(*insertBlock->getParent())) && "Should have inserted copies for each insertion point, so shouldn't " "have a singular value if non-trivial?!"); return val; } // Finally, grab the value from the SSA updater. SILValue eltVal = updater.getValueInMiddleOfBlock(insertBlock); assert(!B.hasOwnership() || eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned)); assert(eltVal->getType() == loadTy && "Subelement types mismatch"); if (!B.hasOwnership()) return eltVal; SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts); return builder.emitCopyValueOperation(Loc, eltVal); } static SILInstruction * getNonPhiBlockIncomingValueDef(SILValue incomingValue, SingleValueInstruction *phiCopy) { assert(isa(phiCopy)); auto *phiBlock = phiCopy->getParent(); if (phiBlock == incomingValue->getParentBlock()) { return nullptr; } if (auto *cvi = dyn_cast(incomingValue)) { return cvi; } assert(isa(incomingValue)); // Otherwise, our copy_value may not be post-dominated by our phi. To // work around that, we need to insert destroys along the other // paths. So set base to the first instruction in our argument's block, // so we can insert destroys for our base. return &*incomingValue->getParentBlock()->begin(); } static bool terminatorHasAnyKnownPhis(TermInst *ti, ArrayRef insertedPhiNodesSorted) { for (auto succArgList : ti->getSuccessorBlockArgumentLists()) { if (llvm::any_of(succArgList, [&](SILArgument *arg) { return binary_search(insertedPhiNodesSorted, cast(arg)); })) { return true; } } return false; } namespace { class PhiNodeCopyCleanupInserter { llvm::SmallMapVector incomingValues; /// Map from index -> (incomingValueIndex, copy). /// /// We are going to stable_sort this array using the indices of /// incomingValueIndex. This will ensure that we always visit in /// insertion order our incoming values (since the indices we are /// sorting by are the count of incoming values we have seen so far /// when we see the incoming value) and maintain the internal /// insertion sort within our range as well. This ensures that we /// visit our incoming values in visitation order and that within /// their own values, also visit them in visitation order with /// respect to each other. SmallFrozenMultiMap copiesToCleanup; /// The lifetime frontier that we use to compute lifetime endpoints /// when emitting cleanups. ValueLifetimeAnalysis::Frontier lifetimeFrontier; public: PhiNodeCopyCleanupInserter() = default; void trackNewCleanup(SILValue incomingValue, CopyValueInst *copy) { auto entry = std::make_pair(incomingValue, incomingValues.size()); auto iter = incomingValues.insert(entry); // If we did not succeed, then iter.first.second is the index of // incoming value. Otherwise, it will be nextIndex. copiesToCleanup.insert(iter.first->second, copy); } void emit(DeadEndBlocks &deadEndBlocks) &&; }; } // end anonymous namespace void PhiNodeCopyCleanupInserter::emit(DeadEndBlocks &deadEndBlocks) && { // READ THIS: We are being very careful here to avoid allowing for // non-determinism to enter here. // // 1. First we create a list of indices of our phi node data. Then we use a // stable sort those indices into the order in which our phi node cleanups // would be in if we compared just using incomingValues. We use a stable // sort here to ensure that within the same "cohort" of values, our order // is insertion order. // // 2. We go through the list of phiNodeCleanupStates in insertion order. We // also maintain a set of already visited base values. When we visit the // first phiNodeCleanupState for a specific phi, we process the phi // then. This ensures that we always process the phis in insertion order as // well. copiesToCleanup.setFrozen(); for (auto keyValue : copiesToCleanup.getRange()) { unsigned incomingValueIndex = keyValue.first; auto copies = keyValue.second; SILValue incomingValue = std::next(incomingValues.begin(), incomingValueIndex)->first; SingleValueInstruction *phiCopy = copies.front(); auto *insertPt = getNonPhiBlockIncomingValueDef(incomingValue, phiCopy); auto loc = RegularLocation::getAutoGeneratedLocation(); // Before we do anything, see if we have a single cleanup state. In such a // case, we could have that we have a phi node as an incoming value and a // copy_value in that same block. In such a case, we want to just insert the // copy and continue. This means that // cleanupState.getNonPhiBlockIncomingValueDef() should always return a // non-null value in the code below. if (copies.size() == 1 && isa(incomingValue) && !insertPt) { SILBasicBlock *phiBlock = phiCopy->getParent(); SILBuilderWithScope builder(phiBlock->getTerminator()); builder.createDestroyValue(loc, incomingValue); continue; } // Otherwise, we know that we have for this incomingValue, multiple // potential insert pts that we need to handle at the same time with our // lifetime query. Lifetime extend our base over these copy_value uses. assert(lifetimeFrontier.empty()); auto *def = getNonPhiBlockIncomingValueDef(incomingValue, phiCopy); assert(def && "Should never have a nullptr here since we handled all of " "the single block cases earlier"); ValueLifetimeAnalysis analysis(def, copies); bool foundCriticalEdges = !analysis.computeFrontier( lifetimeFrontier, ValueLifetimeAnalysis::DontModifyCFG, &deadEndBlocks); (void)foundCriticalEdges; assert(!foundCriticalEdges); while (!lifetimeFrontier.empty()) { auto *insertPoint = lifetimeFrontier.pop_back_val(); SILBuilderWithScope builder(insertPoint); builder.createDestroyValue(loc, incomingValue); } } } void AvailableValueAggregator::addHandOffCopyDestroysForPhis( SILInstruction *load, SILValue newVal) { assert(isa(load) || isa(load)); SmallVector leakingBlocks; SmallVector, 8> incomingValues; auto loc = RegularLocation::getAutoGeneratedLocation(); #ifndef NDEBUG LLVM_DEBUG(llvm::dbgs() << "Inserted Phis!\n"); for (auto *phi : insertedPhiNodes) { LLVM_DEBUG(llvm::dbgs() << "Phi: " << *phi); } #endif // Before we begin, identify the offset for all phis that are intermediate // phis inserted by the SSA updater. We are taking advantage of the fact that // the SSA updater just constructs the web without knowledge of ownership. So // if a phi node is only used by another phi node that we inserted, then we // have an intermediate phi node. // // TODO: There should be a better way of doing this than doing a copy + sort. SmallVector insertedPhiNodesSorted; llvm::copy(insertedPhiNodes, std::back_inserter(insertedPhiNodesSorted)); llvm::sort(insertedPhiNodesSorted); SmallBitVector intermediatePhiOffsets(insertedPhiNodes.size()); for (unsigned i : indices(insertedPhiNodes)) { if (TermInst *termInst = insertedPhiNodes[i]->getSingleUserOfType()) { // Only set the value if we find termInst has a successor with a phi node // in our insertedPhiNodes. if (terminatorHasAnyKnownPhis(termInst, insertedPhiNodesSorted)) { intermediatePhiOffsets.set(i); } } } // First go through all of our phi nodes doing the following: // // 1. If any of the phi node have a copy_value as an operand, we know that the // copy_value does not dominate our final definition since otherwise the // SSA updater would not have inserted a phi node here. In such a case // since we may not have that the copy_value is post-dominated by the phi, // we need to insert a copy_value at the phi to allow for post-domination // and then use the ValueLifetimeChecker to determine the rest of the // frontier for the base value. // // 2. If our phi node is used by another phi node, we run into a similar // problem where we could have that our original phi node does not dominate // our final definition (since the SSA updater would not have inserted the // phi) and may not be strongly control dependent on our phi. To work // around this problem, we insert at the phi a copy_value to allow for the // phi to post_dominate its copy and then extend the lifetime of the phied // value over that copy. // // As an extra complication to this, when we insert compensating releases for // any copy_values from (1), we need to insert the destroy_value on "base // values" (either a copy_value or the first instruction of a phi argument's // block) /after/ we have found all of the base_values to ensure that if the // same base value is used by multiple phis, we do not insert too many destroy // value. // // NOTE: At first glance one may think that such a problem could not occur // with phi nodes as well. Sadly if we allow for double backedge loops, it is // possible (there may be more cases). PhiNodeCopyCleanupInserter cleanupInserter; for (unsigned i : indices(insertedPhiNodes)) { auto *phi = insertedPhiNodes[i]; // If our phi is not owned, continue. No fixes are needed. if (phi->getOwnershipKind() != OwnershipKind::Owned) continue; LLVM_DEBUG(llvm::dbgs() << "Visiting inserted phi: " << *phi); // Otherwise, we have a copy_value that may not be strongly control // equivalent with our phi node. In such a case, we need to use // ValueLifetimeAnalysis to lifetime extend the copy such that we can // produce a new copy_value at the phi. We insert destroys along the // frontier. leakingBlocks.clear(); incomingValues.clear(); phi->getIncomingPhiValues(incomingValues); unsigned phiIndex = phi->getIndex(); for (auto pair : incomingValues) { SILValue value = pair.second; // If we had a non-trivial type with non-owned ownership, we will not see // a copy_value, so skip them here. if (value->getOwnershipKind() != OwnershipKind::Owned) continue; // Otherwise, value should be from a copy_value or a phi node. assert(isa(value) || isa(value)); // If we have a copy_value, remove it from the inserted insts set so we // skip it when we start processing insertedInstrs. if (auto *cvi = dyn_cast(value)) { copyValueProcessedWithPhiNodes.insert(cvi); // Then check if our termInst is in the same block as our copy_value. In // such a case, we can just use the copy_value as our phi's value // without needing to worry about any issues around control equivalence. if (pair.first == cvi->getParent()) continue; } else { assert(isa(value)); } // Otherwise, insert a copy_value instruction right before the phi. We use // that for our actual phi. auto *termInst = pair.first->getTerminator(); SILBuilderWithScope builder(termInst); CopyValueInst *phiCopy = builder.createCopyValue(loc, value); termInst->setOperand(phiIndex, phiCopy); // Now that we know our base, phi, phiCopy for this specific incoming // value, append it to the phiNodeCleanupState so we can insert // destroy_values late after we visit all insertedPhiNodes. cleanupInserter.trackNewCleanup(value, phiCopy); } // Then see if our phi is an intermediate phi. If it is an intermediate phi, // we know that this is not the phi node that is post-dominated by the // load_borrow and that we will lifetime extend it via the child // phi. Instead, we need to just ensure that our phi arg does not leak onto // its set of post-dominating paths, subtracting from that set the path // through our terminator use. if (intermediatePhiOffsets[i]) { continue; } // If we reach this point, then we know that we are a phi node that actually // dominates our user so we need to lifetime extend it over the // load_borrow. Thus insert copy_value along the incoming edges and then // lifetime extend the phi node over the load_borrow. // // The linear lifetime checker doesn't care if the passed in load is // actually a user of our copy_value. What we care about is that the load is // guaranteed to be in the block where we have reformed the tuple in a // consuming manner. This means if we add it as the consuming use of the // copy, we can find the leaking places if any exist. // // Then perform the linear lifetime check. If we succeed, continue. We have // no further work to do. auto *loadOperand = &load->getAllOperands()[0]; LinearLifetimeChecker checker(&deadEndBlocks); bool consumedInLoop = checker.completeConsumingUseSet( phi, loadOperand, [&](SILBasicBlock::iterator iter) { SILBuilderWithScope builder(iter); builder.emitDestroyValueOperation(loc, phi); }); // Ok, we found some leaking blocks and potentially that our load is // "consumed" inside a different loop in the loop nest from cvi. If we are // consumed in the loop, then our visit should have inserted all of the // necessary destroys for us by inserting the destroys on the loop // boundaries. So, continue. // // NOTE: This includes cases where due to an infinite loop, we did not // insert /any/ destroys since the loop has no boundary in a certain sense. if (consumedInLoop) { continue; } // Otherwise, we need to insert one last destroy after the load for our phi. auto next = std::next(load->getIterator()); SILBuilderWithScope builder(next); builder.emitDestroyValueOperation( RegularLocation::getAutoGeneratedLocation(), phi); } // Alright! In summary, we just lifetime extended all of our phis, // lifetime extended them to the load block, and inserted phi copies // at all of our intermediate phi nodes. Now we need to cleanup and // insert all of the compensating destroy_value that we need. std::move(cleanupInserter).emit(deadEndBlocks); // Clear the phi node array now that we are done. insertedPhiNodes.clear(); } void AvailableValueAggregator::addMissingDestroysForCopiedValues( SILInstruction *load, SILValue newVal) { assert(B.hasOwnership() && "We assume this is only called if we have ownership"); SmallVector leakingBlocks; auto loc = RegularLocation::getAutoGeneratedLocation(); for (auto *inst : insertedInsts) { // Otherwise, see if this is a load [copy]. It if it a load [copy], then we // know that the load [copy] must be in the load block meaning we can just // put a destroy_value /after/ the load_borrow to ensure that the value // lives long enough for us to copy_value it or a derived value for the // begin_borrow. if (auto *li = dyn_cast(inst)) { if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) { assert(li->getParent() == load->getParent()); auto next = std::next(load->getIterator()); SILBuilderWithScope builder(next); builder.emitDestroyValueOperation( RegularLocation::getAutoGeneratedLocation(), li); continue; } } // Our copy_value may have been unset above if it was used by a phi // (implying it does not dominate our final user). auto *cvi = dyn_cast(inst); if (!cvi) continue; // If we already handled this copy_value above when handling phi nodes, just // continue. if (copyValueProcessedWithPhiNodes.count(cvi)) continue; // Clear our state. leakingBlocks.clear(); // The linear lifetime checker doesn't care if the passed in load is // actually a user of our copy_value. What we care about is that the load is // guaranteed to be in the block where we have reformed the tuple in a // consuming manner. This means if we add it as the consuming use of the // copy, we can find the leaking places if any exist. // // Then perform the linear lifetime check. If we succeed, continue. We have // no further work to do. auto *loadOperand = &load->getAllOperands()[0]; LinearLifetimeChecker checker(&deadEndBlocks); bool consumedInLoop = checker.completeConsumingUseSet( cvi, loadOperand, [&](SILBasicBlock::iterator iter) { SILBuilderWithScope builder(iter); builder.emitDestroyValueOperation(loc, cvi); }); // Ok, we found some leaking blocks and potentially that our load is // "consumed" inside a different loop in the loop nest from cvi. If we are // consumed in the loop, then our visit should have inserted all of the // necessary destroys for us by inserting the destroys on the loop // boundaries. So, continue. // // NOTE: This includes cases where due to an infinite loop, we did not // insert /any/ destroys since the loop has no boundary in a certain sense. if (consumedInLoop) { continue; } // Otherwise, we need to insert one last destroy after the load for our phi. auto next = std::next(load->getIterator()); SILBuilderWithScope builder(next); builder.emitDestroyValueOperation( RegularLocation::getAutoGeneratedLocation(), cvi); } } //===----------------------------------------------------------------------===// // Available Value Dataflow //===----------------------------------------------------------------------===// namespace { /// Given a piece of memory, the memory's uses, and destroys perform a single /// round of semi-optimistic backwards dataflow for each use. The result is the /// set of available values that reach the specific use of the field in the /// allocated object. /// /// The general form of the algorithm is that in our constructor, we analyze our /// uses and determine available values. Then users call computeAvailableValues /// which looks backwards up the control flow graph for available values that we /// can use. /// /// NOTE: The reason why we say that the algorithm is semi-optimistic is that we /// assume that all incoming elements into a loopheader will be the same. If we /// find a conflict, we record it and fail. class AvailableValueDataflowContext { /// The base memory we are performing dataflow upon. AllocationInst *TheMemory; /// The number of sub elements of our memory. unsigned NumMemorySubElements; /// The set of uses that we are tracking. This is only here so we can update /// when exploding copy_addr. It would be great if we did not have to store /// this. SmallVectorImpl &Uses; InstructionDeleter &deleter; /// The set of blocks with local definitions. /// /// We use this to determine if we should visit