//===--- GenBuiltin.cpp - IR Generation for calls to builtin functions ----===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements IR generation for the assorted operations that // are performed by builtin functions. // //===----------------------------------------------------------------------===// #include "GenBuiltin.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/ADT/StringSwitch.h" #include "swift/AST/Types.h" #include "swift/SIL/SILModule.h" #include "Explosion.h" #include "GenCall.h" #include "IRGenFunction.h" #include "IRGenModule.h" #include "LoadableTypeInfo.h" using namespace swift; using namespace irgen; static void emitCastBuiltin(IRGenFunction &IGF, SILType destType, Explosion &result, Explosion &args, llvm::Instruction::CastOps opcode) { llvm::Value *input = args.claimNext(); assert(args.empty() && "wrong operands to cast operation"); llvm::Type *destTy = IGF.IGM.getStorageType(destType); llvm::Value *output = IGF.Builder.CreateCast(opcode, input, destTy); result.add(output); } static void emitCastOrBitCastBuiltin(IRGenFunction &IGF, SILType destType, Explosion &result, Explosion &args, BuiltinValueKind BV) { llvm::Value *input = args.claimNext(); assert(args.empty() && "wrong operands to cast operation"); llvm::Type *destTy = IGF.IGM.getStorageType(destType); llvm::Value *output; switch (BV) { default: llvm_unreachable("Not a cast-or-bitcast operation"); case BuiltinValueKind::TruncOrBitCast: output = IGF.Builder.CreateTruncOrBitCast(input, destTy); break; case BuiltinValueKind::ZExtOrBitCast: output = IGF.Builder.CreateZExtOrBitCast(input, destTy); break; case BuiltinValueKind::SExtOrBitCast: output = IGF.Builder.CreateSExtOrBitCast(input, destTy); break; } result.add(output); } static void emitCompareBuiltin(IRGenFunction &IGF, Explosion &result, Explosion &args, llvm::CmpInst::Predicate pred) { llvm::Value *lhs = args.claimNext(); llvm::Value *rhs = args.claimNext(); llvm::Value *v; if (lhs->getType()->isFPOrFPVectorTy()) v = IGF.Builder.CreateFCmp(pred, lhs, rhs); else v = IGF.Builder.CreateICmp(pred, lhs, rhs); result.add(v); } /// decodeLLVMAtomicOrdering - turn a string like "release" into the LLVM enum. static llvm::AtomicOrdering decodeLLVMAtomicOrdering(StringRef O) { using namespace llvm; return StringSwitch(O) .Case("unordered", Unordered) .Case("monotonic", Monotonic) .Case("acquire", Acquire) .Case("release", Release) .Case("acqrel", AcquireRelease) .Case("seqcst", SequentiallyConsistent); } static void emitTypeTraitBuiltin(IRGenFunction &IGF, Explosion &out, Explosion &args, ArrayRef substitutions, TypeTraitResult (TypeBase::*trait)()) { assert(substitutions.size() == 1 && "type trait should have gotten single type parameter"); args.claimNext(); // Lower away the trait to a tristate 0 = no, 1 = yes, 2 = maybe. unsigned result; switch ((substitutions[0].getReplacement().getPointer()->*trait)()) { case TypeTraitResult::IsNot: result = 0; break; case TypeTraitResult::Is: result = 1; break; case TypeTraitResult::CanBe: result = 2; break; } out.add(llvm::ConstantInt::get(IGF.IGM.Int8Ty, result)); } static std::pair getLoweredTypeAndTypeInfo(IRGenModule &IGM, Type unloweredType) { auto lowered = IGM.getLoweredType(unloweredType); return {lowered, IGM.getTypeInfo(lowered)}; } /// emitBuiltinCall - Emit a call to a builtin function. void irgen::emitBuiltinCall(IRGenFunction &IGF, Identifier FnId, SILType resultType, Explosion &args, Explosion &out, ArrayRef substitutions) { // Decompose the function's name into a