//===--- ParsePattern.cpp - Swift Language Parser for Patterns ------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Pattern Parsing and AST Building // //===----------------------------------------------------------------------===// #include "swift/Parse/CodeCompletionCallbacks.h" #include "swift/Parse/Parser.h" #include "swift/AST/ASTWalker.h" #include "swift/AST/ExprHandle.h" #include "swift/Basic/StringExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/SaveAndRestore.h" using namespace swift; /// \brief Determine the kind of a default argument given a parsed /// expression that has not yet been type-checked. static DefaultArgumentKind getDefaultArgKind(ExprHandle *init) { if (!init || !init->getExpr()) return DefaultArgumentKind::None; auto magic = dyn_cast(init->getExpr()); if (!magic) return DefaultArgumentKind::Normal; switch (magic->getKind()) { case MagicIdentifierLiteralExpr::Column: return DefaultArgumentKind::Column; case MagicIdentifierLiteralExpr::File: return DefaultArgumentKind::File; case MagicIdentifierLiteralExpr::Line: return DefaultArgumentKind::Line; case MagicIdentifierLiteralExpr::Function: return DefaultArgumentKind::Function; case MagicIdentifierLiteralExpr::DSOHandle: return DefaultArgumentKind::DSOHandle; } } static void recoverFromBadSelectorArgument(Parser &P) { while (P.Tok.isNot(tok::eof) && P.Tok.isNot(tok::r_paren) && P.Tok.isNot(tok::l_brace) && P.Tok.isNot(tok::r_brace) && !P.isStartOfStmt() && !P.isStartOfDecl()) { P.skipSingle(); } P.consumeIf(tok::r_paren); } void Parser::DefaultArgumentInfo::setFunctionContext(DeclContext *DC) { assert(DC->isLocalContext()); for (auto context : ParsedContexts) { context->changeFunction(DC); } } static ParserStatus parseDefaultArgument(Parser &P, Parser::DefaultArgumentInfo *defaultArgs, unsigned argIndex, ExprHandle *&init) { SourceLoc equalLoc = P.consumeToken(tok::equal); // Enter a fresh default-argument context with a meaningless parent. // We'll change the parent to the function later after we've created // that declaration. auto initDC = P.Context.createDefaultArgumentContext(P.CurDeclContext, argIndex); Parser::ParseFunctionBody initScope(P, initDC); ParserResult initR = P.parseExpr(diag::expected_init_value); // Give back the default-argument context if we didn't need it. if (!initScope.hasClosures()) { P.Context.destroyDefaultArgumentContext(initDC); // Otherwise, record it if we're supposed to accept default // arguments here. } else if (defaultArgs) { defaultArgs->ParsedContexts.push_back(initDC); } if (!defaultArgs) { auto inFlight = P.diagnose(equalLoc, diag::non_func_decl_pattern_init); if (initR.isNonNull()) inFlight.fixItRemove(SourceRange(equalLoc, initR.get()->getEndLoc())); return ParserStatus(); } defaultArgs->HasDefaultArgument = true; if (initR.hasCodeCompletion()) { recoverFromBadSelectorArgument(P); return makeParserCodeCompletionStatus(); } if (initR.isNull()) { recoverFromBadSelectorArgument(P); return makeParserError(); } init = ExprHandle::get(P.Context, initR.get()); return ParserStatus(); } /// Determine whether we are at the start of a parameter name when /// parsing a parameter. static bool startsParameterName(Parser &parser, bool isClosure) { // '_' cannot be a type, so it must be a parameter name. if (parser.Tok.is(tok::kw__)) return true; // To have a parameter name here, we need a name. if (!parser.Tok.canBeArgumentLabel()) return false; // If the next token can be an argument label or is ':', this is a name. const auto &nextTok = parser.peekToken(); if (nextTok.is(tok::colon) || nextTok.canBeArgumentLabel()) return true; // The identifier could be a name or it could be a type. In a closure, we // assume it's a name, because the type can be inferred. Elsewhere, we // assume it's a type. return isClosure; } ParserStatus Parser::parseParameterClause(SourceLoc &leftParenLoc, SmallVectorImpl ¶ms, SourceLoc &rightParenLoc, DefaultArgumentInfo *defaultArgs, ParameterContextKind paramContext) { assert(params.empty() && leftParenLoc.isInvalid() && rightParenLoc.isInvalid() && "Must start with empty state"); // Consume the starting '('; leftParenLoc = consumeToken(tok::l_paren); // Trivial case: empty parameter list. if (Tok.is(tok::r_paren)) { rightParenLoc = consumeToken(tok::r_paren); return ParserStatus(); } // Parse the parameter list. bool isClosure = paramContext == ParameterContextKind::Closure; return parseList(tok::r_paren, leftParenLoc, rightParenLoc, tok::comma, /*OptionalSep=*/false, /*AllowSepAfterLast=*/false, diag::expected_rparen_parameter, [&]() -> ParserStatus { ParsedParameter param; ParserStatus status; SourceLoc StartLoc = Tok.getLoc(); unsigned defaultArgIndex = defaultArgs? defaultArgs->NextIndex++ : 0; // Attributes. bool FoundCCToken; parseDeclAttributeList(param.Attrs, FoundCCToken, /*stop at type attributes*/true, true); if (FoundCCToken) { if (CodeCompletion) { CodeCompletion->completeDeclAttrKeyword(nullptr, isInSILMode(), true); } else { status |= makeParserCodeCompletionStatus(); } } // ('inout' | 'let' | 'var')? if (Tok.is(tok::kw_inout)) { param.LetVarInOutLoc = consumeToken(); param.SpecifierKind = ParsedParameter::InOut; } else if (Tok.is(tok::kw_let)) { diagnose(Tok.getLoc(), diag::let_on_param_is_redundant, Tok.is(tok::kw_let)).fixItRemove(Tok.getLoc()); param.LetVarInOutLoc = consumeToken(); param.SpecifierKind = ParsedParameter::Let; } else if (Tok.is(tok::kw_var)) { diagnose(Tok.getLoc(), diag::var_not_allowed_in_pattern) .fixItRemove(Tok.getLoc()); param.LetVarInOutLoc = consumeToken(); param.SpecifierKind = ParsedParameter::Let; } // Redundant specifiers are fairly common, recognize, reject, and recover // from this gracefully. if (Tok.isAny(tok::kw_inout, tok::kw_let, tok::kw_var)) { diagnose(Tok, diag::parameter_inout_var_let) .fixItRemove(Tok.getLoc()); consumeToken(); } if (startsParameterName(*this, isClosure)) { // identifier-or-none for the first name if (Tok.is(tok::kw__)) { param.FirstNameLoc = consumeToken(); } else { assert(Tok.canBeArgumentLabel() && "startsParameterName() lied"); param.FirstName = Context.getIdentifier(Tok.getText()); param.FirstNameLoc = consumeToken(); } // identifier-or-none? for the second name if (Tok.canBeArgumentLabel()) { if (!Tok.is(tok::kw__)) param.SecondName = Context.getIdentifier(Tok.getText()); param.SecondNameLoc = consumeToken(); } // Operators and closures cannot have API names. if ((paramContext == ParameterContextKind::Operator || paramContext == ParameterContextKind::Closure) && !param.FirstName.empty() && param.SecondNameLoc.isValid()) { diagnose(param.FirstNameLoc, diag::parameter_operator_keyword_argument, isClosure) .fixItRemoveChars(param.FirstNameLoc, param.SecondNameLoc); param.FirstName = param.SecondName; param.FirstNameLoc = param.SecondNameLoc; param.SecondName = Identifier(); param.SecondNameLoc = SourceLoc(); } // (':' type)? if (Tok.is(tok::colon)) { param.ColonLoc = consumeToken(); auto type = parseType(diag::expected_parameter_type); status |= type; param.Type = type.getPtrOrNull(); // Only allow 'inout' before the parameter name. if (auto InOutTy = dyn_cast_or_null(param.Type)) { SourceLoc InOutLoc = InOutTy->getInOutLoc(); SourceLoc NameLoc = param.FirstNameLoc; diagnose(InOutLoc, diag::inout_must_appear_before_param) .fixItRemove(InOutLoc) .fixItInsert(NameLoc, "inout "); param.Type = InOutTy->getBase(); } } } else { SourceLoc typeStartLoc = Tok.getLoc(); auto type = parseType(diag::expected_parameter_type, false); status |= type; param.Type = type.getPtrOrNull(); // Unnamed parameters must be written as "_: Type". if (param.Type) { diagnose(typeStartLoc, diag::parameter_unnamed) .fixItInsert(typeStartLoc, "_: "); } } // '...'