//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // StringObject abstracts the bit-level interpretation and creation of the // String struct. // // TODO(String docs): Word-level diagram /* On 64-bit platforms, the discriminator is the most significant 4 bits of the bridge object. ┌─────────────────────╥─────┬─────┬─────┬─────┐ │ Form ║ b63 │ b62 │ b61 │ b60 │ ╞═════════════════════╬═════╪═════╪═════╪═════╡ │ Immortal, Small ║ 1 │ASCII│ 1 │ 0 │ ├─────────────────────╫─────┼─────┼─────┼─────┤ │ Immortal, Large ║ 1 │ 0 │ 0 │ 0 │ ╞═════════════════════╬═════╪═════╪═════╪═════╡ │ Native ║ 0 │ 0 │ 0 │ 0 │ ├─────────────────────╫─────┼─────┼─────┼─────┤ │ Shared ║ x │ 0 │ 0 │ 0 │ ├─────────────────────╫─────┼─────┼─────┼─────┤ │ Shared, Bridged ║ 0 │ 1 │ 0 │ 0 │ ╞═════════════════════╬═════╪═════╪═════╪═════╡ │ Foreign ║ x │ 0 │ 0 │ 1 │ ├─────────────────────╫─────┼─────┼─────┼─────┤ │ Foreign, Bridged ║ 0 │ 1 │ 0 │ 1 │ └─────────────────────╨─────┴─────┴─────┴─────┘ b63: isImmortal: Should the Swift runtime skip ARC - Small strings are just values, always immortal - Large strings can sometimes be immortal, e.g. literals b62: (large) isBridged / (small) isASCII - For large strings, this means lazily-bridged NSString: perform ObjC ARC - Small strings repurpose this as a dedicated bit to remember ASCII-ness b61: isSmall: Dedicated bit to denote small strings b60: isForeign: aka isSlow, cannot provide access to contiguous UTF-8 The canonical empty string is the zero-sized small string. It has a leading nibble of 1110, and all other bits are 0. A "dedicated" bit is used for the most frequent fast-path queries so that they can compile to a fused check-and-branch, even if that burns part of the encoding space. On 32-bit platforms, we store an explicit discriminator (as a UInt8) with the same encoding as above, placed in the high bits. E.g. `b62` above is in `_discriminator`'s `b6`. */ @frozen @usableFromInline internal struct _StringObject { // Namespace to hold magic numbers @usableFromInline @frozen enum Nibbles {} // Abstract the count and performance-flags containing word @frozen @usableFromInline struct CountAndFlags { @usableFromInline var _storage: UInt64 @inlinable @inline(__always) internal init(zero: ()) { self._storage = 0 } } #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) @usableFromInline @frozen internal enum Variant { case immortal(UInt) case native(AnyObject) case bridged(_CocoaString) @inlinable @inline(__always) internal static func immortal(start: UnsafePointer) -> Variant { let biased = UInt(bitPattern: start) &- _StringObject.nativeBias return .immortal(biased) } @inlinable @inline(__always) internal var isImmortal: Bool { if case .immortal = self { return true } return false } } @usableFromInline internal var _count: Int @usableFromInline internal var _variant: Variant @usableFromInline internal var _discriminator: UInt8 @usableFromInline internal var _flags: UInt16 @inlinable @inline(__always) init(count: Int, variant: Variant, discriminator: UInt64, flags: UInt16) { _internalInvariant(discriminator & 0xFF00_0000_0000_0000 == discriminator, "only the top byte can carry the discriminator and small count") self._count = count self._variant = variant self._discriminator = UInt8(truncatingIfNeeded: discriminator &>> 56) self._flags = flags self._invariantCheck() } @inlinable @inline(__always) init(variant: Variant, discriminator: UInt64, countAndFlags: CountAndFlags) { self.init( count: countAndFlags.count, variant: variant, discriminator: discriminator, flags: countAndFlags.flags) } @inlinable @inline(__always) internal var _countAndFlagsBits: UInt64 { let rawBits = UInt64(truncatingIfNeeded: _flags) &<< 48 | UInt64(truncatingIfNeeded: _count) return rawBits } #else // // Laid out as (_countAndFlags, _object), which allows small string contents // to naturally start on vector-alignment. // @usableFromInline internal var _countAndFlagsBits: UInt64 @usableFromInline internal var _object: Builtin.BridgeObject @inlinable @inline(__always) internal init(zero: ()) { self._countAndFlagsBits = 0 self._object = Builtin.valueToBridgeObject(UInt64(0)._value) } #endif @inlinable @inline(__always) internal var _countAndFlags: CountAndFlags { _internalInvariant(!isSmall) return CountAndFlags(rawUnchecked: _countAndFlagsBits) } } // Raw extension _StringObject { @usableFromInline internal typealias RawBitPattern = (UInt64, UInt64) #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) // On 32-bit platforms, raw bit conversion is one-way only and uses the same // layout as on 64-bit platforms. @usableFromInline internal var rawBits: RawBitPattern { @inline(__always) get { let count = UInt64(truncatingIfNeeded: UInt(bitPattern: _count)) let payload = UInt64(truncatingIfNeeded: