#!/usr/bin/python # -*- coding: utf-8 -*- # ===--- compare_perf_tests.py -------------------------------------------===// # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ===---------------------------------------------------------------------===// """ This script compares performance test logs and issues a formatted report. Invoke `$ compare_perf_tests.py -h ` for complete list of options. class `Sample` is single benchmark measurement. class `PerformanceTestSamples` is collection of `Sample`s and their statistics. class `PerformanceTestResult` is a summary of performance test execution. class `LogParser` converts log files into `PerformanceTestResult`s. class `ResultComparison` compares new and old `PerformanceTestResult`s. class `TestComparator` analyzes changes betweeen the old and new test results. class `ReportFormatter` creates the test comparison report in specified format. """ from __future__ import print_function import argparse import re import sys from bisect import bisect, bisect_left, bisect_right from collections import namedtuple from decimal import Decimal, ROUND_HALF_EVEN from math import sqrt class Sample(namedtuple('Sample', 'i num_iters runtime')): u"""Single benchmark measurement. Initialized with: `i`: ordinal number of the sample taken, `num-num_iters`: number or iterations used to compute it, `runtime`: in microseconds (μs). """ def __repr__(self): """Shorter Sample formating for debugging purposes.""" return 's({0.i!r}, {0.num_iters!r}, {0.runtime!r})'.format(self) class PerformanceTestSamples(object): """Collection of runtime samples from the benchmark execution. Computes the sample population statistics. """ def __init__(self, name, samples=None): """Initialize with benchmark name and optional list of Samples.""" self.name = name # Name of the performance test self.samples = [] self.outliers = [] self._runtimes = [] self.mean = 0.0 self.S_runtime = 0.0 # For computing running variance for sample in samples or []: self.add(sample) def __str__(self): """Text summary of benchmark statisctics.""" return ( '{0.name!s} n={0.count!r} ' 'Min={0.min!r} Q1={0.q1!r} M={0.median!r} Q3={0.q3!r} ' 'Max={0.max!r} ' 'R={0.range!r} {0.spread:.2%} IQR={0.iqr!r} ' 'Mean={0.mean:.0f} SD={0.sd:.0f} CV={0.cv:.2%}' .format(self) if self.samples else '{0.name!s} n=0'.format(self)) def add(self, sample): """Add sample to collection and recompute statistics.""" assert isinstance(sample, Sample) self._update_stats(sample) i = bisect(self._runtimes, sample.runtime) self._runtimes.insert(i, sample.runtime) self.samples.insert(i, sample) def _update_stats(self, sample): old_stats = (self.count, self.mean, self.S_runtime) _, self.mean, self.S_runtime = ( self.running_mean_variance(old_stats, sample.runtime)) def exclude_outliers(self, top_only=False): """Exclude outliers by applying Interquartile Range Rule. Moves the samples outside of the inner fences (Q1 - 1.5*IQR and Q3 + 1.5*IQR) into outliers list and recomputes statistics for the remaining sample population. Optionally apply only the top inner fence, preserving the small outliers. Experimentally, this rule seems to perform well-enough on the benchmark runtimes in the microbenchmark range to filter out the environment noise caused by preemtive multitasking. """ lo = (0 if top_only else bisect_left(self._runtimes, int(self.q1 - 1.5 * self.iqr))) hi = bisect_right(self._runtimes, int(self.q3 + 1.5 * self.iqr)) outliers = self.samples[:lo] + self.samples[hi:] samples = self.samples[lo:hi] self.