? if (Tok.isEllipsis()) { param.EllipsisLoc = consumeToken(); } // ('=' expr)? if (Tok.is(tok::equal)) { param.EqualLoc = Tok.getLoc(); status |= parseDefaultArgument(*this, defaultArgs, defaultArgIndex, param.DefaultArg); if (param.EllipsisLoc.isValid()) { // The range of the complete default argument. SourceRange defaultArgRange; if (param.DefaultArg) { if (auto init = param.DefaultArg->getExpr()) { defaultArgRange = SourceRange(param.EllipsisLoc, init->getEndLoc()); } } diagnose(param.EqualLoc, diag::parameter_vararg_default) .highlight(param.EllipsisLoc) .fixItRemove(defaultArgRange); } } // If we haven't made progress, don't add the param. if (Tok.getLoc() == StartLoc) return status; params.push_back(param); return status; }); } /// Map parsed parameters to a ParameterList. static ParameterList * mapParsedParameters(Parser &parser, SourceLoc leftParenLoc, MutableArrayRef params, SourceLoc rightParenLoc, bool isFirstParameterClause, SmallVectorImpl *argNames, Parser::ParameterContextKind paramContext) { auto &ctx = parser.Context; // Local function to create a pattern for a single parameter. auto createParam = [&](SourceLoc &letVarInOutLoc, Parser::ParsedParameter::SpecifierKindTy &specifierKind, Identifier argName, SourceLoc argNameLoc, Identifier paramName, SourceLoc paramNameLoc, TypeRepr *type, const DeclAttributes &Attrs) -> ParamDecl * { bool isLet = specifierKind == Parser::ParsedParameter::Let; auto param = new (ctx) ParamDecl(isLet, argNameLoc, argName, paramNameLoc, paramName, Type(), parser.CurDeclContext); param->getAttrs() = Attrs; if (argNameLoc.isInvalid() && paramNameLoc.isInvalid()) param->setImplicit(); // If a type was provided, create the typed pattern. if (type) { // If 'inout' was specified, turn the type into an in-out type. if (specifierKind == Parser::ParsedParameter::InOut) type = new (ctx) InOutTypeRepr(type, letVarInOutLoc); param->getTypeLoc() = TypeLoc(type); } else if (specifierKind == Parser::ParsedParameter::InOut) { parser.diagnose(letVarInOutLoc, diag::inout_must_have_type); letVarInOutLoc = SourceLoc(); specifierKind = Parser::ParsedParameter::Let; } return param; }; // Collect the elements of the tuple patterns for argument and body // parameters. SmallVector elements; SourceLoc ellipsisLoc; bool isFirstParameter = true; for (auto ¶m : params) { // Whether the provided name is API by default depends on the parameter // context. bool isKeywordArgumentByDefault; switch (paramContext) { case Parser::ParameterContextKind::Closure: case Parser::ParameterContextKind::Subscript: case Parser::ParameterContextKind::Operator: isKeywordArgumentByDefault = !isFirstParameterClause; break; case Parser::ParameterContextKind::Initializer: isKeywordArgumentByDefault = true; break; case Parser::ParameterContextKind::Function: isKeywordArgumentByDefault = !isFirstParameterClause || !isFirstParameter; break; case Parser::ParameterContextKind::Curried: isKeywordArgumentByDefault = true; break; } // Create the pattern. ParamDecl *result = nullptr; Identifier argName; Identifier paramName; if (param.SecondNameLoc.isValid()) { argName = param.FirstName; paramName = param.SecondName; // Both names were provided, so pass them in directly. result = createParam(param.LetVarInOutLoc, param.SpecifierKind, argName, param.FirstNameLoc, paramName, param.SecondNameLoc, param.Type, param.Attrs); // If the first name is empty and this parameter would not have been // an API name by default, complain. if (param.FirstName.empty() && !isKeywordArgumentByDefault) { parser.diagnose(param.FirstNameLoc, diag::parameter_extraneous_empty_name, param.SecondName) .fixItRemoveChars(param.FirstNameLoc, param.SecondNameLoc); param.FirstNameLoc = SourceLoc(); } // If the first and second names are equivalent and non-empty, and we // would have an argument label by default, complain. if (isKeywordArgumentByDefault && param.FirstName == param.SecondName && !param.FirstName.empty()) { parser.diagnose(param.FirstNameLoc, diag::parameter_extraneous_double_up, param.FirstName) .fixItRemoveChars(param.FirstNameLoc, param.SecondNameLoc); } } else { if (isKeywordArgumentByDefault) argName = param.FirstName; paramName = param.FirstName; result = createParam(param.LetVarInOutLoc, param.SpecifierKind, argName, SourceLoc(), param.FirstName, param.FirstNameLoc, param.Type, param.Attrs); } // If this parameter had an ellipsis, check whether it's the last parameter. if (param.EllipsisLoc.isValid()) { if (ellipsisLoc.isValid()) { parser.diagnose(param.EllipsisLoc, diag::multiple_parameter_ellipsis) .highlight(ellipsisLoc) .fixItRemove(param.EllipsisLoc); param.EllipsisLoc = SourceLoc(); } else if (!result->getTypeLoc().getTypeRepr()) { parser.diagnose(param.EllipsisLoc, diag::untyped_pattern_ellipsis) .highlight(result->getSourceRange()); param.EllipsisLoc = SourceLoc(); } else { ellipsisLoc = param.EllipsisLoc; result->setVariadic(); } } if (param.DefaultArg) { if (!isFirstParameterClause) { // Default arguments are only permitted on the first parameter clause. parser.diagnose(param.EqualLoc, diag::non_func_decl_pattern_init) .fixItRemove(SourceRange(param.EqualLoc, param.DefaultArg->getExpr()->getEndLoc())); } else { result->setDefaultArgumentKind(getDefaultArgKind(param.DefaultArg)); result->setDefaultValue(param.DefaultArg); } } elements.push_back(result); if (argNames) argNames->push_back(argName); isFirstParameter = false; } return ParameterList::create(ctx, leftParenLoc, elements, rightParenLoc); } /// Parse a single parameter-clause. ParserResult Parser::parseSingleParameterClause( ParameterContextKind paramContext, SmallVectorImpl *namePieces) { ParserStatus status; SmallVector params; SourceLoc leftParenLoc, rightParenLoc; // Parse the parameter clause. status |= parseParameterClause(leftParenLoc, params, rightParenLoc, /*defaultArgs=*/nullptr, paramContext); // Turn the parameter clause into argument and body patterns. auto paramList = mapParsedParameters(*this, leftParenLoc, params, rightParenLoc, true, namePieces, paramContext); return makeParserResult(status, paramList); } /// Parse function arguments. /// func-arguments: /// curried-arguments | selector-arguments /// curried-arguments: /// parameter-clause+ /// selector-arguments: /// '(' selector-element ')' (identifier '(' selector-element ')')+ /// selector-element: /// identifier '(' pattern-atom (':' type)? ('=' expr)? ')' /// ParserStatus Parser::parseFunctionArguments(SmallVectorImpl &NamePieces, SmallVectorImpl &BodyParams, ParameterContextKind paramContext, DefaultArgumentInfo &DefaultArgs) { // Parse parameter-clauses. ParserStatus status; bool isFirstParameterClause = true; unsigned FirstBodyPatternIndex = BodyParams.size(); while (Tok.is(tok::l_paren)) { SmallVector params; SourceLoc leftParenLoc, rightParenLoc; // Parse the parameter clause. status |= parseParameterClause(leftParenLoc, params, rightParenLoc, &DefaultArgs, paramContext); // Turn the parameter clause into argument and body patterns. auto pattern = mapParsedParameters(*this, leftParenLoc, params, rightParenLoc, isFirstParameterClause, isFirstParameterClause ? &NamePieces : nullptr, paramContext); BodyParams.push_back(pattern); isFirstParameterClause = false; paramContext = ParameterContextKind::Curried; } // If the decl uses currying