builtin name and type list. const BuiltinInfo &Builtin = IGF.getSILModule().getBuiltinInfo(FnId); if (Builtin.ID == BuiltinValueKind::UnsafeGuaranteedEnd) { // Just consume the incoming argument. assert(args.size() == 1 && "Expecting one incoming argument"); args.claimAll(); return; } if (Builtin.ID == BuiltinValueKind::UnsafeGuaranteed) { // Just forward the incoming argument. assert(args.size() == 1 && "Expecting one incoming argument"); out = std::move(args); // This is a token. out.add(llvm::ConstantInt::get(IGF.IGM.Int8Ty, 0)); return; } if (Builtin.ID == BuiltinValueKind::OnFastPath) { // The onFastPath builtin has only an effect on SIL level, so we lower it // to a no-op. return; } // These builtins don't care about their argument: if (Builtin.ID == BuiltinValueKind::Sizeof) { args.claimAll(); auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM, substitutions[0].getReplacement()); out.add(valueTy.second.getSize(IGF, valueTy.first)); return; } if (Builtin.ID == BuiltinValueKind::Strideof) { args.claimAll(); auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM, substitutions[0].getReplacement()); out.add(valueTy.second.getStride(IGF, valueTy.first)); return; } if (Builtin.ID == BuiltinValueKind::Alignof) { args.claimAll(); auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM, substitutions[0].getReplacement()); // The alignof value is one greater than the alignment mask. out.add(IGF.Builder.CreateAdd( valueTy.second.getAlignmentMask(IGF, valueTy.first), IGF.IGM.getSize(Size(1)))); return; } if (Builtin.ID == BuiltinValueKind::StrideofNonZero) { // Note this case must never return 0. // It is implemented as max(strideof, 1) args.claimAll(); auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM, substitutions[0].getReplacement()); // Strideof should never return 0, so return 1 if the type has a 0 stride. llvm::Value *StrideOf = valueTy.second.getStride(IGF, valueTy.first); llvm::IntegerType *IntTy = cast(StrideOf->getType()); auto *Zero = llvm::ConstantInt::get(IntTy, 0); auto *One = llvm::ConstantInt::get(IntTy, 1); llvm::Value *Cmp = IGF.Builder.CreateICmpEQ(StrideOf, Zero); out.add(IGF.Builder.CreateSelect(Cmp, One, StrideOf)); return; } if (Builtin.ID == BuiltinValueKind::IsPOD) { args.claimAll(); auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM, substitutions[0].getReplacement()); out.add(valueTy.second.getIsPOD(IGF, valueTy.first)); return; } // addressof expects an lvalue argument. if (Builtin.ID == BuiltinValueKind::AddressOf) { llvm::Value *address = args.claimNext(); llvm::Value *value = IGF.Builder.CreateBitCast(address, IGF.IGM.Int8PtrTy); out.add(value); return; } // Everything else cares about the (rvalue) argument. // If this is an LLVM IR intrinsic, lower it to an intrinsic call. const IntrinsicInfo &IInfo = IGF.getSILModule().getIntrinsicInfo(FnId); llvm::Intrinsic::ID IID = IInfo.ID; // Calls to the int_instrprof_increment intrinsic are emitted during SILGen. // At that stage, the function name GV used by the profiling pass is hidden. // Fix the intrinsic call here by pointing it to the correct GV. if (IID == llvm::Intrinsic::instrprof_increment) { // Extract the PGO function name. auto *NameGEP = cast(args.claimNext()); auto *NameGV = dyn_cast(NameGEP->stripPointerCasts()); if (NameGV) { auto *NameC = NameGV->getInitializer(); StringRef Name = cast(NameC)->getRawDataValues(); StringRef PGOFuncName = Name.rtrim(StringRef("\0", 1)); // Point the increment call to the right function name variable. std::string