//===--- Expr.h - Swift Language Expression ASTs ----------------*- C++ -*-===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file defines the Expr class and subclasses. // //===----------------------------------------------------------------------===// #ifndef SWIFT_AST_EXPR_H #define SWIFT_AST_EXPR_H #include "swift/AST/CaptureInfo.h" #include "swift/AST/ConcreteDeclRef.h" #include "swift/AST/DeclNameLoc.h" #include "swift/AST/FunctionRefKind.h" #include "swift/AST/ProtocolConformanceRef.h" #include "swift/AST/TypeAlignments.h" #include "swift/AST/TypeLoc.h" #include "swift/AST/TypeRepr.h" #include "swift/AST/Availability.h" #include "swift/Basic/InlineBitfield.h" #include "llvm/Support/TrailingObjects.h" #include namespace llvm { struct fltSemantics; } namespace swift { enum class AccessKind : unsigned char; class ArchetypeType; class ASTContext; class AvailabilitySpec; class Type; class ValueDecl; class Decl; class DeclRefExpr; class Pattern; class SubscriptDecl; class Stmt; class BraceStmt; class ASTWalker; class Initializer; class VarDecl; class OpaqueValueExpr; class FuncDecl; class ConstructorDecl; class TypeDecl; class PatternBindingDecl; class ParameterList; class EnumElementDecl; enum class ExprKind : uint8_t { #define EXPR(Id, Parent) Id, #define LAST_EXPR(Id) Last_Expr = Id, #define EXPR_RANGE(Id, FirstId, LastId) \ First_##Id##Expr = FirstId, Last_##Id##Expr = LastId, #include "swift/AST/ExprNodes.def" }; enum : unsigned { NumExprKindBits = countBitsUsed(static_cast(ExprKind::Last_Expr)) }; /// Discriminates certain kinds of checked cast that have specialized diagnostic /// and/or code generation peephole behavior. /// /// This enumeration should not have any semantic effect on the behavior of a /// well-typed program, since the runtime can perform all casts that are /// statically accepted. enum class CheckedCastKind : unsigned { /// The kind has not been determined yet. Unresolved, /// Valid resolved kinds start here. First_Resolved, /// The requested cast is an implicit conversion, so this is a coercion. Coercion = First_Resolved, /// A checked cast with no known specific behavior. ValueCast, // A downcast from an array type to another array type. ArrayDowncast, // A downcast from a dictionary type to another dictionary type. DictionaryDowncast, // A downcast from a set type to another set type. SetDowncast, /// A bridging conversion that always succeeds. BridgingCoercion, /// A bridging conversion that may fail, because there are multiple Swift /// value types that bridge to the same Cocoa object type. /// /// This kind is only used for Swift 3 compatibility diagnostics and is /// treated the same as 'BridgingCoercion' otherwise. In Swift 4 or later, /// any conversions with this kind show up as ValueCasts. Swift3BridgingDowncast, Last_CheckedCastKind = Swift3BridgingDowncast, }; enum class AccessSemantics : unsigned char { /// On a property or subscript reference, this is a direct access to /// the underlying storage. On a function reference, this is a /// non-polymorphic access to a particular implementation. DirectToStorage, /// On a property or subscript reference, this is a direct, /// non-polymorphic access to the getter/setter accessors. DirectToAccessor, /// On a property or subscript reference, this is an access to a property /// behavior that may be an initialization. Reads always go through the /// 'get' accessor on the property. Writes may go through the 'init' or /// 'set' logic of the behavior based on its initialization state. BehaviorInitialization, /// This is an ordinary access to a declaration, using whatever /// polymorphism is expected. Ordinary, }; /// Expr - Base class for all expressions in swift. class alignas(8) Expr { Expr(const Expr&) = delete; void operator=(const Expr&) = delete; SWIFT_INLINE_BITFIELD_BASE(Expr, bitmax(NumExprKindBits,8)+2+1, /// The subclass of Expr that this is. Kind : bitmax(NumExprKindBits,8), /// How this l-value is used, if it's an l-value. LValueAccessKind : 2, /// Whether the Expr represents something directly written in source or /// it was implicitly generated by the type-checker. Implicit : 1 ); SWIFT_INLINE_BITFIELD_FULL(CollectionExpr, Expr, 64-NumExprBits, /// True if the type of this collection expr was inferred by the collection /// fallback type, like [Any]. IsTypeDefaulted : 1, /// Number of comma source locations. NumCommas : 32 - 1 - NumExprBits, /// Number of entries in the collection. If this is a DictionaryLiteral, /// each entry is a Tuple with the key and value pair. NumSubExprs : 32 ); SWIFT_INLINE_BITFIELD_EMPTY(LiteralExpr, Expr); SWIFT_INLINE_BITFIELD_EMPTY(IdentityExpr, Expr); SWIFT_INLINE_BITFIELD(ParenExpr, IdentityExpr, 1, /// \brief Whether we're wrapping a trailing closure expression. HasTrailingClosure : 1 ); SWIFT_INLINE_BITFIELD(NumberLiteralExpr, LiteralExpr, 1, IsNegative : 1 ); SWIFT_INLINE_BITFIELD(StringLiteralExpr, LiteralExpr, 3+1+1, Encoding : 3, IsSingleUnicodeScalar : 1, IsSingleExtendedGraphemeCluster : 1 ); SWIFT_INLINE_BITFIELD(DeclRefExpr, Expr, 2+2, Semantics : 2, // an AccessSemantics FunctionRefKind : 2 ); SWIFT_INLINE_BITFIELD(UnresolvedDeclRefExpr, Expr, 2+2, DeclRefKind : 2, FunctionRefKind : 2 ); SWIFT_INLINE_BITFIELD(MemberRefExpr, Expr, 2+1, Semantics : 2, // an AccessSemantics IsSuper : 1 ); SWIFT_INLINE_BITFIELD_FULL(TupleElementExpr, Expr, 32, : NumPadBits, FieldNo : 32 ); SWIFT_INLINE_BITFIELD_FULL(TupleExpr, Expr, 1+1+1+32, /// Whether this tuple has a trailing closure. HasTrailingClosure : 1, /// Whether this tuple has any labels. HasElementNames : 1, /// Whether this tuple has label locations. HasElementNameLocations : 1, : NumPadBits, NumElements : 32 ); SWIFT_INLINE_BITFIELD(UnresolvedDotExpr, Expr, 2, FunctionRefKind : 2 ); SWIFT_INLINE_BITFIELD_FULL(SubscriptExpr, Expr, 2+1+16+1+1, Semantics : 2, // an AccessSemantics IsSuper : 1, /// Whether the SubscriptExpr also has source locations for the argument /// label. HasArgLabelLocs : 1, /// Whether the last argument is a trailing closure. HasTrailingClosure : 1, : NumPadBits, /// # of argument labels stored after the SubscriptExpr. NumArgLabels : 16 ); SWIFT_INLINE_BITFIELD_FULL(DynamicSubscriptExpr, Expr, 1+1+16, /// Whether the DynamicSubscriptExpr also has source locations for the /// argument label. HasArgLabelLocs : 1, /// Whether the last argument is a trailing closure. HasTrailingClosure : 1, : NumPadBits, /// # of argument labels stored after the DynamicSubscriptExpr. NumArgLabels : 16 ); SWIFT_INLINE_BITFIELD_FULL(UnresolvedMemberExpr, Expr, 1+1+1+16, /// Whether the UnresolvedMemberExpr has arguments. HasArguments : 1, /// Whether the UnresolvedMemberExpr also has source locations for the /// argument label. HasArgLabelLocs : 1, /// Whether the last argument is a trailing closure. HasTrailingClosure : 1, : NumPadBits, /// # of argument labels stored after the UnresolvedMemberExpr. NumArgLabels : 16 ); SWIFT_INLINE_BITFIELD(OverloadSetRefExpr, Expr, 2, FunctionRefKind : 2 ); SWIFT_INLINE_BITFIELD(BooleanLiteralExpr, LiteralExpr, 1, Value : 1 ); SWIFT_INLINE_BITFIELD(MagicIdentifierLiteralExpr, LiteralExpr, 3+1, Kind : 3, StringEncoding : 1 ); SWIFT_INLINE_BITFIELD_FULL(ObjectLiteralExpr, LiteralExpr, 3+1+1+16, LitKind : 3, /// Whether the ObjectLiteralExpr also has source locations for the argument /// label. HasArgLabelLocs : 1, /// Whether the last argument is a trailing closure. HasTrailingClosure : 1, : NumPadBits, /// # of argument labels stored after the ObjectLiteralExpr. NumArgLabels : 16 ); SWIFT_INLINE_BITFIELD(AbstractClosureExpr, Expr, (16-NumExprBits)+16, : 16 - NumExprBits, // Align and leave room for subclasses Discriminator : 16 ); SWIFT_INLINE_BITFIELD(ClosureExpr, AbstractClosureExpr, 1, /// True if closure parameters were synthesized from anonymous closure /// variables. HasAnonymousClosureVars : 1 ); SWIFT_INLINE_BITFIELD_FULL(BindOptionalExpr, Expr, 16, : NumPadBits, Depth : 16 ); SWIFT_INLINE_BITFIELD_EMPTY(ImplicitConversionExpr, Expr); SWIFT_INLINE_BITFIELD(TupleShuffleExpr, ImplicitConversionExpr, 2, TypeImpact : 2 ); SWIFT_INLINE_BITFIELD(InOutToPointerExpr, ImplicitConversionExpr, 1, IsNonAccessing : 1 ); SWIFT_INLINE_BITFIELD(ArrayToPointerExpr, ImplicitConversionExpr, 1, IsNonAccessing : 1 ); SWIFT_INLINE_BITFIELD_FULL(ErasureExpr, ImplicitConversionExpr, 32, : NumPadBits, NumConformances : 32 ); SWIFT_INLINE_BITFIELD_FULL(UnresolvedSpecializeExpr, Expr, 32, : NumPadBits, NumUnresolvedParams : 32 ); SWIFT_INLINE_BITFIELD_FULL(CaptureListExpr, Expr, 32, : NumPadBits, NumCaptures : 32 ); SWIFT_INLINE_BITFIELD(ApplyExpr, Expr, 1+1, ThrowsIsSet : 1, Throws : 1 ); SWIFT_INLINE_BITFIELD_FULL(CallExpr, ApplyExpr, 1+1+16, /// Whether the CallExpr also has source locations for the argument label. HasArgLabelLocs : 1, /// Whether the last argument is a trailing closure. HasTrailingClosure : 1, : NumPadBits, /// # of argument labels stored after the CallExpr. NumArgLabels : 16 ); enum { NumCheckedCastKindBits = 4 }; SWIFT_INLINE_BITFIELD(CheckedCastExpr, Expr, NumCheckedCastKindBits, CastKind : NumCheckedCastKindBits ); static_assert(unsigned(CheckedCastKind::Last_CheckedCastKind) < (1 << NumCheckedCastKindBits), "unable to fit a CheckedCastKind in the given number of bits"); SWIFT_INLINE_BITFIELD_EMPTY(CollectionUpcastConversionExpr, Expr); SWIFT_INLINE_BITFIELD(ObjCSelectorExpr, Expr, 2, /// The selector kind. SelectorKind : 2 ); SWIFT_INLINE_BITFIELD(KeyPathExpr, Expr, 1, /// Whether this is an ObjC stringified keypath. IsObjC : 1 ); SWIFT_INLINE_BITFIELD_FULL(SequenceExpr, Expr, 32, : NumPadBits, NumElements : 32 ); protected: union { SWIFT_INLINE_BITS(Expr); SWIFT_INLINE_BITS(NumberLiteralExpr); SWIFT_INLINE_BITS(StringLiteralExpr); SWIFT_INLINE_BITS(DeclRefExpr); SWIFT_INLINE_BITS(UnresolvedDeclRefExpr); SWIFT_INLINE_BITS(TupleExpr); SWIFT_INLINE_BITS(TupleElementExpr); SWIFT_INLINE_BITS(MemberRefExpr); SWIFT_INLINE_BITS(UnresolvedDotExpr); SWIFT_INLINE_BITS(SubscriptExpr); SWIFT_INLINE_BITS(DynamicSubscriptExpr); SWIFT_INLINE_BITS(UnresolvedMemberExpr); SWIFT_INLINE_BITS(OverloadSetRefExpr); SWIFT_INLINE_BITS(BooleanLiteralExpr); SWIFT_INLINE_BITS(MagicIdentifierLiteralExpr); SWIFT_INLINE_BITS(ObjectLiteralExpr); SWIFT_INLINE_BITS(AbstractClosureExpr); SWIFT_INLINE_BITS(ClosureExpr); SWIFT_INLINE_BITS(BindOptionalExpr); SWIFT_INLINE_BITS(ApplyExpr); SWIFT_INLINE_BITS(CallExpr); SWIFT_INLINE_BITS(CheckedCastExpr); SWIFT_INLINE_BITS(TupleShuffleExpr); SWIFT_INLINE_BITS(InOutToPointerExpr); SWIFT_INLINE_BITS(ArrayToPointerExpr); SWIFT_INLINE_BITS(ObjCSelectorExpr); SWIFT_INLINE_BITS(KeyPathExpr); SWIFT_INLINE_BITS(ParenExpr); SWIFT_INLINE_BITS(SequenceExpr); SWIFT_INLINE_BITS(CollectionExpr); SWIFT_INLINE_BITS(ErasureExpr); SWIFT_INLINE_BITS(UnresolvedSpecializeExpr); SWIFT_INLINE_BITS(CaptureListExpr); } Bits; private: /// Ty - This is the type of the expression. Type Ty; void setLValueAccessKind(AccessKind accessKind) { Bits.Expr.LValueAccessKind = unsigned(accessKind) + 1; } protected: Expr(ExprKind Kind, bool Implicit, Type Ty = Type()) : Ty(Ty) { Bits.Expr.Kind = unsigned(Kind); Bits.Expr.Implicit = Implicit; Bits.Expr.LValueAccessKind = 0; } public: /// Return the kind of this expression. ExprKind getKind() const { return ExprKind(Bits.Expr.Kind); } /// \brief Retrieve the name of the given expression kind. /// /// This name should only be used for debugging dumps and other /// developer aids, and should never be part of a diagnostic or exposed /// to the user of the compiler in any way. static StringRef getKindName(ExprKind K); /// getType - Return the type of this expression. Type getType() const { return Ty; } /// setType - Sets the type of this expression. void setType(Type T) { Ty = T; } /// \brief Return the source range of the expression. SourceRange getSourceRange() const; /// getStartLoc - Return the location of the start of the expression. SourceLoc getStartLoc() const; /// \brief Retrieve the location of the last token of the expression. SourceLoc getEndLoc() const; /// getLoc - Return the caret location of this expression. SourceLoc getLoc() const; #define SWIFT_FORWARD_SOURCE_LOCS_TO(SUBEXPR) \ SourceLoc getStartLoc() const { return (SUBEXPR)->getStartLoc(); } \ SourceLoc getEndLoc() const { return (SUBEXPR)->getEndLoc(); } \ SourceLoc getLoc() const { return (SUBEXPR)->getLoc(); } \ SourceRange getSourceRange() const { return (SUBEXPR)->getSourceRange(); } SourceLoc TrailingSemiLoc; /// getSemanticsProvidingExpr - Find the smallest subexpression /// which obeys the property that evaluating it is exactly /// equivalent to evaluating this expression. /// /// Looks through parentheses. Would not look through something /// like '(foo(), x:bar(), baz()).x'. Expr *getSemanticsProvidingExpr(); const Expr *getSemanticsProvidingExpr() const { return const_cast(this)->getSemanticsProvidingExpr(); } /// getValueProvidingExpr - Find the smallest subexpression which is /// responsible for generating the value of this expression. /// Evaluating the result is not necessarily equivalent to /// evaluating this expression because of potential missing /// side-effects (which may influence the returned value). Expr *getValueProvidingExpr(); const Expr *getValueProvidingExpr() const { return const_cast(this)->getValueProvidingExpr(); } /// If this is a reference to an operator written as a member of a type (or /// extension thereof), return the underlying operator reference. DeclRefExpr *getMemberOperatorRef(); /// This recursively walks the AST rooted at this expression. Expr *walk(ASTWalker &walker); Expr *walk(ASTWalker &&walker) { return walk(walker); } /// Enumerate each immediate child expression of this node, invoking the /// specific functor on it. This ignores statements and other non-expression /// children. void forEachImmediateChildExpr(const std::function &callback); /// Enumerate each expr node within this expression subtree, invoking the /// specific functor on it. This ignores statements and other non-expression /// children, and if there is a closure within the expression, this does not /// walk into the body of it (unless it is single-expression). void forEachChildExpr(const std::function &callback); /// Determine whether this expression refers to a type by name. /// /// This distinguishes static references to types, like Int, from metatype /// values, "someTy: Any.Type". bool isTypeReference(llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }) const; /// Determine whether this expression refers to a statically-derived metatype. /// /// This implies `isTypeReference`, but also requires that the referenced type /// is not an archetype or dependent type. bool isStaticallyDerivedMetatype( llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }) const; /// isImplicit - Determines whether this expression was implicitly-generated, /// rather than explicitly written in the AST. bool isImplicit() const { return Bits.Expr.Implicit; } void setImplicit(bool Implicit = true) { Bits.Expr.Implicit = Implicit; } /// getLValueAccessKind - Determines how this l-value expression is used. AccessKind getLValueAccessKind() const { assert(hasLValueAccessKind()); return AccessKind(Bits.Expr.LValueAccessKind - 1); } bool hasLValueAccessKind() const { return Bits.Expr.LValueAccessKind != 0; } void clearLValueAccessKind() { Bits.Expr.LValueAccessKind = 0; } /// Set that this l-value expression is used in the given way. /// /// This information is also correctly propagated to any l-value /// sub-expressions from which this l-value is derived. /// /// \param allowOverwrite - true if it's okay if an expression already /// has an access kind void propagateLValueAccessKind(AccessKind accessKind, llvm::function_ref getType = [](Expr *E) -> Type { return E->getType(); }, bool allowOverwrite = false); /// Retrieves the declaration that is being referenced by this /// expression, if any. ConcreteDeclRef getReferencedDecl() const; /// Determine whether this expression is 'super', possibly converted to /// a base class. bool isSuperExpr() const; /// Returns whether the semantically meaningful content of this expression is /// an inout expression. /// /// FIXME(Remove InOutType): This should eventually sub-in for /// 'E->getType()->is()' in all cases. bool isSemanticallyInOutExpr() const { return getSemanticsProvidingExpr()->getKind() == ExprKind::InOut; } /// Returns false if this expression needs to be wrapped in parens when /// used inside of a any postfix expression, true otherwise. /// /// \param appendingPostfixOperator if the expression being /// appended is a postfix operator like '!' or '?'. bool canAppendPostfixExpression(bool appendingPostfixOperator = false) const; /// Returns true if this is an infix operator of some sort, including /// a builtin operator. bool isInfixOperator() const; /// Produce a mapping from each subexpression to its parent /// expression, with the provided expression serving as the root of /// the parent map. llvm::DenseMap getParentMap(); /// Produce a mapping from each subexpression to its depth in the root /// expression. The root expression has depth 0, its children have depth /// 1, etc. llvm::DenseMap getDepthMap(); /// Produce a mapping from each expression to its index according to a /// preorder traversal of the expressions. The parent has index 0, its first /// child has index 1, its second child has index 2 if the first child is a /// leaf node, etc. llvm::DenseMap getPreorderIndexMap(); LLVM_ATTRIBUTE_DEPRECATED( void dump() const LLVM_ATTRIBUTE_USED, "only for use within the debugger"); void dump(raw_ostream &OS) const; void print(raw_ostream &OS, unsigned Indent = 0) const; void print(ASTPrinter &Printer, const PrintOptions &Opts) const; // Only allow allocation of Exprs using the allocator in ASTContext // or by doing a placement new. void *operator new(size_t Bytes, ASTContext &C, unsigned Alignment = alignof(Expr)); // Make placement new and vanilla new/delete illegal for Exprs. void *operator new(size_t Bytes) throw() = delete; void operator delete(void *Data) throw() = delete; void *operator new(size_t Bytes, void *Mem) { assert(Mem); return Mem; } }; /// Helper class to capture trailing call argument labels and related /// information, for expression nodes that involve argument labels, trailing /// closures, etc. template class TrailingCallArguments : private llvm::TrailingObjects { // We need to friend TrailingObjects twice here to work around an MSVC bug. // If we have two functions of the same name with the parameter // typename TrailingObjectsIdentifier::template OverloadToken where T is // different for each function, then MSVC reports a "member function already // defined or declared" error, which is incorrect. using TrailingObjectsIdentifier = llvm::TrailingObjects; friend TrailingObjectsIdentifier; using TrailingObjects = llvm::TrailingObjects; friend TrailingObjects; Derived &asDerived() { return *static_cast(this); } const Derived &asDerived() const { return *static_cast(this); } size_t numTrailingObjects( typename TrailingObjectsIdentifier::template OverloadToken) const { return asDerived().getNumArguments(); } size_t numTrailingObjects( typename TrailingObjectsIdentifier::template OverloadToken) const { return asDerived().hasArgumentLabelLocs() ? asDerived().getNumArguments() : 0; } /// Retrieve the buffer containing the argument labels. MutableArrayRef getArgumentLabelsBuffer() { return { this->template getTrailingObjects(), asDerived().getNumArguments() }; } /// Retrieve the buffer containing the argument label locations. MutableArrayRef getArgumentLabelLocsBuffer() { if (!asDerived().hasArgumentLabelLocs()) return { }; return { this->template getTrailingObjects(), asDerived().getNumArguments() }; } protected: /// Determine the total size to allocate. static size_t totalSizeToAlloc(ArrayRef argLabels, ArrayRef argLabelLocs, bool hasTrailingClosure) { return TrailingObjects::template totalSizeToAlloc( argLabels.size(), argLabelLocs.size()); } /// Initialize the actual call arguments. void initializeCallArguments(ArrayRef argLabels, ArrayRef argLabelLocs, bool hasTrailingClosure) { if (!argLabels.empty()) { std::uninitialized_copy(argLabels.begin(), argLabels.end(), this->template getTrailingObjects()); } if (!argLabelLocs.empty()) std::uninitialized_copy(argLabelLocs.begin(), argLabelLocs.end(), this->template getTrailingObjects()); } public: /// Retrieve the argument labels provided at the call site. ArrayRef getArgumentLabels() const { return { this->template getTrailingObjects(), asDerived().getNumArguments() }; } /// Retrieve the buffer containing the argument label locations. ArrayRef getArgumentLabelLocs() const { if (!asDerived().hasArgumentLabelLocs()) return { }; return { this->template getTrailingObjects(), asDerived().getNumArguments() }; } /// Retrieve the location of the ith argument label. SourceLoc getArgumentLabelLoc(unsigned i) const { auto locs = getArgumentLabelLocs(); return i < locs.size() ? locs[i] : SourceLoc(); } }; /// ErrorExpr - Represents a semantically erroneous subexpression in the AST, /// typically this will have an ErrorType. class ErrorExpr : public Expr { SourceRange Range; public: ErrorExpr(SourceRange Range, Type Ty = Type()) : Expr(ExprKind::Error, /*Implicit=*/true, Ty), Range(Range) {} SourceRange getSourceRange() const { return Range; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Error; } }; /// CodeCompletionExpr - Represents the code completion token in the AST, this /// can help us preserve the context of the code completion position. class CodeCompletionExpr : public Expr { SourceRange Range; public: CodeCompletionExpr(SourceRange Range, Type Ty = Type()) : Expr(ExprKind::CodeCompletion, /*Implicit=*/true, Ty), Range(Range) {} SourceRange getSourceRange() const { return Range; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::CodeCompletion; } }; /// LiteralExpr - Common base class between the literals. class LiteralExpr : public Expr { public: LiteralExpr(ExprKind Kind, bool Implicit) : Expr(Kind, Implicit) {} // Make an exact copy of this one AST node. LiteralExpr * shallowClone(ASTContext &Ctx, llvm::function_ref setType, llvm::function_ref getType) const; static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_LiteralExpr && E->getKind() <= ExprKind::Last_LiteralExpr; } }; /// \brief The 'nil' literal. /// class NilLiteralExpr : public LiteralExpr { SourceLoc Loc; public: NilLiteralExpr(SourceLoc Loc, bool Implicit = false) : LiteralExpr(ExprKind::NilLiteral, Implicit), Loc(Loc) { } SourceRange getSourceRange() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::NilLiteral; } }; /// \brief Abstract base class for numeric literals, potentially with a sign. class NumberLiteralExpr : public LiteralExpr { /// The value of the literal as an ASTContext-owned string. Underscores must /// be stripped. StringRef Val; // Use StringRef instead of APInt or APFloat, which leak. protected: SourceLoc MinusLoc; SourceLoc DigitsLoc; public: NumberLiteralExpr(ExprKind Kind, StringRef Val, SourceLoc DigitsLoc, bool Implicit) : LiteralExpr(Kind, Implicit), Val(Val), DigitsLoc(DigitsLoc) { Bits.NumberLiteralExpr.IsNegative = false; } bool isNegative() const { return Bits.NumberLiteralExpr.IsNegative; } void setNegative(SourceLoc Loc) { MinusLoc = Loc; Bits.NumberLiteralExpr.IsNegative = true; } StringRef getDigitsText() const { return Val; } SourceRange getSourceRange() const { if (isNegative()) return { MinusLoc, DigitsLoc }; else return DigitsLoc; } SourceLoc getMinusLoc() const { return MinusLoc; } SourceLoc getDigitsLoc() const { return DigitsLoc; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_NumberLiteralExpr && E->getKind() <= ExprKind::Last_NumberLiteralExpr; } }; /// \brief Integer literal with a '+' or '-' sign, like '+4' or '- 2'. /// /// After semantic analysis assigns types, this is guaranteed to only have /// a BuiltinIntegerType. class IntegerLiteralExpr : public NumberLiteralExpr { public: IntegerLiteralExpr(StringRef Val, SourceLoc DigitsLoc, bool Implicit = false) : NumberLiteralExpr(ExprKind::IntegerLiteral, Val, DigitsLoc, Implicit) {} APInt getValue() const; static APInt getValue(StringRef Text, unsigned BitWidth, bool Negative); static bool classof(const Expr *E) { return E->getKind() == ExprKind::IntegerLiteral; } }; /// FloatLiteralExpr - Floating point literal, like '4.0'. After semantic /// analysis assigns types, this is guaranteed to only have a /// BuiltinFloatingPointType. class FloatLiteralExpr : public NumberLiteralExpr { public: FloatLiteralExpr(StringRef Val, SourceLoc Loc, bool Implicit = false) : NumberLiteralExpr(ExprKind::FloatLiteral, Val, Loc, Implicit) {} APFloat getValue() const; static APFloat getValue(StringRef Text, const llvm::fltSemantics &Semantics, bool Negative); static bool classof(const Expr *E) { return E->getKind() == ExprKind::FloatLiteral; } }; /// \brief A Boolean literal ('true' or 'false') /// class BooleanLiteralExpr : public LiteralExpr { SourceLoc Loc; public: BooleanLiteralExpr(bool Value, SourceLoc Loc, bool Implicit = false) : LiteralExpr(ExprKind::BooleanLiteral, Implicit), Loc(Loc) { Bits.BooleanLiteralExpr.Value = Value; } /// Retrieve the Boolean value of this literal. bool getValue() const { return Bits.BooleanLiteralExpr.Value; } SourceRange getSourceRange() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::BooleanLiteral; } }; /// StringLiteralExpr - String literal, like '"foo"'. class StringLiteralExpr : public LiteralExpr { StringRef Val; SourceRange Range; ConcreteDeclRef BuiltinInitializer; ConcreteDeclRef Initializer; public: /// The encoding that should be used for the string literal. enum Encoding : unsigned { /// A UTF-8 string. UTF8, /// A UTF-16 string. UTF16, /// A UTF-8 constant string. UTF8ConstString, /// A UTF-16 constant string. UTF16ConstString, /// A single UnicodeScalar, passed as an integer. OneUnicodeScalar }; StringLiteralExpr(StringRef Val, SourceRange Range, bool Implicit = false); StringRef getValue() const { return Val; } SourceRange getSourceRange() const { return Range; } /// Determine the encoding that should be used for this string literal. Encoding getEncoding() const { return static_cast(Bits.StringLiteralExpr.Encoding); } /// Set the encoding that should be used for this string literal. void setEncoding(Encoding encoding) { Bits.StringLiteralExpr.Encoding = static_cast(encoding); } bool isSingleUnicodeScalar() const { return Bits.StringLiteralExpr.IsSingleUnicodeScalar; } bool isSingleExtendedGraphemeCluster() const { return Bits.StringLiteralExpr.IsSingleExtendedGraphemeCluster; } /// Retrieve the builtin initializer that will be used to construct the string /// literal. /// /// Any type-checked string literal will have a builtin initializer, which is /// called first to form a concrete Swift type. ConcreteDeclRef getBuiltinInitializer() const { return BuiltinInitializer; } /// Set the builtin initializer that will be used to construct the string /// literal. void setBuiltinInitializer(ConcreteDeclRef builtinInitializer) { BuiltinInitializer = builtinInitializer; } /// Retrieve the initializer that will be used to construct the string /// literal from the result of the initializer. /// /// Only string literals that have no builtin literal conformance will have /// this initializer, which will be called on the result of the builtin /// initializer. ConcreteDeclRef getInitializer() const { return Initializer; } /// Set the initializer that will be used to construct the string literal. void setInitializer(ConcreteDeclRef initializer) { Initializer = initializer; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::StringLiteral; } }; /// InterpolatedStringLiteral - An interpolated string literal. /// /// An interpolated string literal mixes expressions (which are evaluated and /// converted into string form) within a string literal. /// /// \code /// "[\(min)..\(max)]" /// \endcode class InterpolatedStringLiteralExpr : public LiteralExpr { /// Points at the beginning quote. SourceLoc Loc; MutableArrayRef Segments; Expr *SemanticExpr; public: InterpolatedStringLiteralExpr(SourceLoc Loc, MutableArrayRef Segments) : LiteralExpr(ExprKind::InterpolatedStringLiteral, /*Implicit=*/false), Loc(Loc), Segments(Segments), SemanticExpr() { } MutableArrayRef getSegments() { return Segments; } ArrayRef getSegments() const { return Segments; } /// \brief Retrieve the expression that actually evaluates the resulting /// string, typically with a series of '+' operations. Expr *getSemanticExpr() const { return SemanticExpr; } void setSemanticExpr(Expr *SE) { SemanticExpr = SE; } SourceLoc getStartLoc() const { return Loc; } SourceLoc getEndLoc() const { // SourceLocs are token based, and the interpolated string is one string // token, so the range should be (Start == End). return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::InterpolatedStringLiteral; } }; /// MagicIdentifierLiteralExpr - A magic identifier like #file which expands /// out to a literal at SILGen time. class MagicIdentifierLiteralExpr : public LiteralExpr { public: enum Kind : unsigned { File, Line, Column, Function, DSOHandle }; private: SourceLoc Loc; ConcreteDeclRef BuiltinInitializer; ConcreteDeclRef Initializer; public: MagicIdentifierLiteralExpr(Kind kind, SourceLoc loc, bool implicit = false) : LiteralExpr(ExprKind::MagicIdentifierLiteral, implicit), Loc(loc) { Bits.MagicIdentifierLiteralExpr.Kind = static_cast(kind); Bits.MagicIdentifierLiteralExpr.StringEncoding = static_cast(StringLiteralExpr::UTF8); } Kind getKind() const { return