syntax, warn that that syntax is going away. if (BodyParams.size() - FirstBodyPatternIndex > 1) { SourceRange allPatternsRange( BodyParams[FirstBodyPatternIndex]->getStartLoc(), BodyParams.back()->getEndLoc()); auto diag = diagnose(allPatternsRange.Start, diag::parameter_curry_syntax_removed); diag.highlight(allPatternsRange); bool seenArg = false; for (unsigned i = FirstBodyPatternIndex; i < BodyParams.size() - 1; i++) { // Replace ")(" with ", ", so "(x: Int)(y: Int)" becomes // "(x: Int, y: Int)". But just delete them if they're not actually // separating any arguments, e.g. in "()(y: Int)". StringRef replacement(", "); auto *leftParamList = BodyParams[i]; auto *rightParamList = BodyParams[i + 1]; if (leftParamList->size() != 0) seenArg = true; if (!seenArg || rightParamList->size() == 0) replacement = ""; diag.fixItReplace(SourceRange(leftParamList->getEndLoc(), rightParamList->getStartLoc()), replacement); } } return status; } /// Parse a function definition signature. /// func-signature: /// func-arguments func-throws? func-signature-result? /// func-signature-result: /// '->' type /// /// Note that this leaves retType as null if unspecified. ParserStatus Parser::parseFunctionSignature(Identifier SimpleName, DeclName &FullName, SmallVectorImpl &bodyParams, DefaultArgumentInfo &defaultArgs, SourceLoc &throwsLoc, bool &rethrows, TypeRepr *&retType) { SmallVector NamePieces; NamePieces.push_back(SimpleName); FullName = SimpleName; ParserStatus Status; // We force first type of a func declaration to be a tuple for consistency. if (Tok.is(tok::l_paren)) { ParameterContextKind paramContext; if (SimpleName.isOperator()) paramContext = ParameterContextKind::Operator; else paramContext = ParameterContextKind::Function; Status = parseFunctionArguments(NamePieces, bodyParams, paramContext, defaultArgs); FullName = DeclName(Context, SimpleName, llvm::makeArrayRef(NamePieces.begin() + 1, NamePieces.end())); if (bodyParams.empty()) { // If we didn't get anything, add a () pattern to avoid breaking // invariants. assert(Status.hasCodeCompletion() || Status.isError()); bodyParams.push_back(ParameterList::createEmpty(Context)); } } else { diagnose(Tok, diag::func_decl_without_paren); Status = makeParserError(); // Recover by creating a '() -> ?' signature. bodyParams.push_back(ParameterList::createEmpty(Context, PreviousLoc, PreviousLoc)); FullName = DeclName(Context, SimpleName, bodyParams.back()); } // Check for the 'throws' keyword. rethrows = false; if (Tok.is(tok::kw_throws)) { throwsLoc = consumeToken(); } else if (Tok.is(tok::kw_rethrows)) { throwsLoc = consumeToken(); rethrows = true; } else if (Tok.is(tok::kw_throw)) { throwsLoc = consumeToken(); diagnose(throwsLoc, diag::throw_in_function_type) .fixItReplace(throwsLoc, "throws"); } SourceLoc arrowLoc; // If there's a trailing arrow, parse the rest as the result type. if (Tok.isAny(tok::arrow, tok::colon)) { if (!consumeIf(tok::arrow, arrowLoc)) { // FixIt ':' to '->'. diagnose(Tok, diag::func_decl_expected_arrow) .fixItReplace(SourceRange(Tok.getLoc()), "->"); arrowLoc = consumeToken(tok::colon); } ParserResult ResultType = parseType(diag::expected_type_function_result); if (ResultType.hasCodeCompletion()) return ResultType; retType = ResultType.getPtrOrNull(); if (!retType) { Status.setIsParseError(); return Status; } } else { // Otherwise, we leave retType null. retType = nullptr; } // Check for 'throws' and 'rethrows' after the type and correct it. if (!throwsLoc.isValid()) { if (Tok.is(tok::kw_throws)) { throwsLoc = consumeToken(); } else if (Tok.is(tok::kw_rethrows)) { throwsLoc = consumeToken(); rethrows = true; } if (throwsLoc.isValid()) { assert(arrowLoc.isValid()); assert(retType); auto diag = rethrows ? diag::rethrows_after_function_result : diag::throws_after_function_result; SourceLoc typeEndLoc = Lexer::getLocForEndOfToken(SourceMgr, retType->getEndLoc()); SourceLoc throwsEndLoc = Lexer::getLocForEndOfToken(SourceMgr, throwsLoc); diagnose(Tok, diag) .fixItInsert(arrowLoc, rethrows ? "rethrows " : "throws ") .fixItRemoveChars(typeEndLoc, throwsEndLoc); } } return Status; } ParserStatus Parser::parseConstructorArguments(DeclName &FullName, ParameterList *&BodyParams, DefaultArgumentInfo &DefaultArgs) { // If we don't have the leading '(', complain. if (!Tok.is(tok::l_paren)) { // Complain that we expected '('. { auto diag = diagnose(Tok, diag::expected_lparen_initializer); if (Tok.is(tok::l_brace)) diag.fixItInsert(Tok.getLoc(), "() "); } // Create an empty parameter list to recover. BodyParams = ParameterList::createEmpty(Context, PreviousLoc, PreviousLoc); FullName = DeclName(Context, Context.Id_init, BodyParams); return makeParserError(); } // Parse the parameter-clause. SmallVector params; SourceLoc leftParenLoc, rightParenLoc; // Parse the parameter clause. ParserStatus status = parseParameterClause(leftParenLoc, params, rightParenLoc, &DefaultArgs, ParameterContextKind::Initializer); // Turn the parameter clause into argument and body patterns. llvm::SmallVector namePieces; BodyParams = mapParsedParameters(*this, leftParenLoc, params, rightParenLoc, /*isFirstParameterClause=*/true, &namePieces, ParameterContextKind::Initializer); FullName = DeclName(Context, Context.Id_init, namePieces); return status; } /// Parse a pattern with an optional type annotation. /// /// typed-pattern ::= pattern (':' type)? /// ParserResult Parser::parseTypedPattern() { auto result = parsePattern(); // Now parse an optional type annotation. if (consumeIf(tok::colon)) { if (result.isNull()) // Recover by creating AnyPattern. result = makeParserErrorResult(new (Context) AnyPattern(PreviousLoc)); ParserResult Ty = parseType(); if (Ty.hasCodeCompletion()) return makeParserCodeCompletionResult(); if (Ty.isNull()) Ty = makeParserResult(new (Context) ErrorTypeRepr(PreviousLoc)); result = makeParserResult(result, new (Context) TypedPattern(result.get(), Ty.get())); } return result; } /// Parse a pattern. /// pattern ::= identifier /// pattern ::= '_' /// pattern ::= pattern-tuple /// pattern ::= 'var' pattern /// pattern ::= 'let' pattern /// ParserResult Parser::parsePattern() { switch (Tok.getKind()) { case tok::l_paren: return parsePatternTuple(); case tok::kw__: return makeParserResult(new (Context) AnyPattern(consumeToken(tok::kw__))); case tok::identifier: { Identifier name; SourceLoc loc = consumeIdentifier(&name); bool isLet = InVarOrLetPattern != IVOLP_InVar; return makeParserResult(createBindingFromPattern(loc, name, isLet)); } case tok::code_complete: if (!CurDeclContext->isNominalTypeOrNominalTypeExtensionContext()) { // This cannot be an overridden property, so just eat the token. We cannot // code complete anything here -- we expect an identifier. consumeToken(tok::code_complete); } return nullptr; case tok::kw_var: case tok::kw_let: { bool isLetKeyword = Tok.is(tok::kw_let); bool alwaysImmutable = InVarOrLetPattern == IVOLP_AlwaysImmutable; bool implicitlyImmutable = InVarOrLetPattern == IVOLP_ImplicitlyImmutable; SourceLoc varLoc = consumeToken(); // 'var' and 'let' patterns shouldn't nest. if (InVarOrLetPattern == IVOLP_InLet || InVarOrLetPattern == IVOLP_InVar) diagnose(varLoc, diag::var_pattern_in_var, unsigned(isLetKeyword)); if (isLetKeyword) { // 'let' isn't valid inside an implicitly immutable or always // immutable context. if (alwaysImmutable || implicitlyImmutable) diagnose(varLoc, diag::let_pattern_in_immutable_context) .fixItRemove(varLoc); } else { // In an always immutable context, `var` is