PGOFuncNameVar = llvm::getPGOFuncNameVarName( PGOFuncName, llvm::GlobalValue::LinkOnceAnyLinkage); auto *FuncNamePtr = IGF.IGM.Module.getNamedGlobal(PGOFuncNameVar); if (FuncNamePtr) { llvm::SmallVector Indices(2, NameGEP->getOperand(1)); NameGEP = llvm::GetElementPtrInst::CreateInBounds( FuncNamePtr, makeArrayRef(Indices), "", IGF.Builder.GetInsertBlock()); } } // Replace the placeholder value with the new GEP. Explosion replacement; replacement.add(NameGEP); replacement.add(args.claimAll()); args = std::move(replacement); } if (IID != llvm::Intrinsic::not_intrinsic) { SmallVector ArgTys; for (auto T : IInfo.Types) ArgTys.push_back(IGF.IGM.getStorageTypeForLowered(T->getCanonicalType())); auto F = llvm::Intrinsic::getDeclaration(&IGF.IGM.Module, (llvm::Intrinsic::ID)IID, ArgTys); llvm::FunctionType *FT = F->getFunctionType(); SmallVector IRArgs; for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) IRArgs.push_back(args.claimNext()); llvm::Value *TheCall = IGF.Builder.CreateCall(F, IRArgs); if (!TheCall->getType()->isVoidTy()) extractScalarResults(IGF, TheCall->getType(), TheCall, out); return; } // TODO: A linear series of ifs is suboptimal. #define BUILTIN_SIL_OPERATION(id, name, overload) \ if (Builtin.ID == BuiltinValueKind::id) \ llvm_unreachable(name " builtin should be lowered away by SILGen!"); #define BUILTIN_CAST_OPERATION(id, name, attrs) \ if (Builtin.ID == BuiltinValueKind::id) \ return emitCastBuiltin(IGF, resultType, out, args, \ llvm::Instruction::id); #define BUILTIN_CAST_OR_BITCAST_OPERATION(id, name, attrs) \ if (Builtin.ID == BuiltinValueKind::id) \ return emitCastOrBitCastBuiltin(IGF, resultType, out, args, \ BuiltinValueKind::id); #define BUILTIN_BINARY_OPERATION(id, name, attrs, overload) \ if (Builtin.ID == BuiltinValueKind::id) { \ llvm::Value *lhs = args.claimNext(); \ llvm::Value *rhs = args.claimNext(); \ llvm::Value *v = IGF.Builder.Create##id(lhs, rhs); \ return out.add(v); \ } #define BUILTIN_RUNTIME_CALL(id, name, attrs) \ if (Builtin.ID == BuiltinValueKind::id) { \ llvm::CallInst *call = IGF.Builder.CreateCall(IGF.IGM.get##id##Fn(), \ args.claimNext()); \ call->setCallingConv(IGF.IGM.DefaultCC); \ call->setDoesNotThrow(); \ return out.add(call); \ } #define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, uncheckedID, attrs, overload) \ if (Builtin.ID == BuiltinValueKind::id) { \ SmallVector ArgTys; \ auto opType = Builtin.Types[0]->getCanonicalType(); \ ArgTys.push_back(IGF.IGM.getStorageTypeForLowered(opType)); \ auto F = llvm::Intrinsic::getDeclaration(&IGF.IGM.Module, \ getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID), ArgTys); \ SmallVector IRArgs; \ IRArgs.push_back(args.claimNext()); \ IRArgs.push_back(args.claimNext()); \ args.claimNext();\ llvm::Value *TheCall = IGF.Builder.CreateCall(F, IRArgs); \ extractScalarResults(IGF, TheCall->getType(), TheCall, out); \ return; \ } // FIXME: We could generate the code to dynamically report the overflow if the // third argument is true. Now, we just ignore it. #define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \ if (Builtin.ID == BuiltinValueKind::id) \ return emitCompareBuiltin(IGF, out, args, llvm::CmpInst::id); #define BUILTIN_TYPE_TRAIT_OPERATION(id, name) \ if (Builtin.ID == BuiltinValueKind::id) \ return emitTypeTraitBuiltin(IGF, out, args, substitutions, &TypeBase::name); #define BUILTIN(ID, Name, Attrs) // Ignore the rest. #include "swift/AST/Builtins.def" if (Builtin.ID == BuiltinValueKind::FNeg) { llvm::Value *rhs = args.claimNext(); llvm::Value *lhs = llvm::ConstantFP::get(rhs->getType(), "-0.0"); llvm::Value *v = IGF.Builder.CreateFSub(lhs, rhs); return out.add(v); } if (Builtin.ID == BuiltinValueKind::AssumeNonNegative) { llvm::Value *v = args.claimNext(); // Set a value range on the load instruction, which must be the argument of // the builtin. if (isa(v) || isa(v)) { // The load must be post-dominated by the builtin. Otherwise we would get // a wrong assumption in the else-branch in this example: // x = f() // if condition { // y = assumeNonNegative(x) // } else { // // x might be negative here! // } // For simplicity we just enforce that both the load and the builtin must // be in the same block. llvm::Instruction *I = static_cast(v); if (I->getParent() == IGF.Builder.GetInsertBlock()) { llvm::LLVMContext &ctx = IGF.IGM.Module.getContext(); llvm::IntegerType *intType = dyn_cast(v->getType()); llvm::Metadata *rangeElems[] = { llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(intType, 0)), llvm::ConstantAsMetadata::get( llvm::ConstantInt::get(intType, APInt::getSignedMaxValue(intType->getBitWidth()))) }; llvm::MDNode *range = llvm::MDNode::get(ctx, rangeElems); I->setMetadata(llvm::LLVMContext::MD_range, range); } } // Don't generate any code for the builtin. return out.add(v); } if (Builtin.ID == BuiltinValueKind::AllocRaw) { auto size = args.claimNext(); auto align = args.claimNext(); // Translate the alignment to a mask. auto alignMask = IGF.Builder.CreateSub(align, IGF.IGM.getSize(Size(1))); auto alloc = IGF.emitAllocRawCall(size, alignMask, "builtin-allocRaw"); out.add(alloc); return; } if (Builtin.ID == BuiltinValueKind::DeallocRaw) { auto pointer = args.claimNext(); auto size = args.claimNext(); auto align = args.claimNext(); // Translate the alignment to a mask. auto alignMask = IGF.Builder.CreateSub(align, IGF.IGM.getSize(Size(1))); IGF.emitDeallocRawCall(pointer, size, alignMask); return; } if (Builtin.ID == BuiltinValueKind::Fence) { SmallVector Types; StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context, FnId.str(), Types); BuiltinName = BuiltinName.drop_front(strlen("fence_")); // Decode the ordering argument, which is required. auto underscore = BuiltinName.find('_'); auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore)); BuiltinName = BuiltinName.substr(underscore); // Accept singlethread if present. bool isSingleThread = BuiltinName.startswith("_singlethread"); if (isSingleThread) BuiltinName = BuiltinName.drop_front(strlen("_singlethread")); assert(BuiltinName.empty() && "Mismatch with sema"); IGF.Builder.CreateFence(ordering, isSingleThread ? llvm::SingleThread : llvm::CrossThread); return; } if (Builtin.ID == BuiltinValueKind::CmpXChg) { SmallVector Types; StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context, FnId.str(), Types); BuiltinName = BuiltinName.drop_front(strlen("cmpxchg_")); // Decode the success- and failure-ordering arguments, which are required. SmallVector Parts; BuiltinName.split(Parts, "_"); assert(Parts.size() >= 2 && "Mismatch with sema"); auto successOrdering = decodeLLVMAtomicOrdering(Parts[0]); auto failureOrdering = decodeLLVMAtomicOrdering(Parts[1]); auto NextPart = Parts.begin() + 2; // Accept weak, volatile, and singlethread if present. bool isWeak = false, isVolatile = false, isSingleThread = false; if (NextPart != Parts.end() && *NextPart == "weak") { isWeak = true; NextPart++; } if (NextPart != Parts.end() && *NextPart == "volatile") { isVolatile = true; NextPart++; } if (NextPart != Parts.end() && *NextPart == "singlethread") { isSingleThread = true; NextPart++; } assert(NextPart == Parts.end() && "Mismatch with sema"); auto pointer = args.claimNext(); auto cmp = args.claimNext(); auto newval = args.claimNext(); llvm::Type *origTy = cmp->getType(); if (origTy->isPointerTy()) { cmp = IGF.Builder.CreatePtrToInt(cmp, IGF.IGM.IntPtrTy); newval = IGF.Builder.CreatePtrToInt(newval, IGF.IGM.IntPtrTy); } pointer = IGF.Builder.CreateBitCast(pointer, llvm::PointerType::getUnqual(cmp->getType())); llvm::Value *value = IGF.Builder.CreateAtomicCmpXchg(pointer, cmp, newval, successOrdering, failureOrdering, isSingleThread ? llvm::SingleThread : llvm::CrossThread); cast(value)->setVolatile(isVolatile); cast(value)->setWeak(isWeak); auto valueLoaded = IGF.Builder.CreateExtractValue(value, {0}); auto loadSuccessful = IGF.Builder.CreateExtractValue(value, {1}); if (origTy->isPointerTy()) valueLoaded = IGF.Builder.CreateIntToPtr(valueLoaded, origTy); out.add(valueLoaded); out.add(loadSuccessful); return; } if (Builtin.ID == BuiltinValueKind::AtomicRMW) { using namespace llvm; SmallVector Types; StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context, FnId.str(), Types); BuiltinName = BuiltinName.drop_front(strlen("atomicrmw_")); auto underscore = BuiltinName.find('_'); StringRef SubOp = BuiltinName.substr(0, underscore); AtomicRMWInst::BinOp SubOpcode = StringSwitch(SubOp) .Case("xchg", AtomicRMWInst::Xchg) .Case("add", AtomicRMWInst::Add) .Case("sub", AtomicRMWInst::Sub) .Case("and", AtomicRMWInst::And) .Case("nand", AtomicRMWInst::Nand) .Case("or", AtomicRMWInst::Or) .Case("xor", AtomicRMWInst::Xor) .Case("max", AtomicRMWInst::Max) .Case("min", AtomicRMWInst::Min) .Case("umax", AtomicRMWInst::UMax) .Case("umin", AtomicRMWInst::UMin); BuiltinName = BuiltinName.drop_front(underscore+1); // Decode the ordering argument, which is required. underscore = BuiltinName.find('_'); auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore)); BuiltinName = BuiltinName.substr(underscore); // Accept volatile and singlethread if present. bool isVolatile = BuiltinName.startswith("_volatile"); if (isVolatile) BuiltinName = BuiltinName.drop_front(strlen("_volatile")); bool isSingleThread = BuiltinName.startswith("_singlethread"); if (isSingleThread) BuiltinName = BuiltinName.drop_front(strlen("_singlethread")); assert(BuiltinName.empty() && "Mismatch with sema"); auto pointer = args.claimNext(); auto val = args.claimNext(); // Handle atomic ops on pointers by casting to intptr_t. llvm::Type *origTy = val->getType(); if (origTy->isPointerTy()) val = IGF.Builder.CreatePtrToInt(val, IGF.IGM.IntPtrTy); pointer = IGF.Builder.CreateBitCast(pointer, llvm::PointerType::getUnqual(val->getType())); llvm::Value *value = IGF.Builder.CreateAtomicRMW(SubOpcode, pointer, val, ordering, isSingleThread ? llvm::SingleThread : llvm::CrossThread); cast(value)->setVolatile(isVolatile); if (origTy->isPointerTy()) value = IGF.Builder.CreateIntToPtr(value, origTy); out.add(value); return; } if (Builtin.ID == BuiltinValueKind::AtomicLoad || Builtin.ID == BuiltinValueKind::AtomicStore) { using namespace llvm; SmallVector Types; StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context, FnId.str(), Types); auto underscore = BuiltinName.find('_'); BuiltinName = BuiltinName.substr(underscore+1); underscore = BuiltinName.find('_'); auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore)); BuiltinName = BuiltinName.substr(underscore); // Accept volatile and singlethread if present. bool