__init__(self.name) # re-initialize for sample in samples: # and self.add(sample) # re-compute stats self.outliers = outliers @property def count(self): """Number of samples used to compute the statistics.""" return len(self.samples) @property def num_samples(self): """Number of all samples in the collection.""" return len(self.samples) + len(self.outliers) @property def all_samples(self): """List of all samples in ascending order.""" return sorted(self.samples + self.outliers, key=lambda s: s.i) @property def min(self): """Minimum sampled value.""" return self.samples[0].runtime @property def max(self): """Maximum sampled value.""" return self.samples[-1].runtime def quantile(self, q): """Return runtime of a sample nearest to the quantile. Explicitly uses round-half-to-even rounding algorithm to match the behavior of numpy's quantile(interpolation='nearest') and quantile estimate type R-3, SAS-2. See: https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample """ index = int(Decimal((self.count - 1) * Decimal(q)) .quantize(0, ROUND_HALF_EVEN)) return self.samples[index].runtime @property def median(self): """Median sampled value.""" return self.quantile(0.5) @property def q1(self): """First Quartile (25th Percentile).""" return self.quantile(0.25) @property def q3(self): """Third Quartile (75th Percentile).""" return self.quantile(0.75) @property def iqr(self): """Interquartile Range.""" return self.q3 - self.q1 @property def sd(self): u"""Standard Deviation (μs).""" return (0 if self.count < 2 else sqrt(self.S_runtime / (self.count - 1))) @staticmethod def running_mean_variance((k, M_, S_), x): """Compute running variance, B. P. Welford's method. See Knuth TAOCP vol 2, 3rd edition, page 232, or https://www.johndcook.com/blog/standard_deviation/ M is mean, Standard Deviation is defined as sqrt(S/k-1) """ k = float(k + 1) M = M_ + (x - M_) / k S = S_ + (x - M_) * (x - M) return (k, M, S) @property def cv(self): """Coeficient of Variation (%).""" return (self.sd / self.mean) if self.mean else 0 @property def range(self): """Range of samples values (Max - Min).""" return self.max - self.min @property def spread(self): """Sample Spread; i.e. Range as (%) of Min.""" return self.range / float(self.min) if self.min else 0 class PerformanceTestResult(object): u"""Result from executing an individual Swift Benchmark Suite benchmark. Reported by the test driver (Benchmark_O, Benchmark_Onone, Benchmark_Osize or Benchmark_Driver). It depends on the log format emitted by the test driver in the form: #,TEST,SAMPLES,MIN(μs),MAX(μs),MEAN(μs),SD(μs),MEDIAN(μs),MAX_RSS(B) The last column, MAX_RSS, is emitted only for runs instrumented by the Benchmark_Driver to measure rough memory use during the execution of the benchmark. """ def __init__(self, csv_row): """Initialize from a row with 8 or 9 columns with benchmark summary. The row is an iterable, such as a row provided by the CSV parser. """ self.test_num = csv_row[0] # Ordinal number of the test self.name = csv_row[1] # Name of the performance test self.num_samples = ( # Number of measurement samples taken int(csv_row[2])) self.min = int(csv_row[3]) # Minimum runtime (μs) self.max = int(csv_row[4]) # Maximum runtime (μs) self.mean = float(csv_row[5]) # Mean (average) runtime (μs) self.sd = float(csv_row[6]) # Standard Deviation (μs) self.median = int(csv_row[7]) # Median runtime (μs) self.max_rss = ( # Maximum Resident Set Size (B) int(csv_row[8]) if len(csv_row) > 8 else None) self.samples = None def __repr__(self): """Short summary for debugging purposes.""" return ( '' .format(self)) def merge(self, r): """Merge two results. Recomputes min, max and mean statistics. If all `samples` are avaliable, it recomputes all the statistics. The use case here is comparing test results parsed from concatenated log files from multiple runs of benchmark driver. """ if self.samples and r.samples: map(self.samples.add, r.samples.samples) sams = self.samples self.num_samples = sams.num_samples self.min, self.max, self.median, self.mean, self.sd = \ sams.min, sams.max, sams.median, sams.mean, sams.sd else: self.min = min(self.min, r.min) self.max = max(self.max, r.max) self.mean = ( # pooled mean is the weighted sum of means (self.mean * self.num_samples) + (r.mean * r.num_samples) ) / float(self.num_samples + r.num_samples) self.num_samples += r.num_samples self.max_rss = min(self.max_rss, r.max_rss) self.median, self.sd = 0, 0 class ResultComparison(object): """ResultComparison compares MINs from new and old PerformanceTestResult. It computes speedup ratio and improvement delta (%). """ def __init__(self, old, new): """Initialize with old and new `PerformanceTestResult`s to compare.""" self.old = old self.new = new assert old.name == new.name self.name = old.name # Test name, convenience accessor # Speedup ratio self.ratio = (old.min + 0.001) / (new.min + 0.001) # Test runtime improvement in % ratio = (new.min + 0.001) / (old.min + 0.001) self.delta = ((ratio - 1) * 100) # Indication of dubious changes: when result's MIN falls inside the # (MIN, MAX) interval of result they are being compared with. self.is_dubious = ((old.min < new.min and new.min < old.max) or (new.min < old.min and old.min < new.max)) class LogParser(object): """Converts log outputs into `PerformanceTestResult`s. Supports various formats produced by the `Benchmark_Driver` and `Benchmark_O`('Onone', 'Osize'). It can also merge together the results from concatenated log files. """ def __init__(self): """Create instance of `LogParser`.""" self.results = [] self._reset() def _reset(self): """Reset parser to the default state for reading a new result.""" self.samples, self.num_iters = [], 1 self.max_rss, self.mem_pages = None, None self.voluntary_cs, self.involuntary_cs = None, None # Parse lines like this # #,TEST,SAMPLES,MIN(μs),MAX(μs),MEAN(μs),SD(μs),MEDIAN(μs) results_re = re.compile(r'( *\d+[, \t]*[\w.]+[, \t]*' + r'[, \t]*'.join([r'[\d.]+'] * 6) + r'[, \t]*[\d.]*)') # optional MAX_RSS(B) def _append_result(self, result): columns = result.split(',') if len(columns) < 8: columns = result.split() r = PerformanceTestResult(columns) if self.max_rss: r.max_rss = self.max_rss r.mem_pages = self.mem_pages r.voluntary_cs = self.voluntary_cs r.involuntary_cs = self.involuntary_cs if self.samples: r.samples = PerformanceTestSamples(r.name, self.samples) r.samples.exclude_outliers() self.results.append(r) self._reset() def _store_memory_stats(self, max_rss, mem_pages): self.max_rss = int(max_rss) self.mem_pages = int(mem_pages) # Regular expression and action to take when it matches the parsed line state_actions = { results_re: _append_result, # Verbose mode adds new productions: # Adaptively determined N; test loop multiple adjusting runtime to ~1s re.compile(r'\s+Measuring with scale (\d+).'): (lambda self, num_iters: setattr(self, 'num_iters', num_iters)), re.compile(r'\s+Sample (\d+),(\d+)'): (lambda self, i, runtime: self.samples.append( Sample(int(i), int(self.num_iters), int(runtime)))), # Environmental statistics: memory usage and context switches re.compile(r'\s+MAX_RSS \d+ - \d+ = (\d+) \((\d+) pages\)'): _store_memory_stats, re.compile(r'\s+VCS \d+ - \d+ = (\d+)'): (lambda self, vcs: setattr(self, 'voluntary_cs', int(vcs))), re.compile(r'\s+ICS \d+ - \d+ = (\d+)'): (lambda self, ics: setattr(self, 'involuntary_cs', int(ics))), } def parse_results(self, lines): """Parse results from the lines of the log output from Benchmark*. Returns a list of `PerformanceTestResult`s. """ for line in lines: for regexp, action in LogParser.state_actions.items(): match = regexp.match(line) if match: action(self, *match.groups()) break # stop after 1st match else: # If none matches, skip the line. # print('skipping: ' + line.rstrip('\n')) continue return self.results @staticmethod def _results_from_lines(lines): tests = LogParser().parse_results(lines) def add_or_merge(names, r): if r.name not in names: names[r.name] = r else: names[r.name].merge(r) return names return reduce(add_or_merge, tests, dict()) @staticmethod def results_from_string(log_contents): """Parse `PerformanceTestResult`s from the supplied string. Returns dictionary of test names and `PerformanceTestResult`s. """ return LogParser._results_from_lines(log_contents.splitlines()) @staticmethod def results_from_file(log_file): """Parse `PerformanceTestResult`s from the log file. Returns dictionary of test names and `PerformanceTestResult`s. """ with open(log_file) as f: return LogParser._results_from_lines(f.readlines()) class TestComparator(object): """Analyzes changes betweeen the old and new test results. It determines which tests were `added`, `removed` and which can be compared. It then splits the `ResultComparison`s into 3 groups according to the `delta_threshold` by the change in performance: `increased`, `descreased` and `unchanged`. Whole computaion is performed