static_cast(Bits.MagicIdentifierLiteralExpr.Kind); } bool isFile() const { return getKind() == File; } bool isFunction() const { return getKind() == Function; } bool isLine() const { return getKind() == Line; } bool isColumn() const { return getKind() == Column; } bool isString() const { switch (getKind()) { case File: case Function: return true; case Line: case Column: case DSOHandle: return false; } llvm_unreachable("bad Kind"); } SourceRange getSourceRange() const { return Loc; } // For a magic identifier that produces a string literal, retrieve the // encoding for that string literal. StringLiteralExpr::Encoding getStringEncoding() const { assert(isString() && "Magic identifier literal has non-string encoding"); return static_cast( Bits.MagicIdentifierLiteralExpr.StringEncoding); } // For a magic identifier that produces a string literal, set the encoding // for the string literal. void setStringEncoding(StringLiteralExpr::Encoding encoding) { assert(isString() && "Magic identifier literal has non-string encoding"); Bits.MagicIdentifierLiteralExpr.StringEncoding = static_cast(encoding); } /// Retrieve the builtin initializer that will be used to construct the string /// literal. /// /// Any type-checked string literal will have a builtin initializer, which is /// called first to form a concrete Swift type. ConcreteDeclRef getBuiltinInitializer() const { assert(isString() && "Magic identifier literal is not a string"); return BuiltinInitializer; } /// Set the builtin initializer that will be used to construct the string /// literal. void setBuiltinInitializer(ConcreteDeclRef builtinInitializer) { assert(isString() && "Magic identifier literal is not a string"); BuiltinInitializer = builtinInitializer; } /// Retrieve the initializer that will be used to construct the string /// literal from the result of the initializer. /// /// Only string literals that have no builtin literal conformance will have /// this initializer, which will be called on the result of the builtin /// initializer. ConcreteDeclRef getInitializer() const { assert(isString() && "Magic identifier literal is not a string"); return Initializer; } /// Set the initializer that will be used to construct the string literal. void setInitializer(ConcreteDeclRef initializer) { assert(isString() && "Magic identifier literal is not a string"); Initializer = initializer; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::MagicIdentifierLiteral; } }; // ObjectLiteralExpr - An expression of the form // '#colorLiteral(red: 1, blue: 0, green: 0, alpha: 1)' with a name and a list // argument. The components of the list argument are meant to be themselves // constant. class ObjectLiteralExpr final : public LiteralExpr, public TrailingCallArguments { public: /// The kind of object literal. enum LiteralKind : unsigned { #define POUND_OBJECT_LITERAL(Name, Desc, Proto) Name, #include "swift/Syntax/TokenKinds.def" }; private: Expr *Arg; Expr *SemanticExpr; SourceLoc PoundLoc; ObjectLiteralExpr(SourceLoc PoundLoc, LiteralKind LitKind, Expr *Arg, ArrayRef argLabels, ArrayRef argLabelLocs, bool hasTrailingClosure, bool implicit); public: /// Create a new object literal expression. /// /// Note: prefer to use the second entry point, which separates out /// arguments/labels/etc. static ObjectLiteralExpr * create(ASTContext &ctx, SourceLoc poundLoc, LiteralKind kind, Expr *arg, bool implicit, llvm::function_ref getType); /// Create a new object literal expression. static ObjectLiteralExpr *create(ASTContext &ctx, SourceLoc poundLoc, LiteralKind kind, SourceLoc lParenLoc, ArrayRef args, ArrayRef argLabels, ArrayRef argLabelLocs, SourceLoc rParenLoc, Expr *trailingClosure, bool implicit); LiteralKind getLiteralKind() const { return static_cast(Bits.ObjectLiteralExpr.LitKind); } Expr *getArg() const { return Arg; } void setArg(Expr *arg) { Arg = arg; } unsigned getNumArguments() const { return Bits.ObjectLiteralExpr.NumArgLabels; } bool hasArgumentLabelLocs() const { return Bits.ObjectLiteralExpr.HasArgLabelLocs; } /// Whether this call with written with a trailing closure. bool hasTrailingClosure() const { return Bits.ObjectLiteralExpr.HasTrailingClosure; } Expr *getSemanticExpr() const { return SemanticExpr; } void setSemanticExpr(Expr *expr) { SemanticExpr = expr; } SourceLoc getSourceLoc() const { return PoundLoc; } SourceRange getSourceRange() const { return SourceRange(PoundLoc, Arg->getEndLoc()); } /// Return the string form of the literal name. StringRef getLiteralKindRawName() const; StringRef getLiteralKindPlainName() const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::ObjectLiteral; } }; /// DiscardAssignmentExpr - A '_' in the left-hand side of an assignment, which /// discards the corresponding tuple element on the right-hand side. class DiscardAssignmentExpr : public Expr { SourceLoc Loc; public: DiscardAssignmentExpr(SourceLoc Loc, bool Implicit) : Expr(ExprKind::DiscardAssignment, Implicit), Loc(Loc) {} SourceRange getSourceRange() const { return Loc; } SourceLoc getLoc() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DiscardAssignment; } }; /// DeclRefExpr - A reference to a value, "x". class DeclRefExpr : public Expr { /// \brief The declaration pointer. ConcreteDeclRef D; DeclNameLoc Loc; public: DeclRefExpr(ConcreteDeclRef D, DeclNameLoc Loc, bool Implicit, AccessSemantics semantics = AccessSemantics::Ordinary, Type Ty = Type()) : Expr(ExprKind::DeclRef, Implicit, Ty), D(D), Loc(Loc) { Bits.DeclRefExpr.Semantics = (unsigned) semantics; Bits.DeclRefExpr.FunctionRefKind = static_cast(Loc.isCompound() ? FunctionRefKind::Compound : FunctionRefKind::Unapplied); } /// Retrieve the declaration to which this expression refers. ValueDecl *getDecl() const { return getDeclRef().getDecl(); } /// Return true if this access is direct, meaning that it does not call the /// getter or setter. AccessSemantics getAccessSemantics() const { return (AccessSemantics) Bits.DeclRefExpr.Semantics; } /// Retrieve the concrete declaration reference. ConcreteDeclRef getDeclRef() const { return D; } SourceRange getSourceRange() const { return Loc.getSourceRange(); } SourceLoc getLoc() const { return Loc.getBaseNameLoc(); } DeclNameLoc getNameLoc() const { return Loc; } /// Retrieve the kind of function reference. FunctionRefKind getFunctionRefKind() const { return static_cast(Bits.DeclRefExpr.FunctionRefKind); } /// Set the kind of function reference. void setFunctionRefKind(FunctionRefKind refKind) { Bits.DeclRefExpr.FunctionRefKind = static_cast(refKind); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DeclRef; } }; /// A reference to 'super'. References to members of 'super' resolve to members /// of a superclass of 'self'. class SuperRefExpr : public Expr { VarDecl *Self; SourceLoc Loc; public: SuperRefExpr(VarDecl *Self, SourceLoc Loc, bool Implicit, Type SuperTy = Type()) : Expr(ExprKind::SuperRef, Implicit, SuperTy), Self(Self), Loc(Loc) {} VarDecl *getSelf() const { return Self; } SourceLoc getSuperLoc() const { return Loc; } SourceRange getSourceRange() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::SuperRef; } }; /// A reference to a type in expression context, spelled out as a TypeLoc. Sema /// forms this expression as a result of name binding. This always has /// MetaTypetype. class TypeExpr : public Expr { TypeLoc Info; TypeExpr(Type Ty); public: // Create a TypeExpr with location information. TypeExpr(TypeLoc Ty); // The type of a TypeExpr is always a metatype type. Return the instance // type, ErrorType if an error, or null if not set yet. Type getInstanceType(llvm::function_ref hasType = [](const Expr *E) -> bool { return !!E->getType(); }, llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }) const; // Create an implicit TypeExpr, which has no location information. static TypeExpr *createImplicit(Type Ty, ASTContext &C) { return new (C) TypeExpr(Ty); } // Create an implicit TypeExpr, with location information even though it // shouldn't have one. This is presently used to work around other location // processing bugs. If you have an implicit location, use createImplicit. static TypeExpr *createImplicitHack(SourceLoc Loc, Type Ty, ASTContext &C); /// Create a TypeExpr for a TypeDecl at the specified location. static TypeExpr *createForDecl(SourceLoc Loc, TypeDecl *D, DeclContext *DC, bool isImplicit); /// Create a TypeExpr for a member TypeDecl of the given parent TypeDecl. static TypeExpr *createForMemberDecl(SourceLoc ParentNameLoc, TypeDecl *Parent, SourceLoc NameLoc, TypeDecl *Decl); /// Create a TypeExpr for a member TypeDecl of the given parent IdentTypeRepr. static TypeExpr *createForMemberDecl(IdentTypeRepr *ParentTR, SourceLoc NameLoc, TypeDecl *Decl); /// Create a TypeExpr from an IdentTypeRepr with the given arguments applied /// at the specified location. /// /// Returns nullptr if the reference cannot be formed, which is a hack due /// to limitations in how we model generic typealiases. static TypeExpr *createForSpecializedDecl(IdentTypeRepr *ParentTR, ArrayRef Args, SourceRange AngleLocs, ASTContext &C); TypeLoc &getTypeLoc() { return Info; } TypeLoc getTypeLoc() const { return Info; } TypeRepr *getTypeRepr() const { return Info.getTypeRepr(); } // NOTE: TypeExpr::getType() returns the type of the expr node, which is the // metatype of what is stored as an operand type. SourceRange getSourceRange() const { return Info.getSourceRange(); } // TODO: optimize getStartLoc() and getEndLoc() when TypeLoc allows it. static bool classof(const Expr *E) { return E->getKind() == ExprKind::Type; } }; /// A reference to another initializer from within a constructor body, /// either to a delegating initializer or to a super.init invocation. /// For a reference type, this semantically references a different constructor /// entry point, called the 'initializing constructor', from the 'allocating /// constructor' entry