discriminatedObjectRawBits) & _StringObject.Nibbles.largeAddressMask let flags = UInt64(truncatingIfNeeded: _flags) let discr = UInt64(truncatingIfNeeded: _discriminator) if isSmall { // Rearrange small strings in a different way, compacting bytes into a // contiguous sequence. See comment on small string layout below. return (count | (payload &<< 32), flags | (discr &<< 56)) } return (count | (flags &<< 48), payload | (discr &<< 56)) } } #else @inlinable @inline(__always) internal var rawBits: RawBitPattern { return (_countAndFlagsBits, discriminatedObjectRawBits) } @inlinable @inline(__always) internal init( bridgeObject: Builtin.BridgeObject, countAndFlags: CountAndFlags ) { self._object = bridgeObject self._countAndFlagsBits = countAndFlags._storage _invariantCheck() } @inlinable @inline(__always) internal init( object: AnyObject, discriminator: UInt64, countAndFlags: CountAndFlags ) { defer { _fixLifetime(object) } let builtinRawObject: Builtin.Int64 = Builtin.reinterpretCast(object) let builtinDiscrim: Builtin.Int64 = discriminator._value self.init( bridgeObject: Builtin.reinterpretCast( Builtin.stringObjectOr_Int64(builtinRawObject, builtinDiscrim)), countAndFlags: countAndFlags) } // Initializer to use for tagged (unmanaged) values @inlinable @inline(__always) internal init( pointerBits: UInt64, discriminator: UInt64, countAndFlags: CountAndFlags ) { let builtinValueBits: Builtin.Int64 = pointerBits._value let builtinDiscrim: Builtin.Int64 = discriminator._value self.init( bridgeObject: Builtin.valueToBridgeObject(Builtin.stringObjectOr_Int64( builtinValueBits, builtinDiscrim)), countAndFlags: countAndFlags) } @inlinable @inline(__always) internal init(rawUncheckedValue bits: RawBitPattern) { self.init(zero:()) self._countAndFlagsBits = bits.0 self._object = Builtin.valueToBridgeObject(bits.1._value) _internalInvariant(self.rawBits == bits) } @inlinable @inline(__always) internal init(rawValue bits: RawBitPattern) { self.init(rawUncheckedValue: bits) _invariantCheck() } #endif @inlinable @_transparent internal var discriminatedObjectRawBits: UInt64 { #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) let low32: UInt switch _variant { case .immortal(let bitPattern): low32 = bitPattern case .native(let storage): low32 = Builtin.reinterpretCast(storage) case .bridged(let object): low32 = Builtin.reinterpretCast(object) } return UInt64(truncatingIfNeeded: _discriminator) &<< 56 | UInt64(truncatingIfNeeded: low32) #else return Builtin.reinterpretCast(_object) #endif } } // From/to raw bits for CountAndFlags extension _StringObject.CountAndFlags { @usableFromInline internal typealias RawBitPattern = UInt64 @inlinable @inline(__always) internal var rawBits: RawBitPattern { return _storage } @inlinable @inline(__always) internal init(rawUnchecked bits: RawBitPattern) { self._storage = bits } @inlinable @inline(__always) internal init(raw bits: RawBitPattern) { self.init(rawUnchecked: bits) _invariantCheck() } } /* Encoding is optimized for common fast creation. The canonical empty string, ASCII small strings, as well as most literals, have all consecutive 1s in their high nibble mask, and thus can all be encoded as a logical immediate operand on arm64. */ extension _StringObject.Nibbles { // The canonical empty string is an empty small string @inlinable @inline(__always) internal static var emptyString: UInt64 { return _StringObject.Nibbles.small(isASCII: true) } } /* Large strings can either be "native", "shared", or "foreign". Native strings have tail-allocated storage, which begins at an offset of `nativeBias` from the storage object's address. String literals, which reside in the constant section, are encoded as their start address minus `nativeBias`, unifying code paths for both literals ("immortal native") and native strings. Native Strings are always managed by the Swift runtime. Shared strings do not have tail-allocated storage, but can provide access upon query to contiguous UTF-8 code units. Lazily-bridged NSStrings capable of providing access to contiguous ASCII/UTF-8 set the ObjC bit. Accessing shared string's pointer should always be behind a resilience barrier, permitting future evolution. Foreign strings cannot provide access to contiguous UTF-8. Currently, this only encompasses lazily-bridged NSStrings that cannot be treated as "shared". Such strings may provide access to contiguous UTF-16, or may be discontiguous in storage. Accessing foreign strings should remain behind a resilience barrier for future evolution. Other foreign forms are reserved for the future. Shared and foreign strings are always created and accessed behind a resilience barrier, providing flexibility for the future. ┌────────────┐ │ nativeBias │ ├────────────┤ │ 32 │ └────────────┘ ┌───────────────┬────────────┐ │ b63:b60 │ b60:b0 │ ├───────────────┼────────────┤ │ discriminator │ objectAddr │ └───────────────┴────────────┘ discriminator: See comment for _StringObject.Discriminator objectAddr: The address of the beginning of the potentially-managed object. TODO(Future): For Foreign strings, consider allocating a bit for whether they can provide contiguous UTF-16 code units, which would allow us to avoid doing the full call for non-contiguous NSString. */ extension _StringObject.Nibbles { // Mask for address bits, i.e. non-discriminator and non-extra high bits @inlinable @inline(__always) static internal var largeAddressMask: UInt64 { return 0x0FFF_FFFF_FFFF_FFFF } // Mask for address bits, i.e. non-discriminator and non-extra high bits @inlinable @inline(__always) static internal var discriminatorMask: UInt64 { return ~largeAddressMask } } extension _StringObject.Nibbles { // Discriminator for small strings @inlinable @inline(__always) internal static func small(isASCII: Bool) -> UInt64 { return isASCII ? 0xE000_0000_0000_0000 : 0xA000_0000_0000_0000 } // Discriminator for small strings @inlinable @inline(__always) internal static func small(withCount count: Int, isASCII: Bool) -> UInt64 { _internalInvariant(count <= _SmallString.capacity) return small(isASCII: isASCII) | UInt64(truncatingIfNeeded: count) &<< 56 } // Discriminator for large, immortal, swift-native strings @inlinable @inline(__always) internal static func largeImmortal() -> UInt64 { return 0x8000_0000_0000_0000 } // Discriminator for large, mortal (i.e. managed), swift-native strings @inlinable @inline(__always) internal static func largeMortal() -> UInt64 { return 0x0000_0000_0000_0000 } internal static func largeCocoa(providesFastUTF8: Bool) -> UInt64 { return providesFastUTF8 ? 0x4000_0000_0000_0000 : 0x5000_0000_0000_0000 } } extension _StringObject { @inlinable @inline(__always) internal static var nativeBias: UInt { #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) return 20 #else return 32 #endif } @inlinable @inline(__always) internal var isImmortal: Bool { return (discriminatedObjectRawBits & 0x8000_0000_0000_0000) != 0 } @inlinable @inline(__always) internal var isMortal: Bool { return !isImmortal } @inlinable @inline(__always) internal var isSmall: Bool { return (discriminatedObjectRawBits & 0x2000_0000_0000_0000) != 0 } @inlinable @inline(__always) internal var isLarge: Bool { return !isSmall } // Whether this string can provide access to contiguous UTF-8 code units: // - Small strings can by spilling to the stack // - Large native strings can through an offset // - Shared strings can: // - Cocoa strings which respond to e.g. CFStringGetCStringPtr() // - Non-Cocoa shared strings @inlinable @inline(__always) internal var providesFastUTF8: Bool { return (discriminatedObjectRawBits & 0x1000_0000_0000_0000) == 0 } @inlinable @inline(__always) internal var isForeign: Bool { return !providesFastUTF8 } // Whether we are native or shared, i.e. we have a backing class which // conforms to `_AbstractStringStorage` @inline(__always) internal var hasStorage: Bool { return (discriminatedObjectRawBits & 0xF000_0000_0000_0000) == 0 } // Whether we are a mortal, native (tail-allocated) string @inline(__always) internal var hasNativeStorage: Bool { // b61 on the object means isSmall, and on countAndFlags means // isNativelyStored. We just need to check that b61 is 0 on the object and 1 // on countAndFlags. let bits = ~discriminatedObjectRawBits & self._countAndFlagsBits let result = bits & 0x2000_0000_0000_0000 != 0 _internalInvariant(!result || hasStorage, "native storage needs storage") return result } // Whether we are a mortal, shared string (managed by Swift runtime) internal var hasSharedStorage: Bool { return hasStorage && !hasNativeStorage } } // Queries conditional on being in a large or fast form. extension _StringObject { // Whether this string is native, i.e. tail-allocated and nul-terminated, // presupposing it is both large and fast @inlinable @inline(__always) internal var largeFastIsTailAllocated: Bool { _internalInvariant(isLarge && providesFastUTF8) return _countAndFlags.isTailAllocated } // Whether this string is shared, presupposing it is both large and fast @inline(__always) internal var largeFastIsShared: Bool { return !largeFastIsTailAllocated } // Whether this string is a lazily-bridged NSString, presupposing it is large @inline(__always) internal var largeIsCocoa: Bool { _internalInvariant(isLarge) return (discriminatedObjectRawBits & 0x4000_0000_0000_0000) != 0 } // Whether this string is in one of our fastest representations: // small or tail-allocated (i.e. mortal/immortal native) @_alwaysEmitIntoClient @inline(__always) internal var isPreferredRepresentation: Bool { return _fastPath(isSmall || _countAndFlags.isTailAllocated) } } /* On 64-bit platforms, small strings have the following per-byte layout. When stored in memory (little-endian), their first character ('a') is in the lowest address and their top-nibble and count is in the highest address. ┌───────────────────────────────┬─────────────────────────────────────────────┐ │ _countAndFlags │ _object │ ├───┬───┬───┬───┬───┬───┬───┬───┼───┬───┬────┬────┬────┬────┬────┬────────────┤ │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │ 12 │ 13 │ 14 │ 15 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼────┼────┼────┼────┼────┼────────────┤ │ a │ b │ c │ d │ e │ f │ g │ h │ i │ j │ k │ l │ m │ n │ o │ 1x10 count │ └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴────┴────┴────┴────┴────┴────────────┘ On 32-bit platforms, we have less space to store code units, and it isn't contiguous. However, we still use the above layout for the RawBitPattern representation. ┌───────────────┬───────────────────┬────────┬─────────┐ │ _count │_variant .immortal │ _discr │ _flags │ ├───┬───┬───┬───┼───┬───┬───┬───┬───┼────────┼────┬────┤ │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │ ├───┼───┼───┼───┼───┴───┴───┴───┴───┼────────┼────┼────┤ │ a │ b │ c │ d │ e f g h │1x10 cnt│ i │ j │ └───┴───┴───┴───┴───────────────────┴────────┴────┴────┘ */ extension _StringObject { @inlinable @inline(__always) internal init(_ small: _SmallString) { // Small strings are encoded as _StringObjects in reverse byte order // on big-endian platforms. This is to match the discriminator to the // spare bits (the most significant nibble) in a pointer. let word1 = small.rawBits.0.littleEndian let word2 = small.rawBits.1.littleEndian #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) // On 32-bit, we need to unpack the small string. let smallStringDiscriminatorAndCount: UInt64 = 0xFF00_0000_0000_0000 let leadingFour = Int(truncatingIfNeeded: word1) let nextFour = UInt(truncatingIfNeeded: word1 &>> 32) let smallDiscriminatorAndCount = word2 & smallStringDiscriminatorAndCount let trailingTwo = UInt16(truncatingIfNeeded: word2) self.init( count: leadingFour, variant: .immortal(nextFour), discriminator: smallDiscriminatorAndCount, flags: trailingTwo) #else // On 64-bit, we copy the raw bits (to host byte order). self.init(rawValue: (word1, word2)) #endif _internalInvariant(isSmall) } @inlinable internal static func getSmallCount(fromRaw x: UInt64) -> Int { return Int(truncatingIfNeeded: (x & 0x0F00_0000_0000_0000) &>> 56) } @inlinable @inline(__always) internal var smallCount: Int { _internalInvariant(isSmall) return _StringObject.getSmallCount(fromRaw: discriminatedObjectRawBits) } @inlinable internal static func getSmallIsASCII(fromRaw x: UInt64) -> Bool { return x & 0x4000_0000_0000_0000 != 0 } @inlinable @inline(__always) internal var smallIsASCII: Bool { _internalInvariant(isSmall) return _StringObject.getSmallIsASCII(fromRaw: discriminatedObjectRawBits) } @inlinable @inline(__always) internal init(empty:()) { // Canonical empty pattern: small zero-length string #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) self.init( count: 0, variant: .immortal(0), discriminator: Nibbles.emptyString, flags: 0) #else self._countAndFlagsBits = 0 self._object = Builtin.valueToBridgeObject(Nibbles.emptyString._value) #endif _internalInvariant(self.smallCount == 0) _invariantCheck() } } /* // TODO(String docs): Combine this with Nibbles table, and perhaps small string // table, into something that describes the higher-level structure of // _StringObject. All non-small forms share the same structure for the other half of the bits (i.e. non-object bits) as a word containing code unit count and various performance flags. The top 16 bits are nonessential flags; these aren't critical for correct operation, but they may provide additional guarantees that allow more efficient operation or more reliable detection of runtime errors. The lower 48 bits contain the code unit count (aka endIndex). ┌──────┬──────┬──────┬──────┬──────┬──────────┬───────────────────────────────┐ │ b63 │ b62 │ b61 │ b60 │ b59 │ b58:48 │ b47:0 │ ├──────┼──────┼──────┼──────┼──────┼──────────┼───────────────────────────────┤ │ ASCII│ NFC │native│ tail │ UTF16│ reserved │ count │ └──────┴──────┴──────┴──────┴──────┴──────────┴───────────────────────────────┘ b63: isASCII. set when all code units are known to be ASCII, enabling: - Trivial Unicode scalars, they're just the code units - Trivial UTF-16 transcoding (just bit-extend) - Also, isASCII always implies isNFC b62: isNFC. set when the contents are in normal form C - Enables trivial lexicographical comparisons: just memcmp - `isASCII` always implies `isNFC`, but not vice versa b61: isNativelyStored. set for