a block or look at a block's /// predecessors during dataflow for an available value. BasicBlockFlag HasLocalDefinition; /// The set of blocks that have definitions which specifically "kill" the /// given value. If a block is in this set, there must be an instruction in /// LoadTakeUse whose parent is the block. This is just used to speed up /// computation. /// /// NOTE: These are not considered escapes. BasicBlockFlag HasLocalKill; /// This is a set of load takes that we are tracking. HasLocalKill is the set /// of parent blocks of these instructions. llvm::SmallPtrSet LoadTakeUses; /// This is a map of uses that are not loads (i.e., they are Stores, /// InOutUses, and Escapes), to their entry in Uses. llvm::SmallDenseMap NonLoadUses; /// Does this value escape anywhere in the function. We use this very /// conservatively. bool HasAnyEscape = false; public: AvailableValueDataflowContext(AllocationInst *TheMemory, unsigned NumMemorySubElements, SmallVectorImpl &Uses, InstructionDeleter &deleter); /// Try to compute available values for "TheMemory" at the instruction \p /// StartingFrom. We only compute the values for set bits in \p /// RequiredElts. We return the vailable values in \p Result. If any available /// values were found, return true. Otherwise, return false. bool computeAvailableValues(SILInstruction *StartingFrom, unsigned FirstEltOffset, unsigned NumLoadSubElements, SmallBitVector &RequiredElts, SmallVectorImpl &Result); /// Return true if the box has escaped at the specified instruction. We are /// not /// allowed to do load promotion in an escape region. bool hasEscapedAt(SILInstruction *I); /// Explode a copy_addr, updating the Uses at the same time. void explodeCopyAddr(CopyAddrInst *CAI); private: SILModule &getModule() const { return TheMemory->getModule(); } void updateAvailableValues(SILInstruction *Inst, SmallBitVector &RequiredElts, SmallVectorImpl &Result, SmallBitVector &ConflictingValues); void computeAvailableValuesFrom( SILBasicBlock::iterator StartingFrom, SILBasicBlock *BB, SmallBitVector &RequiredElts, SmallVectorImpl &Result, llvm::SmallDenseMap &VisitedBlocks, SmallBitVector &ConflictingValues); }; } // end anonymous namespace AvailableValueDataflowContext::AvailableValueDataflowContext( AllocationInst *InputTheMemory, unsigned NumMemorySubElements, SmallVectorImpl &InputUses, InstructionDeleter &deleter) : TheMemory(InputTheMemory), NumMemorySubElements(NumMemorySubElements), Uses(InputUses), deleter(deleter), HasLocalDefinition(InputTheMemory->getFunction()), HasLocalKill(InputTheMemory->getFunction()) { // The first step of processing an element is to collect information about the // element into data structures we use later. for (unsigned ui : indices(Uses)) { auto &Use = Uses[ui]; assert(Use.Inst && "No instruction identified?"); // If we have a load... if (Use.Kind == PMOUseKind::Load) { // Skip load borrow use and open_existential_addr. if (isa(Use.Inst) || isa(Use.Inst)) continue; // That is not a load take, continue. Otherwise, stash the load [take]. if (auto *LI = dyn_cast(Use.Inst)) { if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take) { LoadTakeUses.insert(LI); HasLocalKill.set(LI->getParent()); } continue; } // If we have a copy_addr as our load, it means we are processing a source // of the value. If the copy_addr is taking from the source, we need to // treat it like a load take use. if (auto *CAI = dyn_cast(Use.Inst)) { if (CAI->isTakeOfSrc() == IsTake) { LoadTakeUses.insert(CAI); HasLocalKill.set(CAI->getParent()); } continue; } llvm_unreachable("Unhandled SILInstructionKind for PMOUseKind::Load?!"); } // Keep track of all the uses that aren't loads. NonLoadUses[Use.Inst] = ui; HasLocalDefinition.set(Use.Inst->getParent()); if (Use.Kind == PMOUseKind::Escape) { // Determine which blocks the value can escape from. We aren't allowed to // promote loads in blocks reachable from an escape point. HasAnyEscape = true; } } // If isn't really a use, but we account for the alloc_box/mark_uninitialized // as a use so we see it in our dataflow walks. NonLoadUses[TheMemory] = ~0U; HasLocalDefinition.set(TheMemory->getParent()); } // This function takes in the current (potentially uninitialized) available // values for theMemory and for the subset of AvailableValues corresponding to // \p address either: // // 1. If uninitialized, optionally initialize the available value with a new // SILValue. It is optional since in certain cases, (for instance when // invalidating one just wants to skip empty available values). // // 2. Given an initialized value, either add the given instruction as an // insertion point or state that we have a conflict. static inline void updateAvailableValuesHelper( SingleValueInstruction *theMemory, SILInstruction *inst, SILValue address, SmallBitVector &requiredElts, SmallVectorImpl &result, SmallBitVector &conflictingValues, function_ref(unsigned)> defaultFunc, function_ref isSafeFunc) { auto &mod = theMemory->getModule(); unsigned startSubElt = computeSubelement(address, theMemory); // TODO: Is this needed now? assert(startSubElt != ~0U && "Store within enum projection not handled"); for (unsigned i : range(getNumSubElements( address->getType().getObjectType(), mod, TypeExpansionContext(*theMemory->getFunction())))) { // If this element is not required, don't fill it in. if (!requiredElts[startSubElt + i]) continue; // At this point we know that we will either mark the value as conflicting // or give it a value. requiredElts[startSubElt + i] = false; // First see if we have an entry at all. auto &entry = result[startSubElt + i]; // If we don't... if (!entry) { // and we are told to initialize it, do so. if (auto defaultValue = defaultFunc(i)) { entry = std::move(defaultValue.value()); } else { // Otherwise, mark this as a conflicting value. There is some available // value here, we just do not know what it is at this point. This // ensures that if we visit a kill where we do not have an entry yet, we // properly invalidate our state. conflictingValues[startSubElt + i] = true; } continue; } // Check if our caller thinks that the value currently in entry is // compatible with \p inst. If not, mark the values as conflicting and // continue. if (!isSafeFunc(entry, i)) { conflictingValues[startSubElt + i] = true; continue; } // Otherwise, we found another insertion point for our available // value. Today this will always be a Store. entry.addInsertionPoint(cast(inst)); } } void AvailableValueDataflowContext::updateAvailableValues( SILInstruction *Inst, SmallBitVector &RequiredElts, SmallVectorImpl &Result, SmallBitVector &ConflictingValues) { // If we are visiting a load [take], it invalidates the underlying available // values. // // NOTE: Since we are always looking back from the instruction to promote, // when we attempt to promote the load [take] itself, we will never hit this // code since. if (auto *LI = dyn_cast(Inst)) { // First see if this is a load inst that we are tracking. if (LoadTakeUses.count(LI)) { updateAvailableValuesHelper( TheMemory, LI, LI->getOperand(), RequiredElts, Result, ConflictingValues, /*default*/ [](unsigned) -> std::optional { // We never initialize values. We only // want to invalidate. return std::nullopt; }, /*isSafe*/ [](AvailableValue &, unsigned) -> bool { // Always assume values conflict. return false; }); return; } } // Handle store. if (auto *SI = dyn_cast(Inst)) { updateAvailableValuesHelper( TheMemory, SI, SI->getDest(), RequiredElts, Result, ConflictingValues, /*default*/ [&](unsigned ResultOffset) -> std::optional { std::optional Result; Result.emplace(SI->getSrc(), ResultOffset, SI); return Result; }, /*isSafe*/ [&](AvailableValue &Entry, unsigned ResultOffset) -> bool { // TODO: This is /really/, /really/, conservative. This basically // means that if we do not have an identical store, we will not // promote. return Entry.getValue() == SI->getSrc() && Entry.getSubElementNumber() == ResultOffset; }); return; } // If we got here from an apply, we must either be initializing the element // via an @out parameter or we are trying to model an invalidating load of the // value (e.x.: indirect_in, indirect_inout). // If we get here with a copy_addr, we must either be storing into the element // or tracking some sort of take of the src. First check if we are taking (in // which case, we just track invalidation of src) and continue. Otherwise we // must be storing into the copy_addr so see which loaded subelements are // being used, and if so, explode the copy_addr to its individual pieces. if (auto *CAI = dyn_cast(Inst)) { // If we have a load take use, we must be tracking a store of CAI. if (LoadTakeUses.count(CAI)) { updateAvailableValuesHelper( TheMemory, CAI, CAI->getSrc(), RequiredElts, Result, ConflictingValues, /*default*/ [](unsigned) -> std::optional { // We never give values default initialized // values. We only want to invalidate. return std::nullopt; }, /*isSafe*/ [](AvailableValue &, unsigned) -> bool { // Always assume values conflict. return false; }); return; } unsigned StartSubElt = computeSubelement(CAI->getDest(), TheMemory); assert(StartSubElt != ~0U && "Store within enum projection not handled"); SILType ValTy = CAI->getDest()->getType(); bool AnyRequired = false; for (unsigned i : range(getNumSubElements( ValTy, getModule(), TypeExpansionContext(*CAI->getFunction())))) { // If this element is not required, don't fill it in. AnyRequired = RequiredElts[StartSubElt+i]; if (AnyRequired) break; } // If this is a copy addr that doesn't intersect the loaded subelements, // just continue with an unmodified load mask. if (!AnyRequired) return; // If the copyaddr is of a non-loadable type, we can't promote it. Just // consider it to be a clobber. if (CAI->getSrc()->getType().isLoadable(*CAI->getFunction())) { // Otherwise, some part of the copy_addr's value is demanded by a load, so // we need to explode it to its component pieces. This only expands one // level of the copyaddr. explodeCopyAddr(CAI); // The copy_addr doesn't provide any values, but we've arranged for our // iterators to visit the newly generated instructions, which do. return; } } // TODO: inout apply's should only clobber pieces passed in. // Otherwise, this is some unknown instruction, conservatively assume that all // values are clobbered. RequiredElts.clear(); ConflictingValues = SmallBitVector(Result.size(), true); return; } bool AvailableValueDataflowContext::computeAvailableValues( SILInstruction *StartingFrom, unsigned FirstEltOffset, unsigned NumLoadSubElements, SmallBitVector &RequiredElts, SmallVectorImpl &Result) { llvm::SmallDenseMap VisitedBlocks; SmallBitVector ConflictingValues(Result.size()); computeAvailableValuesFrom(StartingFrom->getIterator(), StartingFrom->getParent(), RequiredElts, Result, VisitedBlocks, ConflictingValues); // If there are no values available at this load point, then we fail to // promote this load and there is nothing to do. SmallBitVector AvailableValueIsPresent(NumMemorySubElements); for (unsigned i : range(FirstEltOffset, FirstEltOffset + NumLoadSubElements)) { AvailableValueIsPresent[i] = Result[i].getValue(); } // If we do not have any values available, bail. if (AvailableValueIsPresent.none()) return false; // Otherwise, if we have any conflicting values, explicitly mask them out of // the result, so we don't pick one arbitrary available value. if (ConflictingValues.none()) { return true; } // At this point, we know that we have /some/ conflicting values and some // available values. if (AvailableValueIsPresent.reset(ConflictingValues).none()) return false; // Otherwise, mask out the available values and return true. We have at least // 1 available value. int NextIter = ConflictingValues.find_first(); while (NextIter != -1) { assert(NextIter >= 0 && "Int can not be represented?!"); unsigned Iter = NextIter; Result[Iter] = {}; NextIter = ConflictingValues.find_next(Iter); } return true; } void AvailableValueDataflowContext::computeAvailableValuesFrom( SILBasicBlock::iterator StartingFrom, SILBasicBlock *BB, SmallBitVector &RequiredElts, SmallVectorImpl &Result, llvm::SmallDenseMap &VisitedBlocks, SmallBitVector &ConflictingValues) { assert(!RequiredElts.none() && "Scanning with a goal of finding nothing?"); // If there is a potential modification in the current block, scan the block // to see if the store, escape, or load [take] is before or after the load. If // it is before, check to see if it produces the value we are looking for. bool shouldCheckBlock = HasLocalDefinition.get(BB) || HasLocalKill.get(BB); if (shouldCheckBlock) { for (SILBasicBlock::iterator BBI = StartingFrom; BBI != BB->begin();) { SILInstruction *TheInst = &*std::prev(BBI); // If this instruction is unrelated to the element, ignore it. if (!NonLoadUses.count(TheInst) && !LoadTakeUses.count(TheInst)) { --BBI; continue; } // Given an interesting instruction, incorporate it into the set of // results, and filter down the list of demanded subelements that we still // need. updateAvailableValues(TheInst, RequiredElts, Result, ConflictingValues); // If this satisfied all of the demanded values, we're done. if (RequiredElts.none()) return; // Otherwise, keep scanning the block. If the instruction we were looking // at just got exploded, don't skip the next instruction. if (&*std::prev(BBI) == TheInst) --BBI; } } // Otherwise, we need to scan up the CFG looking for available values. for (auto PI = BB->pred_begin(), E = BB->pred_end(); PI != E; ++PI) { SILBasicBlock *PredBB = *PI; // If the predecessor block has already been visited (potentially due to a // cycle in the CFG), don't revisit it. We can do this safely because we // are optimistically assuming that all incoming elements in a cycle will be // the same. If we ever detect a conflicting element, we record it and do // not look at the result. auto Entry = VisitedBlocks.insert({PredBB, RequiredElts}); if (!Entry.second) { // If we are revisiting a block and asking for different required elements // then anything that isn't agreeing is in conflict. const auto &PrevRequired = Entry.first->second; if (PrevRequired != RequiredElts) { ConflictingValues |= (PrevRequired ^ RequiredElts); RequiredElts &= ~ConflictingValues; if (RequiredElts.none()) return; } continue; } // Make sure to pass in the same set of required elements for each pred. SmallBitVector Elts = RequiredElts; computeAvailableValuesFrom(PredBB->end(), PredBB, Elts, Result, VisitedBlocks, ConflictingValues); // If we have any conflicting values, don't bother searching for them. RequiredElts &= ~ConflictingValues; if (RequiredElts.none()) return; } } /// Explode a copy_addr instruction of a loadable type into lower level /// operations like loads, stores, retains, releases, retain_value, etc. void AvailableValueDataflowContext::explodeCopyAddr(CopyAddrInst *CAI) { LLVM_DEBUG(llvm::dbgs() << " -- Exploding copy_addr: " << *CAI << "\n"); SILType ValTy = CAI->getDest()->getType().getObjectType(); SILFunction *F = CAI->getFunction(); auto &TL = F->getTypeLowering(ValTy); // Keep track of the new instructions emitted. SmallVector NewInsts; SILBuilder B(CAI, &NewInsts); B.setCurrentDebugScope(CAI->getDebugScope()); // Use type lowering to lower the copyaddr into a load sequence + store // sequence appropriate for the type. SILValue StoredValue = TL.emitLoadOfCopy(B, CAI->getLoc(), CAI->getSrc(), CAI->isTakeOfSrc()); TL.emitStoreOfCopy(B, CAI->getLoc(), StoredValue, CAI->getDest(), CAI->isInitializationOfDest()); // Update our internal state for this being gone. NonLoadUses.erase(CAI); LoadTakeUses.erase(CAI); // NOTE: We do not need to update HasLocalKill since the copy_addr // and the loads/stores will have the same parent block. // Remove the copy_addr from Uses. A single copy_addr can appear multiple // times if the source and dest are to elements within a single aggregate, but // we only want to pick up the CopyAddrKind from the store. PMOMemoryUse LoadUse, StoreUse; for (auto &Use : Uses) { if (Use.Inst != CAI) continue; if (Use.Kind == PMOUseKind::Load) { assert(LoadUse.isInvalid()); LoadUse = Use; } else { assert(StoreUse.isInvalid()); StoreUse = Use; } Use.Inst = nullptr; // Keep scanning in case the copy_addr appears multiple times. } assert((LoadUse.isValid() || StoreUse.isValid()) && "we should have a load or a store, possibly both"); assert(StoreUse.isInvalid() || StoreUse.Kind == Assign || StoreUse.Kind == Initialization || StoreUse.Kind == InitOrAssign); // Now that we've emitted a bunch of instructions, including a load and store // but also including other stuff, update the internal state of // LifetimeChecker to reflect them. // Update the instructions that touch the memory. NewInst can grow as this // iterates, so we can't use a foreach loop. for (auto *NewInst : NewInsts) { switch (NewInst->getKind()) { default: NewInst->dump(); llvm_unreachable("Unknown instruction generated by copy_addr lowering"); case SILInstructionKind::StoreInst: // If it is a store to the memory object (as oppose to a store to // something else), track it as an access. if (StoreUse.isValid()) { StoreUse.Inst = NewInst; // If our store use by the copy_addr is an assign, then we know that // before we store the new value, we loaded the old value implying that // our store is technically initializing memory when