not allowed. if (alwaysImmutable) diagnose(varLoc, diag::var_not_allowed_in_pattern) .fixItRemove(varLoc); } // In our recursive parse, remember that we're in a var/let pattern. llvm::SaveAndRestore T(InVarOrLetPattern, isLetKeyword ? IVOLP_InLet : IVOLP_InVar); ParserResult subPattern = parsePattern(); if (subPattern.hasCodeCompletion()) return makeParserCodeCompletionResult(); if (subPattern.isNull()) return nullptr; return makeParserResult(new (Context) VarPattern(varLoc, isLetKeyword || alwaysImmutable, subPattern.get())); } default: if (Tok.isKeyword() && (peekToken().is(tok::colon) || peekToken().is(tok::equal))) { diagnose(Tok, diag::expected_pattern_is_keyword, Tok.getText()); SourceLoc Loc = Tok.getLoc(); consumeToken(); return makeParserErrorResult(new (Context) AnyPattern(Loc)); } diagnose(Tok, diag::expected_pattern); return nullptr; } } Pattern *Parser::createBindingFromPattern(SourceLoc loc, Identifier name, bool isLet) { VarDecl *var; if (ArgumentIsParameter) { var = new (Context) ParamDecl(isLet, loc, name, loc, name, Type(), CurDeclContext); } else { var = new (Context) VarDecl(/*static*/ false, /*IsLet*/ isLet, loc, name, Type(), CurDeclContext); } return new (Context) NamedPattern(var); } /// Parse an element of a tuple pattern. /// /// pattern-tuple-element: /// (identifier ':')? pattern std::pair> Parser::parsePatternTupleElement() { // If this element has a label, parse it. Identifier Label; SourceLoc LabelLoc; // If the tuple element has a label, parse it. if (Tok.is(tok::identifier) && peekToken().is(tok::colon)) { LabelLoc = consumeIdentifier(&Label); consumeToken(tok::colon); } // Parse the pattern. ParserResult pattern = parsePattern(); if (pattern.hasCodeCompletion()) return std::make_pair(makeParserCodeCompletionStatus(), None); if (pattern.isNull()) return std::make_pair(makeParserError(), None); auto Elt = TuplePatternElt(Label, LabelLoc, pattern.get()); return std::make_pair(makeParserSuccess(), Elt); } /// Parse a tuple pattern. /// /// pattern-tuple: /// '(' pattern-tuple-body? ')' /// pattern-tuple-body: /// pattern-tuple-element (',' pattern-tuple-body)* ParserResult Parser::parsePatternTuple() { StructureMarkerRAII ParsingPatternTuple(*this, Tok); SourceLoc LPLoc = consumeToken(tok::l_paren); SourceLoc RPLoc; // Parse all the elements. SmallVector elts; ParserStatus ListStatus = parseList(tok::r_paren, LPLoc, RPLoc, tok::comma, /*OptionalSep=*/false, /*AllowSepAfterLast=*/false, diag::expected_rparen_tuple_pattern_list, [&] () -> ParserStatus { // Parse the pattern tuple element. ParserStatus EltStatus; Optional elt; std::tie(EltStatus, elt) = parsePatternTupleElement(); if (EltStatus.hasCodeCompletion()) return makeParserCodeCompletionStatus(); if (!elt) return makeParserError(); // Add this element to the list. elts.push_back(*elt); return makeParserSuccess(); }); return makeParserResult( ListStatus, TuplePattern::createSimple(Context, LPLoc, elts, RPLoc)); } /// Parse an optional type annotation on a pattern. /// /// pattern-type-annotation ::= (':' type)? /// ParserResult Parser:: parseOptionalPatternTypeAnnotation(ParserResult result, bool isOptional) { // Parse an optional type annotation. if (!consumeIf(tok::colon)) return result; Pattern *P; if (result.isNull()) // Recover by creating AnyPattern. P = new (Context) AnyPattern(Tok.getLoc()); else P = result.get(); ParserResult Ty = parseType(); if (Ty.hasCodeCompletion()) return makeParserCodeCompletionResult(); TypeRepr *repr = Ty.getPtrOrNull(); if (!repr) repr = new (Context) ErrorTypeRepr(PreviousLoc); // In an if-let, the actual type of the expression is Optional of whatever // was written. if (isOptional) repr = new (Context) OptionalTypeRepr(repr, Tok.getLoc()); return