during initialization and results are provided as properties on this object. The lists of `added`, `removed` and `unchanged` tests are sorted alphabetically. The `increased` and `decreased` lists are sorted in descending order by the amount of change. """ def __init__(self, old_results, new_results, delta_threshold): """Initialize with dictionaries of old and new benchmark results. Dictionary keys are benchmark names, values are `PerformanceTestResult`s. """ old_tests = set(old_results.keys()) new_tests = set(new_results.keys()) comparable_tests = new_tests.intersection(old_tests) added_tests = new_tests.difference(old_tests) removed_tests = old_tests.difference(new_tests) self.added = sorted([new_results[t] for t in added_tests], key=lambda r: r.name) self.removed = sorted([old_results[t] for t in removed_tests], key=lambda r: r.name) def compare(name): return ResultComparison(old_results[name], new_results[name]) comparisons = map(compare, comparable_tests) def partition(l, p): return reduce(lambda x, y: x[not p(y)].append(y) or x, l, ([], [])) decreased, not_decreased = partition( comparisons, lambda c: c.ratio < (1 - delta_threshold)) increased, unchanged = partition( not_decreased, lambda c: c.ratio > (1 + delta_threshold)) # sorted partitions names = [c.name for c in comparisons] comparisons = dict(zip(names, comparisons)) self.decreased = [comparisons[c.name] for c in sorted(decreased, key=lambda c: -c.delta)] self.increased = [comparisons[c.name] for c in sorted(increased, key=lambda c: c.delta)] self.unchanged = [comparisons[c.name] for c in sorted(unchanged, key=lambda c: c.name)] class ReportFormatter(object): """Creates the report from perfromance test comparison in specified format. `ReportFormatter` formats the `PerformanceTestResult`s and `ResultComparison`s provided by `TestComparator` into report table. Supported formats are: `markdown` (used for displaying benchmark results on GitHub), `git` and `html`. """ def __init__(self, comparator, old_branch, new_branch, changes_only, single_table=False): """Initialize with `TestComparator` and names of branches.""" self.comparator = comparator self.old_branch = old_branch self.new_branch = new_branch self.changes_only = changes_only self.single_table = single_table MARKDOWN_DETAIL = """
{0} ({1}) {2}
""" GIT_DETAIL = """ {0} ({1}): {2}""" PERFORMANCE_TEST_RESULT_HEADER = ('TEST', 'MIN', 'MAX', 'MEAN', 'MAX_RSS') RESULT_COMPARISON_HEADER = ('TEST', 'OLD', 'NEW', 'DELTA', 'SPEEDUP') @staticmethod def header_for(result): """Column labels for header row in results table.""" return (ReportFormatter.PERFORMANCE_TEST_RESULT_HEADER if isinstance(result, PerformanceTestResult) else # isinstance(result, ResultComparison) ReportFormatter.RESULT_COMPARISON_HEADER) @staticmethod def values(result): """Format values from PerformanceTestResult or ResultComparison. Returns tuple of strings to display in the results table. """ return ( (result.name, str(result.min), str(result.max), str(int(result.mean)), str(result.max_rss) if result.max_rss else '—') if isinstance(result, PerformanceTestResult) else # isinstance(result, ResultComparison) (result.name, str(result.old.min), str(result.new.min), '{0:+.1f}%'.format(result.delta), '{0:.2f}x{1}'.format(result.ratio, ' (?)' if result.is_dubious else '')) ) def markdown(self): """Report results of benchmark comparisons in Markdown format.""" return self._formatted_text( ROW='{0} | {1} | {2} | {3} | {4} \n', HEADER_SEPARATOR='---', DETAIL=self.MARKDOWN_DETAIL) def git(self): """Report results of benchmark comparisons in 'git' format.""" return self._formatted_text( ROW='{0} {1} {2} {3} {4} \n', HEADER_SEPARATOR=' ', DETAIL=self.GIT_DETAIL) def _column_widths(self): changed = self.comparator.decreased + self.comparator.increased results = (changed if self.changes_only else changed + self.comparator.unchanged) results += self.comparator.added + self.comparator.removed widths = [ map(len, columns) for columns in [ReportFormatter.PERFORMANCE_TEST_RESULT_HEADER, ReportFormatter.RESULT_COMPARISON_HEADER] + [ReportFormatter.values(r) for r in results] ] def max_widths(maximum, widths): return