//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #if _runtime(_ObjC) /// A Swift Array or Dictionary of types conforming to /// `_ObjectiveCBridgeable` can be passed to Objective-C as an NSArray or /// NSDictionary, respectively. The elements of the resulting NSArray /// or NSDictionary will be the result of calling `_bridgeToObjectiveC` /// on each elmeent of the source container. public protocol _ObjectiveCBridgeable { typealias _ObjectiveCType: AnyObject /// Return true iff instances of `Self` can be converted to /// Objective-C. Even if this method returns `true`, A given /// instance of `Self._ObjectiveCType` may, or may not, convert /// successfully to `Self`; for example, an `NSArray` will only /// convert successfully to `[String]` if it contains only /// `NSString`\ s. static func _isBridgedToObjectiveC() -> Bool // _getObjectiveCType is a workaround: right now protocol witness // tables don't include associated types, so we can not find // '_ObjectiveCType.self' from them. /// Must return `_ObjectiveCType.self`. static func _getObjectiveCType() -> Any.Type /// Convert `self` to Objective-C func _bridgeToObjectiveC() -> _ObjectiveCType /// Bridge from an Objective-C object of the bridged class type to a /// value of the Self type. /// /// This bridging operation is used for forced downcasting (e.g., /// via as), and may defer complete checking until later. For /// example, when bridging from NSArray to Array, we can defer /// the checking for the individual elements of the array. /// /// :param: result The location where the result is written. The optional /// will always contain a value. static func _forceBridgeFromObjectiveC( source: _ObjectiveCType, inout result: Self? ) /// Try to bridge from an Objective-C object of the bridged class /// type to a value of the Self type. /// /// This conditional bridging operation is used for conditional /// downcasting (e.g., via as?) and therefore must perform a /// complete conversion to the value type; it cannot defer checking /// to a later time. /// /// :param: result The location where the result is written. /// /// :returns: true if bridging succeeded, false otherwise. This redundant /// information is provided for the convenience of the runtime's dynamic_cast /// implementation, so that it need not look into the optional representation /// to determine success. static func _conditionallyBridgeFromObjectiveC( source: _ObjectiveCType, inout result: Self? ) -> Bool } //===--- Bridging facilities written in Objective-C -----------------------===// // Functions that must discover and possibly use an arbitrary type's // conformance to a given protocol. See ../runtime/Metadata.cpp for // implementations. //===----------------------------------------------------------------------===// /// Attempt to convert `x` to its Objective-C representation. /// /// - If `T` is a class type, it is alaways bridged verbatim, the function /// returns `x`; /// /// - otherwise, `T` conforms to `_ObjectiveCBridgeable`: /// + if `T._isBridgedToObjectiveC()` returns `false`, then the /// result is empty; /// + otherwise, returns the result of `x._bridgeToObjectiveC()`; /// /// - otherwise, the result is empty. public func _bridgeToObjectiveC(x: T) -> AnyObject? { if _fastPath(_isClassOrObjCExistential(T.self)) { return unsafeBitCast(x, AnyObject.self) } return _bridgeNonVerbatimToObjectiveC(x) } public func _bridgeToObjectiveCUnconditional(x: T) -> AnyObject { let optResult: AnyObject? = _bridgeToObjectiveC(x) _precondition(optResult != nil, "value failed to bridge from Swift type to a Objective-C type") return optResult! } /// Same as `_bridgeToObjectiveCUnconditional`, but autoreleases the /// return value if `T` is bridged non-verbatim. func _bridgeToObjectiveCUnconditionalAutorelease(x: T) -> AnyObject { if _fastPath(_isClassOrObjCExistential(T.self)) { return unsafeBitCast(x, AnyObject.self) } if let bridged: AnyObject = _bridgeNonVerbatimToObjectiveC(x) { _autorelease(bridged) return bridged } else { _preconditionFailure( "Dictionary key failed to bridge from Swift type to a Objective-C type") } } @asmname("swift_bridgeNonVerbatimToObjectiveC") func _bridgeNonVerbatimToObjectiveC(x: T) -> AnyObject? /// Convert `x` from its Objective-C representation