makeParserResult(new (Context) TypedPattern(P, repr)); } /// matching-pattern ::= 'is' type /// matching-pattern ::= matching-pattern-var /// matching-pattern ::= expr /// ParserResult Parser::parseMatchingPattern(bool isExprBasic) { // TODO: Since we expect a pattern in this position, we should optimistically // parse pattern nodes for productions shared by pattern and expression // grammar. For short-term ease of initial implementation, we always go // through the expr parser for ambiguous productions. // Parse productions that can only be patterns. if (Tok.isAny(tok::kw_var, tok::kw_let)) { assert(Tok.isAny(tok::kw_let, tok::kw_var) && "expects var or let"); bool isLet = Tok.is(tok::kw_let); SourceLoc varLoc = consumeToken(); return parseMatchingPatternAsLetOrVar(isLet, varLoc, isExprBasic); } // matching-pattern ::= 'is' type if (Tok.is(tok::kw_is)) { SourceLoc isLoc = consumeToken(tok::kw_is); ParserResult castType = parseType(); if (castType.isNull() || castType.hasCodeCompletion()) return nullptr; return makeParserResult(new (Context) IsPattern(isLoc, castType.get(), nullptr)); } // matching-pattern ::= expr // Fall back to expression parsing for ambiguous forms. Name lookup will // disambiguate. ParserResult subExpr = parseExprImpl(diag::expected_pattern, isExprBasic); if (subExpr.hasCodeCompletion()) return makeParserCodeCompletionStatus(); if (subExpr.isNull()) return nullptr; // The most common case here is to parse something that was a lexically // obvious pattern, which will come back wrapped in an immediate // UnresolvedPatternExpr. Transform this now to simplify later code. if (auto *UPE = dyn_cast(subExpr.get())) return makeParserResult(UPE->getSubPattern()); return makeParserResult(new (Context) ExprPattern(subExpr.get())); } ParserResult Parser::parseMatchingPatternAsLetOrVar(bool isLet, SourceLoc varLoc, bool isExprBasic) { // 'var' and 'let' patterns shouldn't nest. if (InVarOrLetPattern == IVOLP_InLet || InVarOrLetPattern == IVOLP_InVar) diagnose(varLoc, diag::var_pattern_in_var, unsigned(isLet)); // 'let' isn't valid inside an implicitly immutable context, but var is. if (isLet && InVarOrLetPattern == IVOLP_ImplicitlyImmutable) diagnose(varLoc, diag::let_pattern_in_immutable_context); if (!isLet && InVarOrLetPattern == IVOLP_AlwaysImmutable) diagnose(varLoc, diag::var_not_allowed_in_pattern) .fixItReplace(varLoc, "let"); // In our recursive parse, remember that we're in a var/let pattern. llvm::SaveAndRestore T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar); ParserResult subPattern = parseMatchingPattern(isExprBasic); if (subPattern.isNull()) return nullptr; auto *varP = new (Context) VarPattern(varLoc, isLet, subPattern.get()); return makeParserResult(varP); } bool Parser::isOnlyStartOfMatchingPattern() { return Tok.isAny(tok::kw_var, tok::kw_let, tok::kw_is); } static bool canParsePatternTuple(Parser &P); /// pattern ::= identifier /// pattern ::= '_' /// pattern ::= pattern-tuple /// pattern ::= 'var' pattern /// pattern ::= 'let' pattern static bool canParsePattern(Parser &P) { switch (P.Tok.getKind()) { case tok::identifier: case tok::kw__: P.consumeToken(); return true; case tok::kw_let: case tok::kw_var: P.consumeToken(); return canParsePattern(P); case tok::l_paren: return canParsePatternTuple(P); default: return false; } } static bool canParsePatternTuple(Parser &P) { if (!P.consumeIf(tok::l_paren)) return false; if (P.Tok.isNot(tok::r_paren)) { do { if (!canParsePattern(P)) return false; } while (P.consumeIf(tok::comma)); } return P.consumeIf(tok::r_paren); } /// typed-pattern ::= pattern (':' type)? /// bool Parser::canParseTypedPattern() { if (!canParsePattern(*this)) return false; if (consumeIf(tok::colon)) return canParseType(); return true; }