it occurs. So // change the kind to Initialization. if (StoreUse.Kind == Assign) StoreUse.Kind = Initialization; NonLoadUses[NewInst] = Uses.size(); Uses.push_back(StoreUse); } continue; case SILInstructionKind::LoadInst: // If it is a load from the memory object (as oppose to a load from // something else), track it as an access. We need to explicitly check to // see if the load accesses "TheMemory" because it could either be a load // for the copy_addr source, or it could be a load corresponding to the // "assign" operation on the destination of the copyaddr. if (LoadUse.isValid() && getAccessPathRoot(NewInst->getOperand(0)) == TheMemory) { if (auto *LI = dyn_cast(NewInst)) { if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take) { LoadTakeUses.insert(LI); HasLocalKill.set(LI->getParent()); } } LoadUse.Inst = NewInst; Uses.push_back(LoadUse); } continue; case SILInstructionKind::RetainValueInst: case SILInstructionKind::StrongRetainInst: case SILInstructionKind::StrongReleaseInst: case SILInstructionKind::ReleaseValueInst: // Destroy overwritten value // These are ignored. continue; } } // Next, remove the copy_addr itself. deleter.forceDelete(CAI); } bool AvailableValueDataflowContext::hasEscapedAt(SILInstruction *I) { // Return true if the box has escaped at the specified instruction. We are // not allowed to do load promotion in an escape region. // FIXME: This is not an aggressive implementation. :) // TODO: At some point, we should special case closures that just *read* from // the escaped value (by looking at the body of the closure). They should not // prevent load promotion, and will allow promoting values like X in regions // dominated by "... && X != 0". return HasAnyEscape; } //===----------------------------------------------------------------------===// // Allocation Optimization //===----------------------------------------------------------------------===// static SILType getMemoryType(AllocationInst *memory) { // Compute the type of the memory object. if (auto *abi = dyn_cast(memory)) { assert(abi->getBoxType()->getLayout()->getFields().size() == 1 && "optimizing multi-field boxes not implemented"); return getSILBoxFieldType(TypeExpansionContext(*abi->getFunction()), abi->getBoxType(), abi->getModule().Types, 0); } assert(isa(memory)); return cast(memory)->getElementType(); } namespace { /// This performs load promotion and deletes synthesized allocations if all /// loads can be removed. class AllocOptimize { SILModule &Module; /// This is either an alloc_box or alloc_stack instruction. AllocationInst *TheMemory; /// This is the SILType of the memory object. SILType MemoryType; /// The number of primitive subelements across all elements of this memory /// value. unsigned NumMemorySubElements; SmallVectorImpl &Uses; SmallVectorImpl &Releases; DeadEndBlocks &deadEndBlocks; InstructionDeleter &deleter; DominanceInfo *domInfo; /// A structure that we use to compute our available values. AvailableValueDataflowContext DataflowContext; public: AllocOptimize(AllocationInst *memory, SmallVectorImpl &uses, SmallVectorImpl &releases, DeadEndBlocks &deadEndBlocks, InstructionDeleter &deleter, DominanceInfo *domInfo) : Module(memory->getModule()), TheMemory(memory), MemoryType(getMemoryType(memory)), NumMemorySubElements(getNumSubElements( MemoryType, Module, TypeExpansionContext(*memory->getFunction()))), Uses(uses), Releases(releases), deadEndBlocks(deadEndBlocks), deleter(deleter), domInfo(domInfo), DataflowContext(TheMemory, NumMemorySubElements, uses, deleter) {} bool optimizeMemoryAccesses(); /// If the allocation is an autogenerated allocation that is only stored to /// (after load promotion) then remove it completely. bool tryToRemoveDeadAllocation(); private: std::optional> computeAvailableValues(SILValue SrcAddr, SILInstruction *Inst, SmallVectorImpl &AvailableValues); bool promoteLoadCopy(LoadInst *li); bool promoteLoadBorrow(LoadBorrowInst *lbi); bool promoteCopyAddr(CopyAddrInst *cai); /// Promote a load take cleaning up everything except for RAUWing the /// instruction with the aggregated result. The routine returns the new /// aggregated result to the caller and expects the caller to eventually RAUW /// \p inst with the return value. The reason why we do this is to allow for /// the caller to work around invalidation issues by not deleting the load /// [take] until after all load [take] have been cleaned up. /// /// \returns the value that the caller will RAUW with \p inst. SILValue promoteLoadTake(LoadInst *inst, MutableArrayRef values); void promoteDestroyAddr(DestroyAddrInst *dai, MutableArrayRef values); bool canPromoteTake(SILInstruction *i, SmallVectorImpl &availableValues); }; } // end anonymous namespace std::optional> AllocOptimize::computeAvailableValues( SILValue SrcAddr, SILInstruction *Inst, SmallVectorImpl &AvailableValues) { // If the box has escaped at this instruction, we can't safely promote the // load. if (DataflowContext.hasEscapedAt(Inst)) return std::nullopt; SILType LoadTy = SrcAddr->getType().getObjectType(); // If this is a load/copy_addr from a struct field that we want to promote, // compute the access path down to the field so we can determine precise // def/use behavior. unsigned FirstElt = computeSubelement(SrcAddr, TheMemory); // If this is a load from within an enum projection, we can't promote it since // we don't track subelements in a type that could be changing. if (FirstElt == ~0U) return std::nullopt; unsigned NumLoadSubElements = getNumSubElements( LoadTy, Module, TypeExpansionContext(*TheMemory->getFunction())); // Set up the bitvector of elements being demanded by the load. SmallBitVector RequiredElts(NumMemorySubElements); RequiredElts.set(FirstElt, FirstElt + NumLoadSubElements); AvailableValues.resize(NumMemorySubElements); // Find out if we have any available values. If no bits are demanded, we // trivially succeed. This can happen when there is a load of an empty struct. if (NumLoadSubElements != 0 && !DataflowContext.computeAvailableValues( Inst, FirstElt, NumLoadSubElements, RequiredElts, AvailableValues)) return std::nullopt; return std::make_pair(LoadTy, FirstElt); } /// If we are able to optimize \p Inst, return the source address that /// instruction is loading from. If we can not optimize \p Inst, then just /// return an empty SILValue. static SILValue tryFindSrcAddrForLoad(SILInstruction *i) { // We can always promote a load_borrow. if (auto *lbi = dyn_cast(i)) return lbi->getOperand(); // We only handle load [copy], load [trivial], load and copy_addr right // now. Notably we do not support load [take] when promoting loads. if (auto *li = dyn_cast(i)) if (li->getOwnershipQualifier() != LoadOwnershipQualifier::Take) return li->getOperand(); // If this is a CopyAddr, verify that the element type is loadable. If not, // we can't explode to a load. auto *cai = dyn_cast(i); if (!cai || !cai->getSrc()->getType().isLoadable(*cai->getFunction())) return SILValue(); return cai->getSrc(); } /// At this point, we know that this element satisfies the definitive init /// requirements, so we can try to promote loads to enable SSA-based dataflow /// analysis. We know that accesses to this element only access this element, /// cross element accesses have been scalarized. /// /// This returns true if the load has been removed from the program. bool AllocOptimize::promoteLoadCopy(LoadInst *li) { // Note that we intentionally don't support forwarding of weak pointers, // because the underlying value may drop be deallocated at any time. We would // have to prove that something in this function is holding the weak value // live across the promoted region and that isn't desired for a stable // diagnostics pass this like one. // First attempt to find a source addr for our "load" instruction. If we fail // to find a valid value, just return. SILValue srcAddr = tryFindSrcAddrForLoad(li); if (!srcAddr) return false; SmallVector availableValues; auto result = computeAvailableValues(srcAddr, li, availableValues); if (!result.has_value()) return false; SILType loadTy = result->first; unsigned firstElt = result->second; // Aggregate together all of the subelements into something that has the same // type as the load did, and emit smaller loads for any subelements that were // not available. We are "propagating" a +1 available value from the store // points. AvailableValueAggregator agg(li, availableValues, Uses, deadEndBlocks, AvailableValueExpectedOwnership::Copy); SILValue newVal = agg.aggregateValues(loadTy, li->getOperand(), firstElt); LLVM_DEBUG(llvm::dbgs() << " *** Promoting load: " << *li); LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal); ++NumLoadPromoted; // If