to its Swift /// representation. /// /// - If `T` is a class type: /// - if the dynamic type of `x` is `T` or a subclass of it, it is bridged /// verbatim, the function returns `x`; /// - otherwise, if `T` conforms to `_ObjectiveCBridgeable`: /// + if the dynamic type of `x` is not `T._getObjectiveCType()` /// or a subclass of it, trap /// + otherwise, returns the result of `T._forceBridgeFromObjectiveC(x)`; /// - otherwise, trap public func _forceBridgeFromObjectiveC(x: AnyObject, _: T.Type) -> T { if _fastPath(_isClassOrObjCExistential(T.self)) { return x as! T } var result: T? _bridgeNonVerbatimFromObjectiveC(x, T.self, &result) return result! } /// Attempt to convert `x` from its Objective-C representation to its Swift /// representation. /// /// - If `T` is a class type: /// - if the dynamic type of `x` is `T` or a subclass of it, it is bridged /// verbatim, the function returns `x`; /// - otherwise, if `T` conforms to `_ObjectiveCBridgeable`: /// + if `T._isBridgedToObjectiveC()` returns `false`, then the result is /// empty; /// + otherwise, if the dynamic type of `x` is not `T._getObjectiveCType()` /// or a subclass of it, the result is empty; /// + otherwise, returns the result of /// `T._conditionallyBridgeFromObjectiveC(x)`; /// - otherwise, the result is empty. public func _conditionallyBridgeFromObjectiveC( x: AnyObject, _: T.Type ) -> T? { if _fastPath(_isClassOrObjCExistential(T.self)) { return x as? T } var result: T? _bridgeNonVerbatimFromObjectiveCConditional(x, T.self, &result) return result } @asmname("swift_bridgeNonVerbatimFromObjectiveC") func _bridgeNonVerbatimFromObjectiveC( x: AnyObject, nativeType: T.Type, inout result: T? ) /// Runtime optional to conditionall perform a bridge from an object to a value /// type. /// /// :param: result Will be set to the resulting value if bridging succeeds, and /// unchanged otherwise. /// /// :returns: true to indicate success, false to indicate failure @asmname("swift_bridgeNonVerbatimFromObjectiveCConditional") func _bridgeNonVerbatimFromObjectiveCConditional( x: AnyObject, nativeType: T.Type, inout result: T? ) -> Bool /// Determines if values of a given type can be converted to an Objective-C /// representation. /// /// - If `T` is a class type, returns `true`; /// - otherwise, if `T` conforms to `_ObjectiveCBridgeable`, returns /// `T._isBridgedToObjectiveC()`; public func _isBridgedToObjectiveC(_: T.Type) -> Bool { if _fastPath(_isClassOrObjCExistential(T.self)) { return true } return _isBridgedNonVerbatimToObjectiveC(T.self) } @asmname("swift_isBridgedNonVerbatimToObjectiveC") func _isBridgedNonVerbatimToObjectiveC(_: T.Type) -> Bool /// A type that's bridged "verbatim" does not conform to /// `_ObjectiveCBridgeable`, and can have its bits reinterpreted as an /// `AnyObject`. When this function returns true, the storage of an /// `Array` can be `unsafeBitCast` as an array of `AnyObject`. public func _isBridgedVerbatimToObjectiveC(_: T.Type) -> Bool { return _isClassOrObjCExistential(T.self) } /// Retrieve the Objective-C type to which the given type is bridged. public func _getBridgedObjectiveCType(_: T.Type) -> Any.Type? { if _fastPath(_isClassOrObjCExistential(T.self)) { return T.self } return _getBridgedNonVerbatimObjectiveCType(T.self) } @asmname("swift_getBridgedNonVerbatimObjectiveCType") func _getBridgedNonVerbatimObjectiveCType(_: T.Type) -> Any.Type? // -- Pointer argument bridging @transparent internal var _nilNativeObject: AnyObject? { return nil } /// A mutable pointer-to-ObjC-pointer argument. /// /// This type has implicit conversions to allow passing any of the following /// to a C or ObjC API: /// /// - 'nil', which gets passed as a null pointer, /// - an inout argument of the referenced type, which gets passed as a pointer /// to a writeback temporary with autoreleasing ownership semantics, /// - an UnsafeMutablePointer, which is passed as-is. /// /// Passing pointers to mutable arrays of ObjC class pointers is not /// directly supported. Unlike UnsafeMutablePointer, /// AutoreleasingUnsafeMutablePointer must reference storage that does /// not own a reference count to the referenced /// value. UnsafeMutablePointer's operations, by contrast, assume that /// the referenced storage owns values loaded from