//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// func minElement< R : Sequence where R.GeneratorType.Element : Comparable>(range: R) -> R.GeneratorType.Element { var g = range.generate() var result = g.next()! for e in GeneratorSequence(g) { if e < result { result = e } } return result } func maxElement< R : Sequence where R.GeneratorType.Element : Comparable>(range: R) -> R.GeneratorType.Element { var g = range.generate() var result = g.next()! for e in GeneratorSequence(g) { if e > result { result = e } } return result } // Returns the first index where value appears in domain or nil if // domain doesn't contain the value. O(countElements(domain)) func find< C: Collection where C.GeneratorType.Element : Equatable >(domain: C, value: C.GeneratorType.Element) -> C.IndexType? { for i in indices(domain) { if domain[i] == value { return i } } return nil } func insertionSort< C: MutableCollection where C.IndexType: BidirectionalIndex >( inout elements: C, range: Range, inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool ) { if range { let start = range.startIndex // Keep track of the end of the initial sequence of sorted // elements. var sortedEnd = start // One element is trivially already-sorted, thus pre-increment // Continue until the sorted elements cover the whole sequence while (++sortedEnd != range.endIndex) { // get the first unsorted element var x: C.GeneratorType.Element = elements[sortedEnd] // Look backwards for x's position in the sorted sequence, // moving elements forward to make room. var i = sortedEnd do { let predecessor: C.GeneratorType.Element = elements[i.pred()] // if x doesn't belong before y, we've found its position if !less(x, predecessor) { break } // Move y forward elements[i] = predecessor } while --i != start if i != sortedEnd { // Plop x into position elements[i] = x } } } } /// Partition a non empty range into two partially sorted regions: /// [start..idx), [idx..end) func partition( inout elements: C, range: Range, inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool ) -> C.IndexType { var i = range.startIndex var j = range.endIndex - 1 let pivot = (i + j) / 2 while i <= j { while less(elements[i], elements[pivot]) { i++ } while less(elements[pivot], elements[j]) { j-- } if i <= j { swap(&elements[i], &elements[j]) i++ j-- } } return i } func quickSort( inout elements: C, range: Range, less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool ) { var comp = less _quickSort(&elements, range, &comp) } func _quickSort( inout elements: C, range: Range, inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool ) { // Insertion sort is better at handling smaller regions. let cnt = count(range) if cnt < 16 { insertionSort(&elements, range, &less) return } // Partition and sort. let part_idx : C.IndexType = partition(&elements, range, &less) _quickSort(&elements, range.startIndex..part_idx, &less); _quickSort(&elements, part_idx..range.endIndex, &less); } struct Less { static func compare(x: T, _ y: T) -> Bool { return x < y } } func sort(var array: T[], pred: (T, T) -> Bool) -> T[] { quickSort(&array, 0..array.count, pred) return array } /// The functions below are a copy of the functions above except that /// they don't accept a predicate and they are hardcoded to use the less-than /// comparator. func sort(var array: T[]) -> T[] { quickSort(&array, 0..array.count) return array } func insertionSort< C: MutableCollection where C.IndexType: BidirectionalIndex, C.GeneratorType.Element: Comparable>( inout elements: C, range: Range) { if range { let start = range.startIndex // Keep track of the end of the initial sequence of sorted // elements. var sortedEnd = start // One element is trivially already-sorted, thus pre-increment // Continue until the sorted elements cover the whole sequence while (++sortedEnd != range.endIndex) { // get the first unsorted element var x: C.GeneratorType.Element = elements[sortedEnd] // Look backwards for x's position in the sorted sequence, // moving elements forward to make room. var i = sortedEnd do { let predecessor: C.GeneratorType.Element = elements[i.pred()] // if x doesn't belong before y, we've found its position if !Less.compare(x, predecessor) { break } // Move y forward elements[i] = predecessor } while --i != start if i != sortedEnd { // Plop x into position elements[i] = x } } } } /// Partition a non empty range into two partially sorted regions: /// [start..idx), [idx..end) func partition( inout elements: C, range: Range) -> C.IndexType { var i = range.startIndex var j = range.endIndex - 1 let pivot = (i + j) / 2 while i <= j { while Less.compare(elements[i], elements[pivot]) { i++ } while Less.compare(elements[pivot], elements[j]) { j-- } if i <= j { swap(&elements[i], &elements[j]) i++ j-- } } return i } func quickSort( inout elements: C, range: Range) { _quickSort(&elements, range) } func _quickSort( inout elements: C, range: Range) { // Insertion sort is better at handling smaller regions. let cnt = count(range) if cnt < 16 { insertionSort(&elements, range) return } // Partition and sort. let part_idx : C.IndexType = partition(&elements, range) _quickSort(&elements, range.startIndex..part_idx); _quickSort(&elements, part_idx..range.endIndex); } //// End of non-predicate sort functions. func swap(inout a : T, inout b : T) { // Semantically equivalent to (a, b) = (b, a). // Microoptimized to avoid retain/release traffic. let p1 = Builtin.addressof(&a) let p2 = Builtin.addressof(&b) // Take from P1. let tmp : T = Builtin.take(p1) // Transfer P2 into P1. Builtin.initialize(Builtin.take(p2) as T, p1) // Initialize P2. Builtin.initialize(tmp, p2) } func min(x: T, y: T, rest: T...) -> T { var r = x if y < x { r = y } for z in rest { if z < r { r = z } } return r } func max(x: T, y: T, rest: T...) -> T { var r = y if y < x { r = x } for z in rest { if z >= r { r = z } } return r } func split( seq: Seq, isSeparator: (Seq.GeneratorType.Element)->R, maxSplit: Int = Int.max, allowEmptySlices: Bool = false ) -> Seq.SliceType[] { var result = Array() // FIXME: could be simplified pending // (ternary operator not resolving some/none) var startIndex: Optional = allowEmptySlices ? .Some(seq.startIndex) : .None var splits = 0 for j in indices(seq) { if isSeparator(seq[j]) { if startIndex { var i = startIndex! result.append(seq[i..j]) startIndex = .Some(j.succ()) if ++splits >= maxSplit { break } if !allowEmptySlices { startIndex = .None } } } else { if !startIndex { startIndex = .Some(j) } } } switch startIndex { case .Some(var i): result.append(seq[i..seq.endIndex]) default: () } return result } /// Return true iff the elements of `e1` are equal to the initial /// elements of `e2`. func startsWith< S0: Sequence, S1: Sequence where S0.GeneratorType.Element == S1.GeneratorType.Element, S0.GeneratorType.Element : Equatable >(s0: S0, s1: S1) -> Bool { var g1 = s1.generate() for e0 in s0 { var e1 = g1.next() if !e1 { return true } if e0 != e1! { return false } } return g1.next() ? false : true } struct EnumerateGenerator : Generator, Sequence { typealias Element = (index: Int, element: Base.Element) var base: Base var count: Int init(_ base: Base) { self.base = base count = 0 } mutating func next() -> Element? { var b = base.next() if !b { return .None } return .Some((index: count++, element: b!)) } // Every Generator is also a single-pass Sequence typealias GeneratorType = EnumerateGenerator func generate() -> GeneratorType { return self } } func enumerate( seq: Seq ) -> EnumerateGenerator { return EnumerateGenerator(seq.generate()) } /// Return true iff `a1` and `a2` contain the same elements. func equal< S1 : Sequence, S2 : Sequence where S1.GeneratorType.Element == S2.GeneratorType.Element, S1.GeneratorType.Element : Equatable >(a1: S1, a2: S2) -> Bool { var g1 = a1.generate() var g2 = a2.generate() while true { var e1 = g1.next() var e2 = g2.next() if e1 && e2 { if e1! != e2! { return false } } else { return !e1 == !e2 } } } /// Return true iff `a1` and `a2` contain the same elements, using /// `pred` as equality `==` comparison. func equal< S1 : Sequence, S2 : Sequence where S1.GeneratorType.Element == S2.GeneratorType.Element >(a1: S1, a2: S2, pred: (S1.GeneratorType.Element, S1.GeneratorType.Element) -> Bool) -> Bool { var g1 = a1.generate() var g2 = a2.generate() while true { var e1 = g1.next() var e2 = g2.next() if e1 && e2 { if !pred(e1!, e2!) { return false } } else { return !e1 == !e2 } } } /// Return true iff a1 precedes a2 in a lexicographical ("dictionary") /// ordering, using "<" as the comparison between elements. func lexicographicalCompare< S1 : Sequence, S2 : Sequence where S1.GeneratorType.Element == S2.GeneratorType.Element, S1.GeneratorType.Element : Comparable>( a1: S1, a2: S2) -> Bool { var g1 = a1.generate() var g2 = a2.generate() while true { var e1_ = g1.next() var e2_ = g2.next() if let e1 = e1_ { if let e2 = e2_ { if e1 < e2 { return true } if e2 < e1 { return false } continue // equivalent } return false } return e2_.getLogicValue() } } /// Return true iff `a1` precedes `a2` in a lexicographical ("dictionary") /// ordering, using `less` as the comparison between elements. func lexicographicalCompare< S1 : Sequence, S2 : Sequence where S1.GeneratorType.Element == S2.GeneratorType.Element >( a1: S1, a2: S2, less: (S1.GeneratorType.Element,S1.GeneratorType.Element)->Bool ) -> Bool { var g1 = a1.generate() var g2 = a2.generate() while true { var e1_ = g1.next() var e2_ = g2.next() if let e1 = e1_ { if let e2 = e2_ { if less(e1, e2) { return true } if less(e2, e1) { return false } continue // equivalent } return false } return e2_.getLogicValue() } } /// Return `true` iff an element in `seq` satisfies `predicate`. func contains< S: Sequence, L: LogicValue >(seq: S, predicate: (S.GeneratorType.Element)->L) -> Bool { for a in seq { if predicate(a) { return true } } return false } /// Return `true` iff `x` is in `seq`. func contains< S: Sequence where S.GeneratorType.Element: Equatable >(seq: S, x: S.GeneratorType.Element) -> Bool { return contains(seq, { $0 == x }) } func reduce( sequence: S, initial: U, combine: (U, S.GeneratorType.Element)->U ) -> U { var result = initial for element in sequence { result = combine(result, element) } return result }