we did not have ownership, we did not insert extra copies at our stores, // so we can just RAUW and return. if (!li->getFunction()->hasOwnership()) { li->replaceAllUsesWith(newVal); SILValue addr = li->getOperand(); deleter.forceDelete(li); if (auto *addrI = addr->getDefiningInstruction()) deleter.deleteIfDead(addrI); return true; } // If we inserted any copies, we created the copies at our stores. We know // that in our load block, we will reform the aggregate as appropriate at the // load implying that the value /must/ be fully consumed. If we promoted a +0 // value, we created dominating destroys along those paths. Thus any leaking // blocks that we may have can be found by performing a linear lifetime check // over all copies that we found using the load as the "consuming uses" (just // for the purposes of identifying the consuming block). agg.fixupOwnership(li, newVal); // Now that we have fixed up all of our missing destroys, insert the copy // value for our actual load and RAUW. newVal = SILBuilderWithScope(li).emitCopyValueOperation(li->getLoc(), newVal); li->replaceAllUsesWith(newVal); SILValue addr = li->getOperand(); deleter.forceDelete(li); if (auto *addrI = addr->getDefiningInstruction()) deleter.deleteIfDead(addrI); return true; } bool AllocOptimize::promoteCopyAddr(CopyAddrInst *cai) { // Note that we intentionally don't support forwarding of weak pointers, // because the underlying value may drop be deallocated at any time. We would // have to prove that something in this function is holding the weak value // live across the promoted region and that isn't desired for a stable // diagnostics pass this like one. // First attempt to find a source addr for our "load" instruction. If we fail // to find a valid value, just return. SILValue srcAddr = tryFindSrcAddrForLoad(cai); if (!srcAddr) return false; SmallVector availableValues; auto result = computeAvailableValues(srcAddr, cai, availableValues); if (!result.has_value()) return false; // Ok, we have some available values. If we have a copy_addr, explode it now, // exposing the load operation within it. Subsequent optimization passes will // see the load and propagate the available values into it. DataflowContext.explodeCopyAddr(cai); // This is removing the copy_addr, but explodeCopyAddr takes care of // removing the instruction from Uses for us, so we return false. return false; } /// At this point, we know that this element satisfies the definitive init /// requirements, so we can try to promote loads to enable SSA-based dataflow /// analysis. We know that accesses to this element only access this element, /// cross element accesses have been scalarized. /// /// This returns true if the load has been removed from the program. bool AllocOptimize::promoteLoadBorrow(LoadBorrowInst *lbi) { // Note that we intentionally don't support forwarding of weak pointers, // because the underlying value may drop be deallocated at any time. We would // have to prove that something in this function is holding the weak value // live across the promoted region and that isn't desired for a stable // diagnostics pass this like one. // First attempt to find a source addr for our "load" instruction. If we fail // to find a valid value, just return. SILValue srcAddr = tryFindSrcAddrForLoad(lbi); if (!srcAddr) return false; SmallVector availableValues; auto result = computeAvailableValues(srcAddr, lbi, availableValues); if (!result.has_value()) return false; // Bail if the load_borrow has reborrows. In this case it's not so easy to // find the insertion points for the destroys. if (!lbi->getUsersOfType().empty()) { return false; } ++NumLoadPromoted; SILType loadTy = result->first; unsigned firstElt = result->second; // Aggregate together all of the subelements into something that has the same // type as the load did, and emit smaller loads for any subelements that were // not available. We are "propagating" a +1 available value from the store // points. AvailableValueAggregator agg(lbi, availableValues, Uses, deadEndBlocks, AvailableValueExpectedOwnership::Borrow); SILValue newVal = agg.aggregateValues(loadTy, lbi->getOperand(), firstElt); LLVM_DEBUG(llvm::dbgs() << " *** Promoting load: " << *lbi); LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal); // If we inserted any copies, we created the copies at our // stores. We know that in our load block, we will reform the // aggregate as appropriate, will borrow the value there and give us // a whole pristine new value. Now in this routine, we go through // all of the copies and phis that we inserted and ensure that: // // 1. Phis are always strongly control equivalent to the copies that // produced their incoming values. // // 2. All intermediate copies are properly lifetime extended to the // load block and all leaking blocks are filled in as appropriate // with destroy_values. agg.fixupOwnership(lbi, newVal); // Now that we have fixed up the lifetimes of all of our incoming copies so // that they are alive over the load point, copy, borrow newVal and insert // destroy_value after the end_borrow and then RAUW. SILBuilderWithScope builder(lbi); SILValue copiedVal = builder.emitCopyValueOperation(lbi->getLoc(), newVal); newVal = builder.createBeginBorrow(lbi->getLoc(), copiedVal); for (auto *ebi : lbi->getUsersOfType()) { auto next = std::next(ebi->getIterator()); SILBuilderWithScope(next).emitDestroyValueOperation(ebi->getLoc(), copiedVal); } lbi->replaceAllUsesWith(newVal); SILValue addr = lbi->getOperand(); deleter.forceDelete(lbi); if (auto *addrI = addr->getDefiningInstruction()) deleter.deleteIfDead(addrI); return true; } /// Return true if we can promote the given destroy. bool AllocOptimize::canPromoteTake( SILInstruction *inst, SmallVectorImpl &availableValues) { SILValue address = inst->getOperand(0); // We cannot promote destroys of address-only types, because we can't expose // the load. SILType loadTy = address->getType().getObjectType(); if (loadTy.isAddressOnly(*inst->getFunction())) return false; // If the box has escaped at this instruction, we can't safely promote the // load. if (DataflowContext.hasEscapedAt(inst)) return false; // Compute the access path down to the field so we can determine precise // def/use behavior. unsigned firstElt = computeSubelement(address, TheMemory); assert(firstElt != ~0U && "destroy within enum projection is not valid"); auto expansionContext = TypeExpansionContext(*inst->getFunction()); unsigned numLoadSubElements = getNumSubElements(loadTy, Module, expansionContext); // Find out if we have any available values. If no bits are demanded, we // trivially succeed. This can happen when there is a load of an empty struct. if (numLoadSubElements == 0) return true; // Set up the bitvector of elements being demanded by the load. SmallBitVector requiredElts(NumMemorySubElements); requiredElts.set(firstElt, firstElt + numLoadSubElements); // Compute our available values. If we do not have any available values, // return false. We have nothing further to do. SmallVector tmpList; tmpList.resize(NumMemorySubElements); if (!DataflowContext.computeAvailableValues( inst, firstElt, numLoadSubElements, requiredElts, tmpList)) return false; // Now check that we can perform a take upon our available values. This // implies today that our value is fully available. If the value is not fully // available, we would need to split stores to promote this destroy_addr. We // do not support that yet. AvailableValueAggregator agg(inst, tmpList, Uses, deadEndBlocks, AvailableValueExpectedOwnership::Take); if (!agg.canTake(loadTy, firstElt)) return false; // As a final check, make sure that we have an available value for each value, // if not bail. for (const auto &av : tmpList) if (!av.Value) return false; // Ok, we can promote this destroy_addr... move the temporary lists contents // into the final AvailableValues list. std::move(tmpList.begin(), tmpList.end(), std::back_inserter(availableValues)); return true; } // DestroyAddr is a composed operation merging load [take] + destroy_value. If // the implicit load's value is available, explode it. // // NOTE: We only do this if we have a fully available value. // // Note that we handle the general case of a destroy_addr of a piece of the // memory object, not just destroy_addrs of the entire thing. void AllocOptimize::promoteDestroyAddr( DestroyAddrInst *dai, MutableArrayRef availableValues) { SILValue address = dai->getOperand(); SILType loadTy = address->getType().getObjectType(); // Compute the access path down to the field so we can determine precise // def/use behavior. unsigned firstElt = computeSubelement(address, TheMemory); // Aggregate together all of the subelements into something that has the same // type as the load did, and emit smaller) loads for any subelements that were // not available. AvailableValueAggregator agg(dai, availableValues, Uses, deadEndBlocks, AvailableValueExpectedOwnership::Take); SILValue newVal = agg.aggregateValues(loadTy, address, firstElt); ++NumDestroyAddrPromoted; LLVM_DEBUG(llvm::dbgs() << " *** Promoting destroy_addr: " << *dai); LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal); SILBuilderWithScope(dai).emitDestroyValueOperation(dai->getLoc(), newVal); deleter.forceDelete(dai); } SILValue AllocOptimize::promoteLoadTake( LoadInst *li, MutableArrayRef availableValues) { assert(li->getOwnershipQualifier() == LoadOwnershipQualifier::Take && "load [copy], load [trivial], load should be handled by " "promoteLoadCopy"); SILValue address = li->getOperand(); SILType loadTy = address->getType().getObjectType(); // Compute the access path down to the field so we can determine precise // def/use behavior. unsigned firstElt = computeSubelement(address, TheMemory); // Aggregate together all of the subelements into something that has the same // type as the load did, and emit smaller) loads for any subelements that were // not available. AvailableValueAggregator agg(li, availableValues, Uses, deadEndBlocks, AvailableValueExpectedOwnership::Take); SILValue newVal = agg.aggregateValues(loadTy, address, firstElt); assert(newVal); ++NumLoadTakePromoted; LLVM_DEBUG(llvm::dbgs() << " *** Promoting load_take: " << *li); LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal); // Our parent RAUWs with newVal/erases li. return newVal; } namespace { struct TakePromotionState { ArrayRef takeInsts; SmallVector takeInstIndices; SmallVector availableValueList; SmallVector availableValueStartOffsets; TakePromotionState(ArrayRef takeInsts) : takeInsts(takeInsts) {} unsigned size() const { return takeInstIndices.size(); } void verify() { #ifndef NDEBUG for (unsigned i : range(size())) { SILInstruction *inst; MutableArrayRef data; std::tie(inst, data) = getData(i); assert(inst); inst->verifyOperandOwnership(); assert(!data.empty() && "Value without any available values?!"); } #endif } void verify(unsigned startOffset) { #ifndef NDEBUG assert(startOffset < size()); for (unsigned i : range(startOffset, size())) { SILInstruction *inst; MutableArrayRef data; std::tie(inst, data) = getData(i); assert(inst); inst->verifyOperandOwnership(); assert(!data.empty() && "Value without any available values?!"); } #endif } void initializeForTakeInst(unsigned takeInstIndex) { availableValueStartOffsets.push_back(availableValueList.size()); takeInstIndices.push_back(takeInstIndex); } std::pair> getData(unsigned index) { unsigned takeInstIndex = takeInstIndices[index]; unsigned startOffset = availableValueStartOffsets[index]; unsigned count; if ((availableValueStartOffsets.size() - 1) != index) { count = availableValueStartOffsets[index + 1] - startOffset; } else { count = availableValueList.size() - startOffset; } auto values = MutableArrayRef(availableValueList); return {takeInsts[takeInstIndex], values.slice(startOffset, count)}; } }; } // end anonymous namespace // Check if our use list has any non store, non take uses that keep the value // alive. Returns nullptr on success and the user that prevents removal on // failure. // // NOTE: This also gathers up any takes that we need to process. static SILInstruction * checkForNonStoreNonTakeUses(ArrayRef uses, SmallVectorImpl &loadTakeList) { for (auto &u : uses) { // Ignore removed instructions. if (u.Inst == nullptr) continue; switch (u.Kind) { case PMOUseKind::Assign: // Until we can promote the value being destroyed by the assign, we can // not remove deallocations with such assigns. return u.Inst; case PMOUseKind::InitOrAssign: continue; // These don't prevent removal. case PMOUseKind::Load: // For now only handle takes from alloc_stack. // // TODO: It should be implementable, but it has not been needed yet. if (auto *li = dyn_cast(u.Inst)) { if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) { loadTakeList.push_back(li); continue; } } return u.Inst; case PMOUseKind::Initialization: if (!isa(u.Inst) && // A copy_addr that is not a take affects the retain count // of the source. (!isa(u.Inst) || cast(u.Inst)->isTakeOfSrc())) continue; // FALL THROUGH. LLVM_FALLTHROUGH; case PMOUseKind::IndirectIn: case PMOUseKind::InOutUse: case PMOUseKind::Escape: return u.Inst; // These do prevent removal. } } return nullptr; } // We don't want to remove allocations that are required for useful debug // information at -O0. As such, we only remove allocations if: // // 1. They are in a transparent function. // 2. They are in a normal function, but didn't come from a VarDecl, or came // from one that was autogenerated or inlined from a transparent function. static bool isRemovableAutogeneratedAllocation(AllocationInst *TheMemory) { SILLocation loc = TheMemory->getLoc(); return TheMemory->getFunction()->isTransparent() || !loc.getAsASTNode() || loc.isAutoGenerated() || loc.is(); } bool AllocOptimize::tryToRemoveDeadAllocation() { assert(TheMemory->getFunction()->hasOwnership() && "Can only eliminate dead allocations with ownership enabled"); assert((isa(TheMemory) || isa(TheMemory)) && "Unhandled allocation case"); if (!isRemovableAutogeneratedAllocation(TheMemory)) return false; SmallVector loadTakeList; // Check the uses list to see if there are any non-store uses left over after // load promotion and other things PMO does. if (auto *badUser = checkForNonStoreNonTakeUses(Uses, loadTakeList)) { LLVM_DEBUG(llvm::dbgs() << "*** Failed to remove autogenerated alloc: " "kept alive by: " << *badUser); return false; } // If our memory is trivially typed, we can just remove it without needing to // consider if the stored value needs to be destroyed. So at this point, // delete the memory! if (MemoryType.isTrivial(*TheMemory->getFunction())) { LLVM_DEBUG(llvm::dbgs() << "*** Removing autogenerated trivial allocation: " << *TheMemory); // If it is safe to remove, do it. Recursively remove all instructions // hanging off the allocation instruction, then return success. Let the // caller remove the allocation itself to avoid iterator invalidation. deleter.forceDeleteWithUsers(TheMemory); return true; } // Now make sure we can promote all load [take] and prepare state for each of // them. TakePromotionState loadTakeState(loadTakeList); for (auto p : llvm::enumerate(loadTakeList)) { loadTakeState.initializeForTakeInst(p.index()); if (!canPromoteTake(p.value(), loadTakeState.availableValueList)) return false; } // Otherwise removing the deallocation will drop any releases. Check that // there is nothing preventing removal. TakePromotionState destroyAddrState(Releases); for (auto p : llvm::enumerate(Releases)) { auto *r = p.value(); if (r == nullptr) continue; // We stash all of the destroy_addr that we see. if (auto *dai = dyn_cast(r)) { destroyAddrState.initializeForTakeInst(p.index() /*destroyAddrIndex*/); // Make sure we can actually promote this destroy addr. If we can not, // then we must bail. In order to not gather available values twice, we // gather the available values here that we will use to promote the // values. if (!canPromoteTake(dai, destroyAddrState.availableValueList)) return false; continue; } LLVM_DEBUG(llvm::dbgs() << "*** Failed to remove autogenerated non-trivial alloc: " "kept alive by release: " << *r); return false; } // If we reached this point, we can promote all of our destroy_addr and load // take. Before we begin, gather up all found available values before we do // anything so we can fix up lifetimes later if we need to. SmallBlotSetVector valuesNeedingLifetimeCompletion; for (auto pmoMemUse : Uses) { if (pmoMemUse.Inst && pmoMemUse.Kind == PMOUseKind::Initialization) { // Today if we promote, this is always a store, since we would have // blown up the copy_addr otherwise. Given that, always make sure we // clean up the src as appropriate after we optimize. auto *si = dyn_cast(pmoMemUse.Inst); if (!si) return false; auto src = si->getSrc(); // Bail if src has any uses that are forwarding unowned uses. This // allows us to know that we never have to deal with forwarding unowned // instructions like br. These are corner cases that complicate the // logic below. for (auto *use : src->getUses()) { if (use->getOperandOwnership() == OperandOwnership::ForwardingUnowned) return false; } valuesNeedingLifetimeCompletion.insert(src); } } // Since our load [take] may be available values for our // destroy_addr/load [take], we promote the destroy_addr first and