isVolatile = BuiltinName.startswith("_volatile"); if (isVolatile) BuiltinName = BuiltinName.drop_front(strlen("_volatile")); bool isSingleThread = BuiltinName.startswith("_singlethread"); if (isSingleThread) BuiltinName = BuiltinName.drop_front(strlen("_singlethread")); assert(BuiltinName.empty() && "Mismatch with sema"); auto pointer = args.claimNext(); auto &valueTI = IGF.getTypeInfoForUnlowered(Types[0]); auto schema = valueTI.getSchema(); assert(schema.size() == 1 && "not a scalar type?!"); auto origValueTy = schema[0].getScalarType(); // If the type is floating-point, then we need to bitcast to integer. auto valueTy = origValueTy; if (valueTy->isFloatingPointTy()) { valueTy = llvm::IntegerType::get(IGF.IGM.LLVMContext, valueTy->getPrimitiveSizeInBits()); } pointer = IGF.Builder.CreateBitCast(pointer, valueTy->getPointerTo()); if (Builtin.ID == BuiltinValueKind::AtomicLoad) { auto load = IGF.Builder.CreateLoad(pointer, valueTI.getBestKnownAlignment()); load->setAtomic(ordering, isSingleThread ? llvm::SingleThread : llvm::CrossThread); load->setVolatile(isVolatile); llvm::Value *value = load; if (valueTy != origValueTy) value = IGF.Builder.CreateBitCast(value, origValueTy); out.add(value); return; } else if (Builtin.ID == BuiltinValueKind::AtomicStore) { llvm::Value *value = args.claimNext(); if (valueTy != origValueTy) value = IGF.Builder.CreateBitCast(value, valueTy); auto store = IGF.Builder.CreateStore(value, pointer, valueTI.getBestKnownAlignment()); store->setAtomic(ordering, isSingleThread ? llvm::SingleThread : llvm::CrossThread); store->setVolatile(isVolatile); return; } else { llvm_unreachable("out of sync with outer conditional"); } } if (Builtin.ID == BuiltinValueKind::ExtractElement) { using namespace llvm; auto vector = args.claimNext(); auto index = args.claimNext(); out.add(IGF.Builder.CreateExtractElement(vector, index)); return; } if (Builtin.ID == BuiltinValueKind::InsertElement) { using namespace llvm; auto vector = args.claimNext(); auto newValue = args.claimNext(); auto index = args.claimNext(); out.add(IGF.Builder.CreateInsertElement(vector, newValue, index)); return; } if (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc || Builtin.ID == BuiltinValueKind::UToUCheckedTrunc || Builtin.ID == BuiltinValueKind::SToUCheckedTrunc) { auto FromTy = IGF.IGM.getStorageTypeForLowered(Builtin.Types[0]->getCanonicalType()); auto ToTy = IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType()); // Compute the result for SToSCheckedTrunc_IntFrom_IntTo(Arg): // Res = trunc_IntTo(Arg) // Ext = sext_IntFrom(Res) // OverflowFlag = (Arg == Ext) ? 0 : 1 // return (resultVal, OverflowFlag) // // Compute the result for UToUCheckedTrunc_IntFrom_IntTo(Arg) // and SToUCheckedTrunc_IntFrom_IntTo(Arg): // Res = trunc_IntTo(Arg) // Ext = zext_IntFrom(Res) // OverflowFlag = (Arg == Ext) ? 0 : 1 // return (Res, OverflowFlag) llvm::Value *Arg = args.claimNext(); llvm::Value *Res = IGF.Builder.CreateTrunc(Arg, ToTy); bool Signed = (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc); llvm::Value *Ext = Signed ? IGF.Builder.CreateSExt(Res, FromTy) : IGF.Builder.CreateZExt(Res, FromTy); llvm::Value *OverflowCond = IGF.Builder.CreateICmpEQ(Arg, Ext); llvm::Value *OverflowFlag = IGF.Builder.CreateSelect(OverflowCond, llvm::ConstantInt::get(IGF.IGM.Int1Ty, 0), llvm::ConstantInt::get(IGF.IGM.Int1Ty, 1)); // Return the tuple - the result + the overflow flag. out.add(Res); return out.add(OverflowFlag); } if (Builtin.ID == BuiltinValueKind::UToSCheckedTrunc) { auto FromTy = IGF.IGM.getStorageTypeForLowered(Builtin.Types[0]->getCanonicalType()); auto ToTy = IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType()); llvm::Type *ToMinusOneTy = llvm::Type::getIntNTy(ToTy->getContext(), ToTy->getIntegerBitWidth() - 1); // Compute the result for UToSCheckedTrunc_IntFrom_IntTo(Arg): // Res = trunc_IntTo(Arg) // Trunc = trunc_'IntTo-1bit'(Arg) // Ext = zext_IntFrom(Trunc) // OverflowFlag = (Arg == Ext) ? 