point referenced by a 'new' expression. class OtherConstructorDeclRefExpr : public Expr { ConcreteDeclRef Ctor; DeclNameLoc Loc; public: OtherConstructorDeclRefExpr(ConcreteDeclRef Ctor, DeclNameLoc Loc, bool Implicit, Type Ty = {}) : Expr(ExprKind::OtherConstructorDeclRef, Implicit, Ty), Ctor(Ctor), Loc(Loc) {} ConstructorDecl *getDecl() const; ConcreteDeclRef getDeclRef() const { return Ctor; } SourceLoc getLoc() const { return Loc.getBaseNameLoc(); } DeclNameLoc getConstructorLoc() const { return Loc; } SourceRange getSourceRange() const { return Loc.getSourceRange(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OtherConstructorDeclRef; } }; /// OverloadSetRefExpr - A reference to an overloaded set of values with a /// single name. /// /// This is an abstract class that covers the various different kinds of /// overload sets. class OverloadSetRefExpr : public Expr { ArrayRef Decls; protected: OverloadSetRefExpr(ExprKind Kind, ArrayRef decls, FunctionRefKind functionRefKind, bool Implicit, Type Ty) : Expr(Kind, Implicit, Ty), Decls(decls) { Bits.OverloadSetRefExpr.FunctionRefKind = static_cast(functionRefKind); } public: ArrayRef getDecls() const { return Decls; } void setDecls(ArrayRef domain) { Decls = domain; } /// getBaseType - Determine the type of the base object provided for the /// given overload set, which is only non-null when dealing with an overloaded /// member reference. Type getBaseType() const; /// hasBaseObject - Determine whether this overloaded expression has a /// concrete base object (which is not a metatype). bool hasBaseObject() const; /// Retrieve the kind of function reference. FunctionRefKind getFunctionRefKind() const { return static_cast( Bits.OverloadSetRefExpr.FunctionRefKind); } /// Set the kind of function reference. void setFunctionRefKind(FunctionRefKind refKind) { Bits.OverloadSetRefExpr.FunctionRefKind = static_cast(refKind); } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_OverloadSetRefExpr && E->getKind() <= ExprKind::Last_OverloadSetRefExpr; } }; /// OverloadedDeclRefExpr - A reference to an overloaded name that should /// eventually be resolved (by overload resolution) to a value reference. class OverloadedDeclRefExpr final : public OverloadSetRefExpr { DeclNameLoc Loc; public: OverloadedDeclRefExpr(ArrayRef Decls, DeclNameLoc Loc, FunctionRefKind functionRefKind, bool Implicit, Type Ty = Type()) : OverloadSetRefExpr(ExprKind::OverloadedDeclRef, Decls, functionRefKind, Implicit, Ty), Loc(Loc) { } DeclNameLoc getNameLoc() const { return Loc; } SourceLoc getLoc() const { return Loc.getBaseNameLoc(); } SourceRange getSourceRange() const { return Loc.getSourceRange(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OverloadedDeclRef; } }; /// UnresolvedDeclRefExpr - This represents use of an undeclared identifier, /// which may ultimately be a use of something that hasn't been defined yet, it /// may be a use of something that got imported (which will be resolved during /// sema), or may just be a use of an unknown identifier. /// class UnresolvedDeclRefExpr : public Expr { DeclName Name; DeclNameLoc Loc; public: UnresolvedDeclRefExpr(DeclName name, DeclRefKind refKind, DeclNameLoc loc) : Expr(ExprKind::UnresolvedDeclRef, /*Implicit=*/loc.isInvalid()), Name(name), Loc(loc) { Bits.UnresolvedDeclRefExpr.DeclRefKind = static_cast(refKind); Bits.UnresolvedDeclRefExpr.FunctionRefKind = static_cast(Loc.isCompound() ? FunctionRefKind::Compound : FunctionRefKind::Unapplied); } bool hasName() const { return static_cast(Name); } DeclName getName() const { return Name; } DeclRefKind getRefKind() const { return static_cast(Bits.UnresolvedDeclRefExpr.DeclRefKind); } /// Retrieve the kind of function reference. FunctionRefKind getFunctionRefKind() const { return static_cast( Bits.UnresolvedDeclRefExpr.FunctionRefKind); } /// Set the kind of function reference. void setFunctionRefKind(FunctionRefKind refKind) { Bits.UnresolvedDeclRefExpr.FunctionRefKind = static_cast(refKind); } DeclNameLoc getNameLoc() const { return Loc; } SourceRange getSourceRange() const { return Loc.getSourceRange(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedDeclRef; } }; /// MemberRefExpr - This represents 'a.b' where we are referring to a member /// of a type, such as a property or variable. /// /// Note that methods found via 'dot' syntax are expressed as DotSyntaxCallExpr /// nodes, because 'a.f' is actually an application of 'a' (the implicit object /// argument) to the function 'f'. class MemberRefExpr : public Expr { Expr *Base; ConcreteDeclRef Member; SourceLoc DotLoc; DeclNameLoc NameLoc; public: MemberRefExpr(Expr *base, SourceLoc dotLoc, ConcreteDeclRef member, DeclNameLoc loc, bool Implicit, AccessSemantics semantics = AccessSemantics::Ordinary); Expr *getBase() const { return Base; } ConcreteDeclRef getMember() const { return Member; } DeclNameLoc getNameLoc() const { return NameLoc; } SourceLoc getDotLoc() const { return DotLoc; } void setBase(Expr *E) { Base = E; } /// Return true if this member access is direct, meaning that it /// does not call the getter or setter. AccessSemantics getAccessSemantics() const { return (AccessSemantics) Bits.MemberRefExpr.Semantics; } /// Determine whether this member reference refers to the /// superclass's property. bool isSuper() const { return Bits.MemberRefExpr.IsSuper; } /// Set whether this member reference refers to the superclass's /// property. void setIsSuper(bool isSuper) { Bits.MemberRefExpr.IsSuper = isSuper; } SourceLoc getLoc() const { return NameLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { SourceLoc BaseStartLoc = Base->getStartLoc(); if (BaseStartLoc.isInvalid() || NameLoc.isInvalid()) { return NameLoc.getBaseNameLoc(); } else { return BaseStartLoc; } } SourceLoc getEndLoc() const { return NameLoc.getSourceRange().End; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::MemberRef; } }; /// Common base for expressions that involve dynamic lookup, which /// determines at runtime whether a particular method, property, or /// subscript is available. class DynamicLookupExpr : public Expr { protected: Expr *Base; ConcreteDeclRef Member; explicit DynamicLookupExpr(ExprKind kind, ConcreteDeclRef member, Expr *base) : Expr(kind, /*Implicit=*/false), Base(base), Member(member) { } public: /// Retrieve the member to which this access refers. ConcreteDeclRef getMember() const { return Member; } /// Retrieve the base of the expression. Expr *getBase() const { return Base; } /// Replace the base of the expression. void setBase(Expr *base) { Base = base; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_DynamicLookupExpr && E->getKind() <= ExprKind::Last_DynamicLookupExpr; } }; /// A reference to a member of an object that was found via dynamic lookup. /// /// A member found via dynamic lookup may not actually be available at runtime. /// Therefore, a reference to that member always returns an optional instance. /// Users can then propagate the optional (via ?) or assert that the member is /// always available (via !). For example: /// /// \code /// class C { /// func @objc foo(i : Int) -> String { ... } /// }; /// /// var x : AnyObject = /// print(x.foo!(17)) // x.foo has type ((i : Int) -> String)? /// \endcode class DynamicMemberRefExpr : public DynamicLookupExpr { SourceLoc DotLoc; DeclNameLoc NameLoc; public: DynamicMemberRefExpr(Expr *base, SourceLoc dotLoc, ConcreteDeclRef member, DeclNameLoc nameLoc) : DynamicLookupExpr(ExprKind::DynamicMemberRef, member, base), DotLoc(dotLoc), NameLoc(nameLoc) { } /// Retrieve the location of the member name. DeclNameLoc getNameLoc() const { return NameLoc; } /// Retrieve the location of the '.'. SourceLoc getDotLoc() const { return DotLoc; } SourceLoc getLoc() const { return NameLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { SourceLoc BaseStartLoc = Base->getStartLoc(); if (BaseStartLoc.isInvalid() || NameLoc.isInvalid()) { return NameLoc.getBaseNameLoc(); } else { return BaseStartLoc; } } SourceLoc getEndLoc() const { return NameLoc.getSourceRange().End; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DynamicMemberRef; } }; /// A subscript on an object with dynamic lookup type. /// /// A subscript found via dynamic lookup may not actually be available /// at runtime. Therefore, the result of performing the subscript /// operation always returns an optional instance.Users can then /// propagate the optional (via ?) or assert that the member is always /// available (via !). For example: /// /// \code /// class C { /// @objc subscript (i : Int) -> String { /// get { /// ... /// } /// } /// }; /// /// var x : AnyObject = /// print(x[27]! // x[27] has type String? /// \endcode class DynamicSubscriptExpr final : public DynamicLookupExpr, public TrailingCallArguments { friend TrailingCallArguments; Expr *Index; DynamicSubscriptExpr(Expr *base, Expr *index, ArrayRef argLabels, ArrayRef argLabelLocs, bool hasTrailingClosure, ConcreteDeclRef member, bool implicit); public: /// Create a dynamic subscript. /// /// Note: do not create new callers to this entry point; use the entry point /// that takes separate index arguments. static DynamicSubscriptExpr * create(ASTContext &ctx, Expr *base, Expr *index, ConcreteDeclRef decl, bool implicit, llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }); /// Create a new dynamic subscript. static DynamicSubscriptExpr *create(ASTContext &ctx, Expr *base, SourceLoc lSquareLoc, ArrayRef indexArgs, ArrayRef indexArgLabels, ArrayRef indexArgLabelLocs, SourceLoc rSquareLoc, Expr *trailingClosure, ConcreteDeclRef decl, bool implicit); /// Retrieve the base of the expression. Expr *getBase() const { return Base; } /// Replace the base of the expression. void setBase(Expr *base) { Base = base; } /// getIndex - Retrieve the index of the subscript expression, i.e., the /// "offset" into the base value. Expr *getIndex() const { return Index; } void setIndex(Expr *E) { Index = E; } unsigned getNumArguments() const { return Bits.DynamicSubscriptExpr.NumArgLabels; } bool hasArgumentLabelLocs() const { return Bits.DynamicSubscriptExpr.HasArgLabelLocs; } /// Whether this call with written with a trailing closure. bool hasTrailingClosure() const { return Bits.DynamicSubscriptExpr.HasTrailingClosure; } SourceLoc getLoc() const { return Index->getStartLoc(); } SourceLoc getStartLoc() const { return Base->getStartLoc(); } SourceLoc getEndLoc() const { return Index->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DynamicSubscript; } }; /// UnresolvedMemberExpr - This represents '.foo', an unresolved reference to a /// member, which is to be resolved with context sensitive type information into /// bar.foo. These always have unresolved type. class UnresolvedMemberExpr final : public Expr, public TrailingCallArguments { SourceLoc DotLoc; DeclNameLoc NameLoc; DeclName Name; Expr *Argument; UnresolvedMemberExpr(SourceLoc dotLoc, DeclNameLoc nameLoc, DeclName name, Expr *argument, ArrayRef argLabels, ArrayRef argLabelLocs, bool hasTrailingClosure, bool implicit); public: /// Create a new unresolved member expression with no arguments. static UnresolvedMemberExpr *create(ASTContext &ctx, SourceLoc dotLoc, DeclNameLoc nameLoc, DeclName name, bool implicit); /// Create a new unresolved member expression. static UnresolvedMemberExpr *create(ASTContext &ctx, SourceLoc dotLoc, DeclNameLoc nameLoc, DeclName name, SourceLoc lParenLoc, ArrayRef args, ArrayRef argLabels, ArrayRef argLabelLocs, SourceLoc rParenLoc, Expr *trailingClosure, bool implicit); DeclName getName() const { return Name; } DeclNameLoc getNameLoc() const { return NameLoc; } SourceLoc getDotLoc() const { return DotLoc; } Expr *getArgument() const { return Argument; } void setArgument(Expr *argument) { Argument = argument; } /// Whether this reference has arguments. bool hasArguments() const { return Bits.UnresolvedMemberExpr.HasArguments; } unsigned getNumArguments() const { return Bits.UnresolvedMemberExpr.NumArgLabels; } bool hasArgumentLabelLocs() const { return Bits.UnresolvedMemberExpr.HasArgLabelLocs; } /// Whether this call with written with a trailing closure. bool hasTrailingClosure() const { return Bits.UnresolvedMemberExpr.HasTrailingClosure; } SourceLoc getLoc() const { return NameLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { return DotLoc; } SourceLoc getEndLoc() const { return (Argument ? Argument->getEndLoc() : NameLoc.getSourceRange().End); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedMember; } }; /// AnyTryExpr - An abstract superclass for 'try' and 'try!'. /// /// These are like IdentityExpr in some ways, but they're a bit too /// semantic differentiated to just always look through. class AnyTryExpr : public Expr { Expr *SubExpr; SourceLoc TryLoc; public: AnyTryExpr(ExprKind kind, SourceLoc tryLoc, Expr *sub, Type type, bool implicit) : Expr(kind, implicit, type), SubExpr(sub), TryLoc(tryLoc) {} SourceLoc getLoc() const { return SubExpr->getLoc(); } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *E) { SubExpr = E; } SourceLoc getTryLoc() const { return TryLoc; } SourceLoc getStartLoc() const { return TryLoc; } SourceLoc getEndLoc() const { return getSubExpr()->getEndLoc(); } static bool classof(const Expr *e) { return e->getKind() >= ExprKind::First_AnyTryExpr && e->getKind() <= ExprKind::Last_AnyTryExpr; } }; /// TryExpr - A 'try' surrounding an expression, marking that the /// expression contains code which might throw. /// /// getSemanticsProvidingExpr() looks through this because it doesn't /// provide the value and only very specific clients care where the /// 'try' was written. class TryExpr : public AnyTryExpr { public: TryExpr(SourceLoc tryLoc, Expr *sub, Type type = Type(), bool implicit = false) : AnyTryExpr(ExprKind::Try, tryLoc, sub, type, implicit) {} static bool classof(const Expr *e) { return e->getKind() == ExprKind::Try; } }; /// ForceTryExpr - A 'try!' surrounding an expression, marking that /// the expression contains code which might throw, but that the code /// should dynamically assert if it does. class ForceTryExpr : public AnyTryExpr { SourceLoc ExclaimLoc; public: ForceTryExpr(SourceLoc tryLoc, Expr *sub, SourceLoc exclaimLoc, Type type = Type(), bool implicit = false) : AnyTryExpr(ExprKind::ForceTry, tryLoc, sub, type, implicit), ExclaimLoc(exclaimLoc) {} SourceLoc getExclaimLoc() const { return ExclaimLoc; } static bool classof(const Expr *e) { return e->getKind() == ExprKind::ForceTry; } }; /// A 'try?' surrounding an expression, marking that the expression contains /// code which might throw, and that the result should be injected into an /// Optional. If the code does throw, \c nil is produced. class OptionalTryExpr : public AnyTryExpr { SourceLoc QuestionLoc; public: OptionalTryExpr(SourceLoc tryLoc, Expr *sub, SourceLoc questionLoc, Type type = Type(), bool implicit = false) : AnyTryExpr(ExprKind::OptionalTry, tryLoc, sub, type, implicit), QuestionLoc(questionLoc) {} SourceLoc getQuestionLoc() const { return QuestionLoc; } static bool classof(const Expr *e) { return e->getKind() == ExprKind::OptionalTry; } }; /// An expression node that does not affect the evaluation of its subexpression. class IdentityExpr : public Expr { Expr *SubExpr; public: IdentityExpr(ExprKind kind, Expr *subExpr, Type ty = Type(), bool implicit = false) : Expr(kind, implicit, ty), SubExpr(subExpr) {} SourceLoc getLoc() const { return SubExpr->getLoc(); } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *E) { SubExpr = E; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_IdentityExpr && E->getKind() <= ExprKind::Last_IdentityExpr; } }; /// The '.self' pseudo-property, which has no effect except to /// satisfy the syntactic requirement that type values appear only as part of /// a property chain. class DotSelfExpr : public IdentityExpr { SourceLoc DotLoc; SourceLoc SelfLoc; public: DotSelfExpr(Expr *subExpr, SourceLoc dot, SourceLoc self, Type ty = Type()) : IdentityExpr(ExprKind::DotSelf, subExpr, ty), DotLoc(dot), SelfLoc(self) {} SourceLoc getDotLoc() const { return DotLoc; } SourceLoc getSelfLoc() const { return SelfLoc; } SourceLoc getStartLoc() const { return getSubExpr()->getStartLoc(); } SourceLoc getEndLoc() const { return SelfLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DotSelf; } }; /// A parenthesized expression like '(x+x)'. Syntactically, /// this is just a TupleExpr with exactly one element that has no label. /// Semantically, however, it serves only as grouping parentheses and /// does not form an expression of tuple type (unless the sub-expression /// has tuple type, of course). class ParenExpr : public IdentityExpr { SourceLoc LParenLoc, RParenLoc; public: ParenExpr(SourceLoc lploc, Expr *subExpr, SourceLoc rploc, bool hasTrailingClosure, Type ty = Type()) : IdentityExpr(ExprKind::Paren, subExpr, ty), LParenLoc(lploc), RParenLoc(rploc) { Bits.ParenExpr.HasTrailingClosure = hasTrailingClosure; assert(lploc.isValid() == rploc.isValid() && "Mismatched source location information"); } SourceLoc getLParenLoc() const { return LParenLoc; } SourceLoc getRParenLoc() const { return RParenLoc; } // When the locations of the parens are invalid, ask our // subexpression for its source range instead. This isn't a // hot path and so we don't both optimizing for it. SourceLoc getStartLoc() const { return (LParenLoc.isInvalid() ? getSubExpr()->getStartLoc() : LParenLoc); } SourceLoc getEndLoc() const { // If we have a trailing closure, our end point is the end of the // trailing closure. if (RParenLoc.isInvalid() || Bits.ParenExpr.HasTrailingClosure) return getSubExpr()->getEndLoc(); return RParenLoc; } /// \brief Whether this expression has a trailing closure as its argument. bool hasTrailingClosure() const { return Bits.ParenExpr.HasTrailingClosure; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Paren; } }; /// TupleExpr - Parenthesized expressions like '(a: x+x)' and '(x, y, 4)'. Also /// used to represent the operands to a binary operator. Note that /// expressions like '(4)' are represented with a ParenExpr. class TupleExpr final : public Expr, private llvm::TrailingObjects { friend TrailingObjects; SourceLoc LParenLoc; SourceLoc RParenLoc; size_t numTrailingObjects(OverloadToken) const { return getNumElements(); } size_t numTrailingObjects(OverloadToken) const { return hasElementNames() ? getNumElements() : 0; } size_t numTrailingObjects(OverloadToken) const { return hasElementNames() ? getNumElements() : 0; } /// Retrieve the buffer containing the element names. MutableArrayRef getElementNamesBuffer() { if (!hasElementNames()) return { }; return { getTrailingObjects(), getNumElements() }; } /// Retrieve the buffer containing the element name locations. MutableArrayRef getElementNameLocsBuffer() { if (!hasElementNameLocs()) return { }; return { getTrailingObjects(), getNumElements() }; } TupleExpr(SourceLoc LParenLoc, ArrayRef SubExprs, ArrayRef ElementNames, ArrayRef ElementNameLocs, SourceLoc RParenLoc, bool HasTrailingClosure, bool Implicit, Type Ty); public: /// Create a tuple. static TupleExpr *create(ASTContext &ctx, SourceLoc LParenLoc, ArrayRef SubExprs, ArrayRef ElementNames, ArrayRef ElementNameLocs, SourceLoc RParenLoc, bool HasTrailingClosure, bool Implicit, Type Ty = Type()); /// Create an empty tuple. static TupleExpr *createEmpty(ASTContext &ctx, SourceLoc LParenLoc, SourceLoc RParenLoc, bool Implicit); /// Create an implicit tuple with no source information. static TupleExpr *createImplicit(ASTContext &ctx, ArrayRef SubExprs, ArrayRef ElementNames); SourceLoc getLParenLoc() const { return LParenLoc; } SourceLoc getRParenLoc() const { return RParenLoc; } SourceRange getSourceRange() const; /// \brief Whether this expression has a trailing closure as its argument. bool