tuple(map(max, zip(maximum, widths))) return reduce(max_widths, widths, tuple([0] * 5)) def _formatted_text(self, ROW, HEADER_SEPARATOR, DETAIL): widths = self._column_widths() self.header_printed = False def justify_columns(contents): return tuple([c.ljust(w) for w, c in zip(widths, contents)]) def row(contents): return ROW.format(*justify_columns(contents)) def header(header): return '\n' + row(header) + row(tuple([HEADER_SEPARATOR] * 5)) def format_columns(r, strong): return (r if not strong else r[:-1] + ('**{0}**'.format(r[-1]), )) def table(title, results, is_strong=False, is_open=False): rows = [ row(format_columns(ReportFormatter.values(r), is_strong)) for r in results ] if not rows: return '' if self.single_table: t = '' if not self.header_printed: t += header(ReportFormatter.header_for(results[0])) self.header_printed = True t += row(('**' + title + '**', '', '', '', '')) t += ''.join(rows) return t return DETAIL.format( *[ title, len(results), (header(ReportFormatter.header_for(results[0])) + ''.join(rows)), ('open' if is_open else '') ]) return ''.join([ # FIXME print self.old_branch, self.new_branch table('Regression', self.comparator.decreased, True, True), table('Improvement', self.comparator.increased, True), ('' if self.changes_only else table('No Changes', self.comparator.unchanged)), table('Added', self.comparator.added, is_open=True), table('Removed', self.comparator.removed, is_open=True) ]) HTML = """ {0}
""" HTML_HEADER_ROW = """ {0} ({1}) {2} {3} {4} {5} """ HTML_ROW = """ {0} {1} {2} {3} {5} """ def html(self): """Report results of benchmark comparisons in HTML format.""" def row(name, old, new, delta, speedup, speedup_color): return self.HTML_ROW.format( name, old, new, delta, speedup_color, speedup) def header(contents): return self.HTML_HEADER_ROW.format(* contents) def table(title, results, speedup_color): rows = [ row(*(ReportFormatter.values(r) + (speedup_color,))) for r in results ] return ('' if not rows else header((title, len(results)) + ReportFormatter.header_for(results[0])[1:]) + ''.join(rows)) return self.HTML.format( ''.join([ # FIXME print self.old_branch, self.new_branch table('Regression', self.comparator.decreased, 'red'), table('Improvement', self.comparator.increased, 'green'), ('' if self.changes_only else table('No Changes', self.comparator.unchanged, 'black')), table('Added', self.comparator.added, ''), table('Removed', self.comparator.removed, '') ])) def parse_args(args): """Parse command line arguments and set default values.""" parser = argparse.ArgumentParser(description='Compare Performance tests.') parser.add_argument('--old-file', help='Baseline performance test suite (csv file)', required=True) parser.add_argument('--new-file', help='New performance test suite (csv file)', required=True) parser.add_argument('--format', choices=['markdown', 'git', 'html'], help='Output format. Default is markdown.', default="markdown") parser.add_argument('--output', help='Output file name') parser.add_argument('--changes-only', help='Output only affected tests', action='store_true') parser.add_argument( '--single-table', help='Combine data in a single table in git and markdown formats', action='store_true') parser.add_argument('--new-branch', help='Name of the new branch', default='NEW_MIN') parser.add_argument('--old-branch', help='Name of the old branch', default='OLD_MIN') parser.add_argument('--delta-threshold', help='Delta threshold. Default 0.05.', type=float, default=0.05) return parser.parse_args(args) def main(): """Compare benchmarks for changes in a formatted report.""" args = parse_args(sys.argv[1:]) comparator = TestComparator(LogParser.results_from_file(args.old_file), LogParser.results_from_file(args.new_file), args.delta_threshold) formatter = ReportFormatter(comparator, args.old_branch, args.new_branch, args.changes_only, args.single_table) formats = { 'markdown': formatter.markdown, 'git': formatter.git, 'html': formatter.html } report = formats[args.format]() print(report) if args.output: with open(args.output, 'w') as f: f.write(report) if __name__ == '__main__': sys.exit(main())