then handle // load [take] with extra rigour later to handle that possibility. for (unsigned i : range(destroyAddrState.size())) { SILInstruction *dai; MutableArrayRef values; std::tie(dai, values) = destroyAddrState.getData(i); promoteDestroyAddr(cast(dai), values); // We do not need to unset releases, since we are going to exit here. } llvm::SmallMapVector loadsToDelete; for (unsigned i : range(loadTakeState.size())) { SILInstruction *li; MutableArrayRef values; std::tie(li, values) = loadTakeState.getData(i); for (unsigned i : indices(values)) { auto v = values[i].Value; auto *li = dyn_cast(v); if (!li) continue; auto iter = loadsToDelete.find(li); if (iter == loadsToDelete.end()) continue; SILValue newValue = iter->second; assert(newValue && "We should neer store a nil SILValue into this map"); values[i].Value = newValue; } auto *liCast = cast(li); SILValue result = promoteLoadTake(liCast, values); assert(result); // We need to erase liCast here before we erase it since a load [take] that // we are promoting could be an available value for another load // [take]. Consider the following SIL: // // %mem = alloc_stack // store %arg to [init] %mem // %0 = load [take] %mem // store %0 to [init] %mem // %1 = load [take] %mem // destroy_value %1 // dealloc_stack %mem // // In such a case, we are going to delete %0 here, but %0 is an available // value for %1, so we will auto insertIter = loadsToDelete.insert({liCast, result}); valuesNeedingLifetimeCompletion.erase(liCast); (void)insertIter; assert(insertIter.second && "loadTakeState doesn't have unique loads?!"); } // Now that we have promoted all of our load [take], perform the actual // RAUW/removal. for (auto p : loadsToDelete) { LoadInst *li = p.first; SILValue newValue = p.second; li->replaceAllUsesWith(newValue); deleter.forceDelete(li); } LLVM_DEBUG(llvm::dbgs() << "*** Removing autogenerated non-trivial alloc: " << *TheMemory); // If it is safe to remove, do it. Recursively remove all instructions // hanging off the allocation instruction, then return success. deleter.forceDeleteWithUsers(TheMemory); // Now look at all of our available values and complete any of their // post-dominating consuming use sets. This can happen if we have an enum that // is known dynamically none along a path. This is dynamically correct, but // can not be represented in OSSA so we insert these destroys along said path. OSSALifetimeCompletion completion(TheMemory->getFunction(), domInfo, deadEndBlocks); while (!valuesNeedingLifetimeCompletion.empty()) { auto optV = valuesNeedingLifetimeCompletion.pop_back_val(); if (!optV) continue; SILValue v = *optV; // Lexical enums can have incomplete lifetimes in non payload paths that // don't end in unreachable. Force their lifetime to end immediately after // the last use instead. auto boundary = v->getType().isOrHasEnum() ? OSSALifetimeCompletion::Boundary::Liveness : OSSALifetimeCompletion::Boundary::Availability; LLVM_DEBUG(llvm::dbgs() << "Completing lifetime of: "); LLVM_DEBUG(v->dump()); completion.completeOSSALifetime(v, boundary); } return true; } bool AllocOptimize::optimizeMemoryAccesses() { bool changed = false; // If we've successfully checked all of the definitive initialization // requirements, try to promote loads. This can explode copy_addrs, so the // use list may change size. for (unsigned i = 0; i != Uses.size(); ++i) { auto &use = Uses[i]; // Ignore entries for instructions that got expanded along the way. if (use.Inst && use.Kind == PMOUseKind::Load) { if (auto *cai = dyn_cast(use.Inst)) { if (promoteCopyAddr(cai)) { Uses[i].Inst = nullptr; // remove entry if load got deleted. changed = true; } continue; } if (auto *lbi = dyn_cast(use.Inst)) { if (promoteLoadBorrow(lbi)) { Uses[i].Inst = nullptr; // remove entry if load got deleted. changed = true; } continue; } if (auto *li = dyn_cast(use.Inst)) { if (promoteLoadCopy(li)) { Uses[i].Inst = nullptr; // remove entry if load got deleted. changed = true; } continue; } } } return changed; } //===----------------------------------------------------------------------===// // Top Level Entrypoints //===----------------------------------------------------------------------===// static AllocationInst *getOptimizableAllocation(SILInstruction *i) { if (!isa(i) && !isa(i)) { return nullptr; } auto *alloc = cast(i); // If our aggregate has unreferencable storage, we can't optimize. Return // nullptr. if (getMemoryType(alloc).aggregateHasUnreferenceableStorage()) return nullptr; // Do not perform this on move only values since we introduce copies to // promote things. if (getMemoryType(alloc).isMoveOnly()) return nullptr; // Otherwise we are good to go. Lets try to optimize this memory! return alloc; } bool swift::optimizeMemoryAccesses(SILFunction *fn, DominanceInfo *domInfo) { bool changed = false; DeadEndBlocks deadEndBlocks(fn); InstructionDeleter deleter; for (auto &bb : *fn) { for (SILInstruction &inst : bb.deletableInstructions()) { // First see if i is an allocation that we can optimize. If not, skip it. AllocationInst *alloc = getOptimizableAllocation(&inst); if (!alloc) { continue; } LLVM_DEBUG(llvm::dbgs() << "*** PMO Optimize Memory Accesses looking at: " << *alloc); PMOMemoryObjectInfo memInfo(alloc); // Set up the datastructure used to collect the uses of the allocation. SmallVector uses; SmallVector destroys; // Walk the use list of the pointer, collecting them. If we are not able // to optimize, skip this value. *NOTE* We may still scalarize values // inside the value. if (!collectPMOElementUsesFrom(memInfo, uses, destroys)) { // Avoid advancing this iterator until after collectPMOElementUsesFrom() // runs. It creates and deletes instructions other than alloc. continue; } AllocOptimize allocOptimize(alloc, uses, destroys, deadEndBlocks, deleter, domInfo); changed |= allocOptimize.optimizeMemoryAccesses(); // Move onto the next instruction. We know this is safe since we do not // eliminate allocations here. } } return changed; } bool swift::eliminateDeadAllocations(SILFunction *fn, DominanceInfo *domInfo) { if (!fn->hasOwnership()) return false; bool changed = false; DeadEndBlocks deadEndBlocks(fn); for (auto &bb : *fn) { InstructionDeleter deleter; for (SILInstruction &inst : bb.deletableInstructions()) { // First see if i is an allocation that we can optimize. If not, skip it. AllocationInst *alloc = getOptimizableAllocation(&inst); if (!alloc) { continue; } LLVM_DEBUG(llvm::dbgs() << "*** PMO Dead Allocation Elimination looking at: " << *alloc); PMOMemoryObjectInfo memInfo(alloc); // Set up the datastructure used to collect the uses of the allocation. SmallVector uses; SmallVector destroys; // Walk the use list of the pointer, collecting them. If we are not able // to optimize, skip this value. *NOTE* We may still scalarize values // inside the value. if (!collectPMOElementUsesFrom(memInfo, uses, destroys)) { continue; } AllocOptimize allocOptimize(alloc, uses, destroys, deadEndBlocks, deleter, domInfo); if (allocOptimize.tryToRemoveDeadAllocation()) { deleter.cleanupDeadInstructions(); ++NumAllocRemoved; changed = true; } } } return changed; } namespace { class PredictableMemoryAccessOptimizations : public SILFunctionTransform { /// The entry point to the transformation. /// /// FIXME: This pass should not need to rerun on deserialized /// functions. Nothing should have changed in the upstream pipeline after /// deserialization. However, rerunning does improve some benchmarks. This /// either indicates that this pass missing some opportunities the first time, /// or has a pass order dependency on other early passes. void run() override { auto *func = getFunction(); LLVM_DEBUG(llvm::dbgs() << "Looking at: " << func->getName() << "\n"); auto *da = getAnalysis(); // TODO: Can we invalidate here just instructions? if (optimizeMemoryAccesses(func, da->get(func))) invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody); } }; class PredictableDeadAllocationElimination : public SILFunctionTransform { void run() override { auto *func = getFunction(); LLVM_DEBUG(llvm::dbgs() << "Looking at: " << func->getName() << "\n"); auto *da = getAnalysis(); // If we are already canonical or do not have ownership, just bail. if (func->wasDeserializedCanonical() || !func->hasOwnership()) return; if (eliminateDeadAllocations(func, da->get(func))) invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody); } }; } // end anonymous namespace SILTransform *swift::createPredictableMemoryAccessOptimizations() { return new PredictableMemoryAccessOptimizations(); } SILTransform *swift::createPredictableDeadAllocationElimination() { return new PredictableDeadAllocationElimination(); }