0 : 1 // return (Res, OverflowFlag) llvm::Value *Arg = args.claimNext(); llvm::Value *Res = IGF.Builder.CreateTrunc(Arg, ToTy); llvm::Value *Trunc = IGF.Builder.CreateTrunc(Arg, ToMinusOneTy); llvm::Value *Ext = IGF.Builder.CreateZExt(Trunc, FromTy); llvm::Value *OverflowCond = IGF.Builder.CreateICmpEQ(Arg, Ext); llvm::Value *OverflowFlag = IGF.Builder.CreateSelect(OverflowCond, llvm::ConstantInt::get(IGF.IGM.Int1Ty, 0), llvm::ConstantInt::get(IGF.IGM.Int1Ty, 1)); // Return the tuple: (the result, the overflow flag). out.add(Res); return out.add(OverflowFlag); } if (Builtin.ID == BuiltinValueKind::SUCheckedConversion || Builtin.ID == BuiltinValueKind::USCheckedConversion) { auto Ty = IGF.IGM.getStorageTypeForLowered(Builtin.Types[0]->getCanonicalType()); // Report a sign error if the input parameter is a negative number, when // interpreted as signed. llvm::Value *Arg = args.claimNext(); llvm::Value *Zero = llvm::ConstantInt::get(Ty, 0); llvm::Value *OverflowFlag = IGF.Builder.CreateICmpSLT(Arg, Zero); // Return the tuple: (the result (same as input), the overflow flag). out.add(Arg); return out.add(OverflowFlag); } // We are currently emitting code for '_convertFromBuiltinIntegerLiteral', // which will call the builtin and pass it a non-compile-time-const parameter. if (Builtin.ID == BuiltinValueKind::IntToFPWithOverflow) { auto ToTy = IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType()); llvm::Value *Arg = args.claimNext(); unsigned bitSize = Arg->getType()->getScalarSizeInBits(); if (bitSize > 64) { // TODO: the integer literal bit size is 2048, but we only have a 64-bit // conversion function available (on all platforms). Arg = IGF.Builder.CreateTrunc(Arg, IGF.IGM.Int64Ty); } else if (bitSize < 64) { // Just for completeness. IntToFPWithOverflow is currently only used to // convert 2048 bit integer literals. Arg = IGF.Builder.CreateSExt(Arg, IGF.IGM.Int64Ty); } llvm::Value *V = IGF.Builder.CreateSIToFP(Arg, ToTy); return out.add(V); } if (Builtin.ID == BuiltinValueKind::Once) { // The input type is statically (Builtin.RawPointer, @convention(thin) () -> ()). llvm::Value *PredPtr = args.claimNext(); // Cast the predicate to a OnceTy pointer. PredPtr = IGF.Builder.CreateBitCast(PredPtr, IGF.IGM.OnceTy->getPointerTo()); llvm::Value *FnCode = args.claimNext(); // If we know the platform runtime's "done" value, emit the check inline. llvm::BasicBlock *notDoneBB, *doneBB; if (auto ExpectedPred = IGF.IGM.TargetInfo.OnceDonePredicateValue) { auto PredValue = IGF.Builder.CreateLoad(PredPtr, IGF.IGM.getPointerAlignment()); auto ExpectedPredValue = llvm::ConstantInt::getSigned(IGF.IGM.OnceTy, *ExpectedPred); auto PredIsDone = IGF.Builder.CreateICmpEQ(PredValue, ExpectedPredValue); notDoneBB = IGF.createBasicBlock("once_not_done"); doneBB = IGF.createBasicBlock("once_done"); IGF.Builder.CreateCondBr(PredIsDone, doneBB, notDoneBB); IGF.Builder.emitBlock(notDoneBB); } // Emit the runtime "once" call. auto call = IGF.Builder.CreateCall(IGF.IGM.getOnceFn(), {PredPtr, FnCode}); call->setCallingConv(IGF.IGM.DefaultCC); // If