or stored to it. /// /// This type does not carry an owner pointer unlike the other C*Pointer types /// because it only needs to reference the results of inout conversions, which /// already have writeback-scoped lifetime. public struct AutoreleasingUnsafeMutablePointer : Equatable, NilLiteralConvertible, _PointerType { public let _rawValue: Builtin.RawPointer @transparent public // COMPILER_INTRINSIC init(_ _rawValue: Builtin.RawPointer) { self._rawValue = _rawValue } @transparent var _isNull : Bool { return UnsafeMutablePointer(self)._isNull } /// Access the underlying raw memory, getting and /// setting values. public var memory : T { /// Retrieve the value the pointer points to. @transparent get { _debugPrecondition(!_isNull) // We can do a strong load normally. return UnsafeMutablePointer(self).memory } /// Set the value the pointer points to, copying over the previous value. /// /// AutoreleasingUnsafeMutablePointers are assumed to reference a /// value with __autoreleasing ownership semantics, like 'NSFoo**' /// in ARC. This autoreleases the argument before trivially /// storing it to the referenced memory. @transparent nonmutating set { _debugPrecondition(!_isNull) // Autorelease the object reference. typealias OptionalAnyObject = AnyObject? Builtin.retain(unsafeBitCast(newValue, OptionalAnyObject.self)) Builtin.autorelease(unsafeBitCast(newValue, OptionalAnyObject.self)) // Trivially assign it as a COpaquePointer; the pointer references an // autoreleasing slot, so retains/releases of the original value are // unneeded. let p = UnsafeMutablePointer( UnsafeMutablePointer(self)) p.memory = unsafeBitCast(newValue, COpaquePointer.self) } } /// Access the `i`\ th element of the raw array pointed to by /// `self`. /// /// Requires: `self != nil` public subscript(i: Int) -> T { @transparent get { _debugPrecondition(!_isNull) // We can do a strong load normally. return (UnsafePointer(self) + i).memory } } /// Create an instance initialized with `nil`. @transparent public init(nilLiteral: ()) { _rawValue = _nilRawPointer } /// Returns `nil` @availability(*, unavailable, message="use 'nil' literal instead") public static func null() -> AutoreleasingUnsafeMutablePointer { _preconditionFailure("unavailable function can not be called") } /// Initialize to a null pointer. @transparent public init() { self._rawValue = _nilRawPointer } /// Explicit construction from an UnsafeMutablePointer. /// /// This is inherently unsafe; UnsafeMutablePointer assumes the /// referenced memory has +1 strong ownership semantics, whereas /// AutoreleasingUnsafeMutablePointer implies +0 semantics. @transparent public init(_ ptr: UnsafeMutablePointer) { self._rawValue = ptr._rawValue } /// Explicit construction from a UnsafePointer. /// /// This is inherently unsafe because UnsafePointers do not imply /// mutability. @transparent init(_ ptr: UnsafePointer) { self._rawValue = ptr._rawValue } } extension AutoreleasingUnsafeMutablePointer : DebugPrintable { /// A textual representation of `self`, suitable for debugging. public var debugDescription: String { return _rawPointerToString(_rawValue) } } @transparent public func == ( lhs: AutoreleasingUnsafeMutablePointer, rhs: AutoreleasingUnsafeMutablePointer ) -> Bool { return Bool(Builtin.cmp_eq_RawPointer(lhs._rawValue, rhs._rawValue)) } internal struct _CocoaFastEnumerationStackBuf { // Clang uses 16 pointers. So do we. var item0: Builtin.RawPointer var item1: Builtin.RawPointer var item2: Builtin.RawPointer var item3: Builtin.RawPointer var item4: Builtin.RawPointer var item5: Builtin.RawPointer var item6: Builtin.RawPointer var item7: Builtin.RawPointer var item8: Builtin.RawPointer var item9: Builtin.RawPointer var item10: Builtin.RawPointer var item11: Builtin.RawPointer var item12: Builtin.RawPointer var item13: Builtin.RawPointer var item14: Builtin.RawPointer var item15: Builtin.RawPointer @transparent var length: Int { return 16 } init() { item0 = _nilRawPointer item1 = item0 item2 = item0 item3 = item0 item4 = item0 item5 = item0 item6 = item0 item7 = item0 item8 = item0 item9 = item0 item10 = item0 item11 = item0 item12 = item0 item13 = item0 item14 = item0 item15 = item0 _sanityCheck(sizeofValue(self) >= sizeof(Builtin.RawPointer.self) * length) } } #endif