native stored strings - `largeAddressBits` holds an instance of `_StringStorage`. - I.e. the start of the code units is at the stored address + `nativeBias` - NOTE: isNativelyStored is *specifically* allocated to b61 to align with the bit-position of isSmall on the BridgeObject. This allows us to check for native storage without an extra branch guarding against smallness. See `_StringObject.hasNativeStorage` for this usage. b60: isTailAllocated. contiguous UTF-8 code units starts at address + `nativeBias` - `isNativelyStored` always implies `isTailAllocated`, but not vice versa (e.g. literals) - `isTailAllocated` always implies `isFastUTF8` b59: isKnownUTF16. This bit is set if index positions in the string are known to be measured in UTF-16 code units, rather than the default UTF-8. - This is only ever set on UTF-16 foreign strings created in noninlinable code in stdlib versions >= 5.7. On stdlibs <= 5.6, this bit is always set to zero. - Note that while as of 5.7 all foreign strings are UTF-16, this isn't guaranteed to remain this way -- future versions of the stdlib may introduce new foreign forms that use a different encoding. (Likely UTF-8.) - Foreign strings are only created in non-inlinable code, so on stdlib versions >=5.7, this bit always correctly reflects the correct encoding for the string's offset values. - This bit along with the two related bits in String.Index allow us to opportunistically catch cases where an UTF-16 index is used on an UTF-8 string (or vice versa), and to provide better error reporting & recovery. As more code gets rebuilt with Swift 5.7+, the stdlib will gradually become able to reliably catch all such issues. - It is okay for isASCII strings to not set this flag, even if they are UTF-16 encoded -- the offsets in that case can work in either encoding. (This is not currently exercised, as foreign bridged strings never set the isASCII flag.) b48-58: Reserved for future usage. - Because Swift is ABI stable (on some platforms at least), these bits can only be assigned semantics that don't affect interoperability with code built with previous releases of the Standard Library, from 5.0 onward. - Older binaries will not look at newly assigned bits, and they will not set them, either (unless by side effect of calling into newly built code). Such code must continue working. - Code in new versions of the stdlib must continue to work corectly even if some of these newly assigned bits are never set -- as may be the case when the initialization of a string was emitted entirely into an older client binary. - This typically means that these bits can only be used as optional performance shortcuts, e.g. to signal the availability of a potential fast path. (However, it is also possible to store information here that allows more reliable detection & handling of runtime errors, like the `isKnownUTF16` bit above.) b0-47: count. Stores the number of code units. Corresponds to the position of the `endIndex`. */ extension _StringObject.CountAndFlags { @inlinable @inline(__always) internal static var countMask: UInt64 { return 0x0000_FFFF_FFFF_FFFF } @inlinable @inline(__always) internal static var flagsMask: UInt64 { return ~countMask } @inlinable @inline(__always) internal static var isASCIIMask: UInt64 { return 0x8000_0000_0000_0000 } @inlinable @inline(__always) internal static var isNFCMask: UInt64 { return 0x4000_0000_0000_0000 } @inlinable @inline(__always) internal static var isNativelyStoredMask: UInt64 { return 0x2000_0000_0000_0000 } @inlinable @inline(__always) internal static var isTailAllocatedMask: UInt64 { return 0x1000_0000_0000_0000 } @_alwaysEmitIntoClient // Swift 5.7 @inline(__always) internal static var isKnownUTF16Mask: UInt64 { return 0x0800_0000_0000_0000 } // General purpose bottom initializer @inlinable @inline(__always) internal init( count: Int, isASCII: Bool, isNFC: Bool, isNativelyStored: Bool, isTailAllocated: Bool ) { var rawBits = UInt64(truncatingIfNeeded: count) _internalInvariant(rawBits <= _StringObject.CountAndFlags.countMask) if isASCII { _internalInvariant(isNFC) rawBits |= _StringObject.CountAndFlags.isASCIIMask } if isNFC { rawBits |= _StringObject.CountAndFlags.isNFCMask } if isNativelyStored { _internalInvariant(isTailAllocated) rawBits |= _StringObject.CountAndFlags.isNativelyStoredMask } if isTailAllocated { rawBits |= _StringObject.CountAndFlags.isTailAllocatedMask } self.init(raw: rawBits) _internalInvariant(count == self.count) _internalInvariant(isASCII == self.isASCII) _internalInvariant(isNFC == self.isNFC) _internalInvariant(isNativelyStored == self.isNativelyStored) _internalInvariant(isTailAllocated == self.isTailAllocated) } @inline(__always) internal init( count: Int, isASCII: Bool, isNFC: Bool, isNativelyStored: Bool, isTailAllocated: Bool, isKnownUTF16: Bool ) { var rawBits = UInt64(truncatingIfNeeded: count) _internalInvariant(rawBits <= _StringObject.CountAndFlags.countMask) if isASCII { _internalInvariant(isNFC) rawBits |= _StringObject.CountAndFlags.isASCIIMask } if isNFC { rawBits |= _StringObject.CountAndFlags.isNFCMask } if isNativelyStored { _internalInvariant(isTailAllocated) rawBits |= _StringObject.CountAndFlags.isNativelyStoredMask } if isTailAllocated { rawBits |= _StringObject.CountAndFlags.isTailAllocatedMask } if isKnownUTF16 { rawBits |= _StringObject.CountAndFlags.isKnownUTF16Mask } self.init(raw: rawBits) _internalInvariant(count == self.count) _internalInvariant(isASCII == self.isASCII) _internalInvariant(isNFC == self.isNFC) _internalInvariant(isNativelyStored == self.isNativelyStored) _internalInvariant(isTailAllocated == self.isTailAllocated) _internalInvariant(isKnownUTF16 == self.isKnownUTF16) } @inlinable @inline(__always) internal init(count: Int, flags: UInt16) { // Currently, we only use top 5 flags _internalInvariant(flags & 0xF800 == flags) let rawBits = UInt64(truncatingIfNeeded: flags) &<< 48 | UInt64(truncatingIfNeeded: count) self.init(raw: rawBits) _internalInvariant(self.count == count && self.flags == flags) } // // Specialized initializers // @inlinable @inline(__always) internal init(immortalCount: Int, isASCII: Bool) { self.init( count: immortalCount, isASCII: isASCII, isNFC: isASCII, isNativelyStored: false, isTailAllocated: true) } @inline(__always) internal init(mortalCount: Int, isASCII: Bool) { self.init( count: mortalCount, isASCII: isASCII, isNFC: isASCII, isNativelyStored: true, isTailAllocated: true) } @inline(__always) internal init(sharedCount: Int, isASCII: Bool, isUTF16: Bool) { self.init( count: sharedCount, isASCII: isASCII, isNFC: isASCII, isNativelyStored: false, isTailAllocated: false, isKnownUTF16: isUTF16) } // // Queries and accessors // @inlinable @inline(__always) internal var count: Int { return Int( truncatingIfNeeded: _storage & _StringObject.CountAndFlags.countMask) } @inlinable @inline(__always) internal var flags: UInt16 { return UInt16(truncatingIfNeeded: _storage &>> 48) } @inlinable @inline(__always) internal var isASCII: Bool { return 0 != _storage & _StringObject.CountAndFlags.isASCIIMask } @inlinable @inline(__always) internal var isNFC: Bool { return 0 != _storage & _StringObject.CountAndFlags.isNFCMask } @inlinable @inline(__always) internal var isNativelyStored: Bool { return 0 != _storage & _StringObject.CountAndFlags.isNativelyStoredMask } @inlinable @inline(__always) internal var isTailAllocated: Bool { return 0 != _storage & _StringObject.CountAndFlags.isTailAllocatedMask } /// Returns whether this string is known to use UTF-16 code units. /// /// This always returns a value corresponding to the string's actual encoding /// on stdlib versions >=5.7. /// /// Standard Library versions <=5.6 did not set the corresponding flag, so /// this property always returns false. @_alwaysEmitIntoClient @inline(__always) // Swift 5.7 internal var isKnownUTF16: Bool { return 0 != _storage & _StringObject.CountAndFlags.isKnownUTF16Mask } #if !INTERNAL_CHECKS_ENABLED @inlinable @inline(__always) internal func _invariantCheck() {} #else @usableFromInline @inline(never) @_effects(releasenone) internal func _invariantCheck() { if isASCII { _internalInvariant(isNFC) } if isNativelyStored { _internalInvariant(isTailAllocated) } if isKnownUTF16 { _internalInvariant(!isNativelyStored) _internalInvariant(!isTailAllocated) } } #endif // INTERNAL_CHECKS_ENABLED } // Extract extension _StringObject { @inlinable @inline(__always) internal var largeCount: Int { _internalInvariant(isLarge) return _countAndFlags.count } @inlinable @inline(__always) internal var largeAddressBits: UInt { _internalInvariant(isLarge) return UInt(truncatingIfNeeded: discriminatedObjectRawBits & Nibbles.largeAddressMask) } @inlinable @inline(__always) internal var nativeUTF8Start: UnsafePointer { _internalInvariant(largeFastIsTailAllocated) return UnsafePointer( bitPattern: largeAddressBits &+ _StringObject.nativeBias )._unsafelyUnwrappedUnchecked } @inlinable @inline(__always) internal var nativeUTF8: UnsafeBufferPointer { _internalInvariant(largeFastIsTailAllocated) return UnsafeBufferPointer(start: nativeUTF8Start, count: largeCount) } // Resilient way to fetch a pointer @usableFromInline @inline(never) @_effects(releasenone) internal func getSharedUTF8Start() -> UnsafePointer { _internalInvariant(largeFastIsShared) #if _runtime(_ObjC) if largeIsCocoa { return stableCocoaASCIIPointer(cocoaObject)._unsafelyUnwrappedUnchecked } #endif return sharedStorage.start } @usableFromInline internal var sharedUTF8: UnsafeBufferPointer { @_effects(releasenone) @inline(never) get { _internalInvariant(largeFastIsShared) let start = self.getSharedUTF8Start() return UnsafeBufferPointer(start: start, count: largeCount) } } @inline(__always) internal var nativeStorage: __StringStorage { #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) guard case .native(let storage) = _variant else { _internalInvariantFailure() } return _unsafeUncheckedDowncast(storage, to: __StringStorage.self) #else _internalInvariant(hasNativeStorage) return Builtin.reinterpretCast(largeAddressBits) #endif } @inline(__always) internal var sharedStorage: __SharedStringStorage { #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) guard case .native(let storage) = _variant else { _internalInvariantFailure() } return _unsafeUncheckedDowncast(storage, to: __SharedStringStorage.self) #else _internalInvariant(largeFastIsShared && !largeIsCocoa) _internalInvariant(hasSharedStorage) return Builtin.reinterpretCast(largeAddressBits) #endif } @inline(__always) internal var cocoaObject: AnyObject { #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) guard case .bridged(let object) = _variant else { _internalInvariantFailure() } return object #else _internalInvariant(largeIsCocoa && !isImmortal) return Builtin.reinterpretCast(largeAddressBits) #endif } @_alwaysEmitIntoClient @inlinable @inline(__always) internal var owner: AnyObject? { guard self.isMortal else { return nil } return Builtin.reinterpretCast(largeAddressBits) } } // Aggregate queries / abstractions extension _StringObject { // The number of code units stored // // TODO(String micro-performance): Check generated code @inlinable @inline(__always) internal var count: Int { return isSmall ? smallCount : largeCount } // // Whether the string is all ASCII // @inlinable @inline(__always) internal var isASCII: Bool { if isSmall { return smallIsASCII } return _countAndFlags.isASCII } @inline(__always) internal var isNFC: Bool { if isSmall { // TODO(String performance): Worth implementing more sophisiticated // check, or else performing normalization on- construction. For now, // approximate it with isASCII return smallIsASCII } return _countAndFlags.isNFC } @_alwaysEmitIntoClient // Swift 5.7 @inline(__always) internal var isKnownUTF16: Bool { if isSmall { return false } return _countAndFlags.isKnownUTF16 } // Get access to fast UTF-8 contents for large strings which provide it. @inlinable @inline(__always) internal var fastUTF8: UnsafeBufferPointer { _internalInvariant(self.isLarge && self.providesFastUTF8) guard _fastPath(self.largeFastIsTailAllocated) else { return sharedUTF8 } return UnsafeBufferPointer( _uncheckedStart: self.nativeUTF8Start, count: self.largeCount) } // Whether the object stored can be bridged directly as a NSString @usableFromInline // @opaque internal var hasObjCBridgeableObject: Bool { @_effects(releasenone) get { // Currently, all mortal objects can zero-cost bridge return !self.isImmortal } } // Fetch the stored subclass of NSString for bridging @inline(__always) internal var objCBridgeableObject: AnyObject { _internalInvariant(hasObjCBridgeableObject) return Builtin.reinterpretCast(largeAddressBits) } // Whether the object provides fast UTF-8 contents that are nul-terminated @inlinable internal var isFastZeroTerminated: Bool { if _slowPath(!providesFastUTF8) { return false } // Small strings nul-terminate when spilling for contiguous access if isSmall { return true } // TODO(String performance): Use performance flag, which could be more // inclusive. For now, we only know native strings and small strings (when // accessed) are. We could also know about some shared strings. return largeFastIsTailAllocated } } // Object creation extension _StringObject { @inlinable @inline(__always) internal init(immortal bufPtr: UnsafeBufferPointer, isASCII: Bool) { let countAndFlags = CountAndFlags( immortalCount: bufPtr.count, isASCII: isASCII) #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) self.init( variant: .immortal(start: bufPtr.baseAddress._unsafelyUnwrappedUnchecked), discriminator: Nibbles.largeImmortal(), countAndFlags: countAndFlags) #else // We bias to align code paths for mortal and immortal strings let biasedAddress = UInt( bitPattern: bufPtr.baseAddress._unsafelyUnwrappedUnchecked ) &- _StringObject.nativeBias self.init( pointerBits: UInt64(truncatingIfNeeded: biasedAddress), discriminator: Nibbles.largeImmortal(), countAndFlags: countAndFlags) #endif } @inline(__always) internal init(_ storage: __StringStorage) { #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) self.init( variant: .native(storage), discriminator: Nibbles.largeMortal(), countAndFlags: storage._countAndFlags) #else self.init( object: storage, discriminator: Nibbles.largeMortal(), countAndFlags: storage._countAndFlags) #endif } internal init(_ storage: __SharedStringStorage) { #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) self.init( variant: .native(storage), discriminator: Nibbles.largeMortal(), countAndFlags: storage._countAndFlags) #else self.init( object: storage, discriminator: Nibbles.largeMortal(), countAndFlags: storage._countAndFlags) #endif } internal init( cocoa: AnyObject, providesFastUTF8: Bool, isASCII: Bool, length: Int ) { let countAndFlags = CountAndFlags( sharedCount: length, isASCII: isASCII, isUTF16: !providesFastUTF8) let discriminator = Nibbles.largeCocoa(providesFastUTF8: providesFastUTF8) #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) self.init( variant: .bridged(cocoa), discriminator: discriminator, countAndFlags: countAndFlags) #else self.init( object: cocoa, discriminator: discriminator, countAndFlags: countAndFlags) _internalInvariant(self.largeAddressBits == Builtin.reinterpretCast(cocoa)) _internalInvariant(self.providesFastUTF8 == providesFastUTF8) _internalInvariant(self.largeCount == length) #endif } } // Internal invariants extension _StringObject { #if !INTERNAL_CHECKS_ENABLED @inlinable @inline(__always) internal func _invariantCheck() {} #else @usableFromInline @inline(never) @_effects(releasenone) internal func _invariantCheck() { #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) _internalInvariant(MemoryLayout<_StringObject>.size == 12) _internalInvariant(MemoryLayout<_StringObject>.stride == 12) _internalInvariant(MemoryLayout<_StringObject>.alignment == 4) _internalInvariant(MemoryLayout<_StringObject?>.size == 12) _internalInvariant(MemoryLayout<_StringObject?>.stride == 12) _internalInvariant(MemoryLayout<_StringObject?>.alignment == 4) // Non-small-string discriminators are 4 high bits only. Small strings use // the next 4 for count. if isSmall { _internalInvariant(_discriminator & 0xA0 == 0xA0) } else { _internalInvariant(_discriminator & 0x0F == 0) } #else _internalInvariant(MemoryLayout<_StringObject>.size == 16) _internalInvariant(MemoryLayout<_StringObject?>.size == 16) #endif if isForeign { _internalInvariant(largeIsCocoa, "No other foreign forms yet") } if isSmall { _internalInvariant(isImmortal) _internalInvariant(smallCount <= 15) _internalInvariant(smallCount == count) _internalInvariant(!hasObjCBridgeableObject) } else { _internalInvariant(isLarge) _internalInvariant(largeCount == count) if _countAndFlags.isTailAllocated { _internalInvariant(providesFastUTF8) } if providesFastUTF8 && largeFastIsTailAllocated { _internalInvariant(!isSmall) _internalInvariant(!largeIsCocoa) _internalInvariant(_countAndFlags.isTailAllocated) if isImmortal { _internalInvariant(!hasNativeStorage) _internalInvariant(!hasObjCBridgeableObject) _internalInvariant(!_countAndFlags.isNativelyStored) } else { _internalInvariant(hasNativeStorage) _internalInvariant(_countAndFlags.isNativelyStored) _internalInvariant(hasObjCBridgeableObject) _internalInvariant(nativeStorage.count == self.count) } } if largeIsCocoa { _internalInvariant(hasObjCBridgeableObject) _internalInvariant(!isSmall) _internalInvariant(!_countAndFlags.isNativelyStored) _internalInvariant(!_countAndFlags.isTailAllocated) if isForeign { } else { _internalInvariant(largeFastIsShared) } } if _countAndFlags.isNativelyStored { let anyObj = Builtin.reinterpretCast(largeAddressBits) as AnyObject _internalInvariant(anyObj is __StringStorage) } } #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) switch _variant { case .immortal: _internalInvariant(isImmortal) case .native: _internalInvariant(hasNativeStorage || hasSharedStorage) case .bridged: _internalInvariant(isLarge) _internalInvariant(largeIsCocoa) } #endif } #endif // INTERNAL_CHECKS_ENABLED @inline(never) internal func _dump() { #if INTERNAL_CHECKS_ENABLED let raw = self.rawBits let word0 = ("0000000000000000" + String(raw.0, radix: 16)).suffix(16) let word1 = ("0000000000000000" + String(raw.1, radix: 16)).suffix(16) #if arch(i386) || arch(arm) || arch(arm64_32) || arch(wasm32) print(""" StringObject(\ <\(word0) \(word1)> \ count: \(String(_count, radix: 16)), \ variant: \(_variant), \ discriminator: \(_discriminator), \ flags: \(_flags)) """) #else print("StringObject(<\(word0) \(word1)>)") #endif let repr = _StringGuts(self)._classify() switch repr._form { case ._small: _SmallString(self)._dump() case ._immortal(address: let address): print(""" Immortal(\ start: \(UnsafeRawPointer(bitPattern: address)!), \ count: \(repr._count)) """) case ._native(_): print(""" Native(\ owner: \(repr._objectIdentifier!), \ count: \(repr._count), \ capacity: \(repr._capacity)) """) case ._cocoa(object: let object): let address: UnsafeRawPointer = Builtin.reinterpretCast(object) print("Cocoa(address: \(address))") } #endif // INTERNAL_CHECKS_ENABLED } }