we emitted the "done" check inline, join the branches. if (auto ExpectedPred = IGF.IGM.TargetInfo.OnceDonePredicateValue) { IGF.Builder.CreateBr(doneBB); IGF.Builder.emitBlock(doneBB); // We can assume the once predicate is in the "done" state now. auto PredValue = IGF.Builder.CreateLoad(PredPtr, IGF.IGM.getPointerAlignment()); auto ExpectedPredValue = llvm::ConstantInt::getSigned(IGF.IGM.OnceTy, *ExpectedPred); auto PredIsDone = IGF.Builder.CreateICmpEQ(PredValue, ExpectedPredValue); IGF.Builder.CreateAssumption(PredIsDone); } // No return value. return; } if (Builtin.ID == BuiltinValueKind::AssertConf) { // Replace the call to assert_configuration by the Debug configuration // value. // TODO: assert(IGF.IGM.getOptions().AssertConfig == // SILOptions::DisableReplacement); // Make sure this only happens in a mode where we build a library dylib. llvm::Value *DebugAssert = IGF.Builder.getInt32(SILOptions::Debug); out.add(DebugAssert); return; } if (Builtin.ID == BuiltinValueKind::DestroyArray) { // The input type is (T.Type, Builtin.RawPointer, Builtin.Word). /* metatype (which may be thin) */ if (args.size() == 3) args.claimNext(); llvm::Value *ptr = args.claimNext(); llvm::Value *count = args.claimNext(); auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM, substitutions[0].getReplacement()); ptr = IGF.Builder.CreateBitCast(ptr, valueTy.second.getStorageType()->getPointerTo()); Address array = valueTy.second.getAddressForPointer(ptr); valueTy.second.destroyArray(IGF, array, count, valueTy.first); return; } if (Builtin.ID == BuiltinValueKind::CopyArray || Builtin.ID == BuiltinValueKind::TakeArrayFrontToBack || Builtin.ID == BuiltinValueKind::TakeArrayBackToFront) { // The input type is (T.Type, Builtin.RawPointer, Builtin.RawPointer, Builtin.Word). /* metatype (which may be thin) */ if (args.size() == 4) args.claimNext(); llvm::Value *dest = args.claimNext(); llvm::Value *src = args.claimNext(); llvm::Value *count = args.claimNext(); auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM, substitutions[0].getReplacement()); dest = IGF.Builder.CreateBitCast(dest, valueTy.second.getStorageType()->getPointerTo()); src = IGF.Builder.CreateBitCast(src, valueTy.second.getStorageType()->getPointerTo()); Address destArray = valueTy.second.getAddressForPointer(dest); Address srcArray = valueTy.second.getAddressForPointer(src); switch (Builtin.ID) { case BuiltinValueKind::CopyArray: valueTy.second.initializeArrayWithCopy(IGF, destArray, srcArray, count, valueTy.first); break; case BuiltinValueKind::TakeArrayFrontToBack: valueTy.second.initializeArrayWithTakeFrontToBack(IGF, destArray, srcArray, count, valueTy.first); break; case BuiltinValueKind::TakeArrayBackToFront: valueTy.second.initializeArrayWithTakeBackToFront(IGF, destArray, srcArray, count, valueTy.first); break; default: llvm_unreachable("out of sync with if condition"); } return; } if (Builtin.ID == BuiltinValueKind::CondUnreachable) { // conditionallyUnreachable is a no-op by itself. Since it's noreturn, there // should be a true unreachable terminator right after. return; } if (Builtin.ID == BuiltinValueKind::ZeroInitializer) { // Build a zero initializer of the result type. auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM, substitutions[0].getReplacement()); auto schema = valueTy.second.getSchema(); for (auto &elt : schema) { out.add(llvm::Constant::getNullValue(elt.getScalarType())); } return; } llvm_unreachable("IRGen unimplemented for this builtin!"); }