hasTrailingClosure() const { return Bits.TupleExpr.HasTrailingClosure; } /// Retrieve the elements of this tuple. MutableArrayRef getElements() { return { getTrailingObjects(), getNumElements() }; } /// Retrieve the elements of this tuple. ArrayRef getElements() const { return { getTrailingObjects(), getNumElements() }; } unsigned getNumElements() const { return Bits.TupleExpr.NumElements; } Expr *getElement(unsigned i) const { return getElements()[i]; } void setElement(unsigned i, Expr *e) { getElements()[i] = e; } /// Whether this tuple has element names. bool hasElementNames() const { return Bits.TupleExpr.HasElementNames; } /// Retrieve the element names for a tuple. ArrayRef getElementNames() const { return const_cast(this)->getElementNamesBuffer(); } /// Retrieve the ith element name. Identifier getElementName(unsigned i) const { return hasElementNames() ? getElementNames()[i] : Identifier(); } /// Whether this tuple has element name locations. bool hasElementNameLocs() const { return Bits.TupleExpr.HasElementNameLocations; } /// Retrieve the locations of the element names for a tuple. ArrayRef getElementNameLocs() const { return const_cast(this)->getElementNameLocsBuffer(); } /// Retrieve the location of the ith label, if known. SourceLoc getElementNameLoc(unsigned i) const { if (hasElementNameLocs()) return getElementNameLocs()[i]; return SourceLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Tuple; } }; /// \brief A collection literal expression. /// /// The subexpression is represented as a TupleExpr or ParenExpr and /// passed on to the appropriate semantics-providing conversion /// operation. class CollectionExpr : public Expr { SourceLoc LBracketLoc; SourceLoc RBracketLoc; Expr *SemanticExpr = nullptr; /// Retrieve the intrusive pointer storage from the subtype Expr *const *getTrailingObjectsPointer() const; Expr **getTrailingObjectsPointer() { const CollectionExpr *temp = this; return const_cast(temp->getTrailingObjectsPointer()); } /// Retrieve the intrusive pointer storage from the subtype const SourceLoc *getTrailingSourceLocs() const; SourceLoc *getTrailingSourceLocs() { const CollectionExpr *temp = this; return const_cast(temp->getTrailingSourceLocs()); } protected: CollectionExpr(ExprKind Kind, SourceLoc LBracketLoc, ArrayRef Elements, ArrayRef CommaLocs, SourceLoc RBracketLoc, Type Ty) : Expr(Kind, /*Implicit=*/false, Ty), LBracketLoc(LBracketLoc), RBracketLoc(RBracketLoc) { Bits.CollectionExpr.IsTypeDefaulted = false; Bits.CollectionExpr.NumSubExprs = Elements.size(); Bits.CollectionExpr.NumCommas = CommaLocs.size(); assert(Bits.CollectionExpr.NumCommas == CommaLocs.size() && "Truncation"); std::uninitialized_copy(Elements.begin(), Elements.end(), getTrailingObjectsPointer()); std::uninitialized_copy(CommaLocs.begin(), CommaLocs.end(), getTrailingSourceLocs()); } public: /// Retrieve the elements stored in the collection. ArrayRef getElements() const { return {getTrailingObjectsPointer(), Bits.CollectionExpr.NumSubExprs}; } MutableArrayRef getElements() { return {getTrailingObjectsPointer(), Bits.CollectionExpr.NumSubExprs}; } Expr *getElement(unsigned i) const { return getElements()[i]; } void setElement(unsigned i, Expr *E) { getElements()[i] = E; } unsigned getNumElements() const { return Bits.CollectionExpr.NumSubExprs; } /// Retrieve the comma source locations stored in the collection. Please note /// that trailing commas are currently allowed, and that invalid code may have /// stray or missing commas. MutableArrayRef getCommaLocs() { return {getTrailingSourceLocs(), Bits.CollectionExpr.NumCommas}; } ArrayRef getCommaLocs() const { return {getTrailingSourceLocs(), Bits.CollectionExpr.NumCommas}; } unsigned getNumCommas() const { return Bits.CollectionExpr.NumCommas; } bool isTypeDefaulted() const { return Bits.CollectionExpr.IsTypeDefaulted; } void setIsTypeDefaulted(bool value = true) { Bits.CollectionExpr.IsTypeDefaulted = value; } SourceLoc getLBracketLoc() const { return LBracketLoc; } SourceLoc getRBracketLoc() const { return RBracketLoc; } SourceRange getSourceRange() const { return SourceRange(LBracketLoc, RBracketLoc); } Expr *getSemanticExpr() const { return SemanticExpr; } void setSemanticExpr(Expr *e) { SemanticExpr = e; } static bool classof(const Expr *e) { return e->getKind() >= ExprKind::First_CollectionExpr && e->getKind() <= ExprKind::Last_CollectionExpr; } }; /// \brief An array literal expression [a, b, c]. class ArrayExpr final : public CollectionExpr, private llvm::TrailingObjects { friend TrailingObjects; friend CollectionExpr; size_t numTrailingObjects(OverloadToken) const { return getNumElements(); } size_t numTrailingObjects(OverloadToken) const { return getNumCommas(); } ArrayExpr(SourceLoc LBracketLoc, ArrayRef Elements, ArrayRef CommaLocs, SourceLoc RBracketLoc, Type Ty) : CollectionExpr(ExprKind::Array, LBracketLoc, Elements, CommaLocs, RBracketLoc, Ty) { } public: static ArrayExpr *create(ASTContext &C, SourceLoc LBracketLoc, ArrayRef Elements, ArrayRef CommaLocs, SourceLoc RBracketLoc, Type Ty = Type()); static bool classof(const Expr *e) { return e->getKind() == ExprKind::Array; } }; /// \brief A dictionary literal expression [a : x, b : y, c : z]. class DictionaryExpr final : public CollectionExpr, private llvm::TrailingObjects { friend TrailingObjects; friend CollectionExpr; size_t numTrailingObjects(OverloadToken) const { return getNumElements(); } size_t numTrailingObjects(OverloadToken) const { return getNumCommas(); } DictionaryExpr(SourceLoc LBracketLoc, ArrayRef Elements, ArrayRef CommaLocs, SourceLoc RBracketLoc, Type Ty) : CollectionExpr(ExprKind::Dictionary, LBracketLoc, Elements, CommaLocs, RBracketLoc, Ty) { } public: static DictionaryExpr *create(ASTContext &C, SourceLoc LBracketLoc, ArrayRef Elements, ArrayRef CommaLocs, SourceLoc RBracketLoc, Type Ty = Type()); static bool classof(const Expr *e) { return e->getKind() == ExprKind::Dictionary; } }; /// Subscripting expressions like a[i] that refer to an element within a /// container. /// /// There is no built-in subscripting in the language. Rather, a fully /// type-checked and well-formed subscript expression refers to a subscript /// declaration, which provides a getter and (optionally) a setter that will /// be used to perform reads/writes. class SubscriptExpr final : public Expr, public TrailingCallArguments { friend TrailingCallArguments; ConcreteDeclRef TheDecl; Expr *Base; Expr *Index; SubscriptExpr(Expr *base, Expr *index, ArrayRef argLabels, ArrayRef argLabelLocs, bool hasTrailingClosure, ConcreteDeclRef decl, bool implicit, AccessSemantics semantics); public: /// Create a subscript. /// /// Note: do not create new callers to this entry point; use the entry point /// that takes separate index arguments. static SubscriptExpr * create(ASTContext &ctx, Expr *base, Expr *index, ConcreteDeclRef decl = ConcreteDeclRef(), bool implicit = false, AccessSemantics semantics = AccessSemantics::Ordinary, llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }); /// Create a new subscript. static SubscriptExpr *create(ASTContext &ctx, Expr *base, SourceLoc lSquareLoc, ArrayRef indexArgs, ArrayRef indexArgLabels, ArrayRef indexArgLabelLocs, SourceLoc rSquareLoc, Expr *trailingClosure, ConcreteDeclRef decl = ConcreteDeclRef(), bool implicit = false, AccessSemantics semantics = AccessSemantics::Ordinary); /// getBase - Retrieve the base of the subscript expression, i.e., the /// value being indexed. Expr *getBase() const { return Base; } void setBase(Expr *E) { Base = E; } /// getIndex - Retrieve the index of the subscript expression, i.e., the /// "offset" into the base value. Expr *getIndex() const { return Index; } void setIndex(Expr *E) { Index = E; } unsigned getNumArguments() const { return Bits.SubscriptExpr.NumArgLabels; } bool hasArgumentLabelLocs() const { return Bits.SubscriptExpr.HasArgLabelLocs; } /// Whether this call with written with a trailing closure. bool hasTrailingClosure() const { return Bits.SubscriptExpr.HasTrailingClosure; } /// Determine whether this subscript reference should bypass the /// ordinary accessors. AccessSemantics getAccessSemantics() const { return (AccessSemantics) Bits.SubscriptExpr.Semantics; } /// Determine whether this member reference refers to the /// superclass's property. bool isSuper() const { return Bits.SubscriptExpr.IsSuper; } /// Set whether this member reference refers to the superclass's /// property. void setIsSuper(bool isSuper) { Bits.SubscriptExpr.IsSuper = isSuper; } /// Determine whether subscript operation has a known underlying /// subscript declaration or not. bool hasDecl() const { return static_cast(TheDecl); } /// Retrieve the subscript declaration that this subscripting /// operation refers to. Only valid when \c hasDecl() is true. ConcreteDeclRef getDecl() const { assert(hasDecl() && "No subscript declaration known!"); return TheDecl; } SourceLoc getLoc() const { return Index->getStartLoc(); } SourceLoc getStartLoc() const { return Base->getStartLoc(); } SourceLoc getEndLoc() const { auto end = Index->getEndLoc(); return end.isValid() ? end : Base->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Subscript; } }; /// Subscripting expression that applies a keypath to a base. class KeyPathApplicationExpr : public Expr { Expr *Base; Expr *KeyPath; SourceLoc LBracketLoc, RBracketLoc; public: KeyPathApplicationExpr(Expr *base, SourceLoc lBracket, Expr *keyPath, SourceLoc rBracket, Type ty, bool implicit) : Expr(ExprKind::KeyPathApplication, implicit, ty), Base(base), KeyPath(keyPath), LBracketLoc(lBracket), RBracketLoc(rBracket) {} SourceLoc getLoc() const { return LBracketLoc; } SourceLoc getStartLoc() const { return Base->getStartLoc(); } SourceLoc getEndLoc() const { return RBracketLoc; } Expr *getBase() const { return Base; } void setBase(Expr *E) { Base = E; } Expr *getKeyPath() const { return KeyPath; } void setKeyPath(Expr *E) { KeyPath = E; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::KeyPathApplication; } }; /// A member access (foo.bar) on an expression with unresolved type. class UnresolvedDotExpr : public Expr { Expr *SubExpr; SourceLoc DotLoc; DeclNameLoc NameLoc; DeclName Name; public: UnresolvedDotExpr(Expr *subexpr, SourceLoc dotloc, DeclName name, DeclNameLoc nameloc, bool Implicit) : Expr(ExprKind::UnresolvedDot, Implicit), SubExpr(subexpr), DotLoc(dotloc), NameLoc(nameloc), Name(name) { Bits.UnresolvedDotExpr.FunctionRefKind = static_cast(NameLoc.isCompound() ? FunctionRefKind::Compound : FunctionRefKind::Unapplied); } SourceLoc getLoc() const { return NameLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { return (DotLoc.isInvalid() ? NameLoc.getSourceRange().End : SubExpr->getStartLoc()); } SourceLoc getEndLoc() const { return NameLoc.getSourceRange().End; } SourceLoc getDotLoc() const { return DotLoc; } Expr *getBase() const { return SubExpr; } void setBase(Expr *e) { SubExpr = e; } DeclName getName() const { return Name; } DeclNameLoc getNameLoc() const { return NameLoc; } /// Retrieve the kind of function reference. FunctionRefKind getFunctionRefKind() const { return static_cast(Bits.UnresolvedDotExpr.FunctionRefKind); } /// Set the kind of function reference. void setFunctionRefKind(FunctionRefKind refKind) { Bits.UnresolvedDotExpr.FunctionRefKind = static_cast(refKind); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedDot; } }; /// TupleElementExpr - Refer to an element of a tuple, /// e.g. "(1,field:2).field". class TupleElementExpr : public Expr { Expr *SubExpr; SourceLoc NameLoc; SourceLoc DotLoc; public: TupleElementExpr(Expr *SubExpr, SourceLoc DotLoc, unsigned FieldNo, SourceLoc NameLoc, Type Ty) : Expr(ExprKind::TupleElement, /*Implicit=*/false, Ty), SubExpr(SubExpr), NameLoc(NameLoc), DotLoc(DotLoc) { Bits.TupleElementExpr.FieldNo = FieldNo; } SourceLoc getLoc() const { return NameLoc; } Expr *getBase() const { return SubExpr; } void setBase(Expr *e) { SubExpr = e; } unsigned getFieldNumber() const { return Bits.TupleElementExpr.FieldNo; } SourceLoc getNameLoc() const { return NameLoc; } SourceLoc getDotLoc() const { return DotLoc; } SourceLoc getStartLoc() const { return getBase()->getStartLoc(); } SourceLoc getEndLoc() const { return getNameLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::TupleElement; } }; /// \brief Describes a monadic bind from T? to T. /// /// In a ?-chain expression, this is the part that's spelled with a /// postfix ?. /// /// A BindOptionalExpr must always appear within a /// OptionalEvaluationExpr. If the operand of the BindOptionalExpr /// evaluates to a missing value, the OptionalEvaluationExpr /// immediately completes and produces a missing value in the result /// type. /// /// The depth of the BindOptionalExpr indicates which /// OptionalEvaluationExpr is completed, in case the BindOptionalExpr /// is contained within more than one such expression. class BindOptionalExpr : public Expr { Expr *SubExpr; SourceLoc QuestionLoc; public: BindOptionalExpr(Expr *subExpr, SourceLoc questionLoc, unsigned depth, Type ty = Type()) : Expr(ExprKind::BindOptional, /*Implicit=*/ questionLoc.isInvalid(), ty), SubExpr(subExpr), QuestionLoc(questionLoc) { Bits.BindOptionalExpr.Depth = depth; assert(Bits.BindOptionalExpr.Depth == depth && "bitfield truncation"); } SourceRange getSourceRange() const { if (QuestionLoc.isInvalid()) return SubExpr->getSourceRange(); return SourceRange(SubExpr->getStartLoc(), QuestionLoc); } SourceLoc getStartLoc() const { return SubExpr->getStartLoc(); } SourceLoc getEndLoc() const { return (QuestionLoc.isInvalid() ? SubExpr->getEndLoc() : QuestionLoc); } SourceLoc getLoc() const { if (isImplicit()) return SubExpr->getLoc(); return getQuestionLoc(); } SourceLoc getQuestionLoc() const { return QuestionLoc; } unsigned getDepth() const { return Bits.BindOptionalExpr.Depth; } void setDepth(unsigned depth) { Bits.BindOptionalExpr.Depth = depth; } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *expr) { SubExpr = expr; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::BindOptional; } }; /// \brief Describes the outer limits of an operation containing /// monadic binds of T? to T. /// /// In a ?-chain expression, this is implicitly formed at the outer /// limits of the chain. For example, in (foo?.bar?().baz).fred, /// this is nested immediately within the parens. /// /// This expression will always have optional type. class OptionalEvaluationExpr : public Expr { Expr *SubExpr; public: OptionalEvaluationExpr(Expr *subExpr, Type ty = Type()) : Expr(ExprKind::OptionalEvaluation, /*Implicit=*/ true, ty), SubExpr(subExpr) {} SWIFT_FORWARD_SOURCE_LOCS_TO(SubExpr) Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *expr) { SubExpr = expr; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OptionalEvaluation; } }; /// \brief An expression that forces an optional to its underlying value. /// /// \code /// func parseInt(s : String) -> Int? { ... } /// /// var maybeInt = parseInt("5") // returns an Int? /// var forcedInt = parseInt("5")! // returns an Int; fails on empty optional /// \endcode /// class ForceValueExpr : public Expr { Expr *SubExpr; SourceLoc ExclaimLoc; public: ForceValueExpr(Expr *subExpr, SourceLoc exclaimLoc) : Expr(ExprKind::ForceValue, /*Implicit=*/exclaimLoc.isInvalid(), Type()), SubExpr(subExpr), ExclaimLoc(exclaimLoc) {} SourceRange getSourceRange() const { if (ExclaimLoc.isInvalid()) return SubExpr->getSourceRange(); return SourceRange(SubExpr->getStartLoc(), ExclaimLoc); } SourceLoc getStartLoc() const { return SubExpr->getStartLoc(); } SourceLoc getEndLoc() const { return (isImplicit() ? SubExpr->getEndLoc() : getExclaimLoc()); } SourceLoc getLoc() const { if (!isImplicit()) return getExclaimLoc(); return SubExpr->getLoc(); } SourceLoc getExclaimLoc() const { return ExclaimLoc; } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *expr) { SubExpr = expr; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ForceValue; } }; /// \brief An expression that grants temporary escapability to a nonescaping /// closure value. /// /// This expression is formed by the type checker when a call to the /// `withoutActuallyEscaping` declaration is made. class MakeTemporarilyEscapableExpr : public Expr { Expr *NonescapingClosureValue; OpaqueValueExpr *EscapingClosureValue; Expr *SubExpr; SourceLoc NameLoc, LParenLoc, RParenLoc; public: MakeTemporarilyEscapableExpr(SourceLoc NameLoc, SourceLoc LParenLoc, Expr *NonescapingClosureValue, Expr *SubExpr, SourceLoc RParenLoc, OpaqueValueExpr *OpaqueValueForEscapingClosure, bool implicit = false) : Expr(ExprKind::MakeTemporarilyEscapable, implicit, Type()), NonescapingClosureValue(NonescapingClosureValue), EscapingClosureValue(OpaqueValueForEscapingClosure), SubExpr(SubExpr), NameLoc(NameLoc), LParenLoc(LParenLoc), RParenLoc(RParenLoc) {} SourceLoc getStartLoc() const { return NameLoc; } SourceLoc getEndLoc() const { return RParenLoc; } SourceLoc getLoc() const { return NameLoc; } /// Retrieve the opaque value representing the escapable copy of the /// closure. OpaqueValueExpr *getOpaqueValue() const { return EscapingClosureValue; } /// Retrieve the nonescaping closure expression. Expr *getNonescapingClosureValue() const { return NonescapingClosureValue; } void setNonescapingClosureValue(Expr *e) { NonescapingClosureValue = e; } /// Retrieve the subexpression that has access to the escapable copy of the /// closure. Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *e) { SubExpr = e; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::MakeTemporarilyEscapable; } }; /// \brief An expression that opens up a value of protocol or protocol /// composition type and gives a name to its dynamic type. /// /// This expression is implicitly created by the type checker when /// calling a method on a protocol. In the future, this may become an /// actual operation within the language. class OpenExistentialExpr : public Expr { Expr *ExistentialValue; OpaqueValueExpr *OpaqueValue; Expr *SubExpr; SourceLoc ExclaimLoc; public: OpenExistentialExpr(Expr *existentialValue, OpaqueValueExpr *opaqueValue, Expr *subExpr, Type subExprTy) : Expr(ExprKind::OpenExistential, /*Implicit=*/ true, subExprTy), ExistentialValue(existentialValue), OpaqueValue(opaqueValue), SubExpr(subExpr) { } SWIFT_FORWARD_SOURCE_LOCS_TO(SubExpr) /// Retrieve the expression that is being evaluated using the /// archetype value. /// /// This subexpression (and no other) may refer to the archetype /// type or the opaque value that stores the archetype's value. Expr *getSubExpr() const { return SubExpr; } /// Set the subexpression that is being evaluated. void setSubExpr(Expr *expr) { SubExpr = expr; } /// Retrieve the existential value that is being opened. Expr *getExistentialValue() const { return ExistentialValue; } /// Set the existential value that is being opened. void setExistentialValue(Expr *expr) { ExistentialValue = expr; } /// Retrieve the opaque value representing the value (of archetype /// type) stored in the existential. OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; } /// Retrieve the opened archetype, which can only be referenced /// within this expression's subexpression. ArchetypeType *getOpenedArchetype() const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::OpenExistential; } }; /// ImplicitConversionExpr - An abstract class for expressions which /// implicitly convert the value of an expression in some way. class ImplicitConversionExpr : public Expr { Expr *SubExpr; protected: ImplicitConversionExpr(ExprKind kind, Expr *subExpr, Type ty) : Expr(kind, /*Implicit=*/true, ty), SubExpr(subExpr) {} public: SWIFT_FORWARD_SOURCE_LOCS_TO(SubExpr) Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *e) { SubExpr = e; } Expr *getSyntacticSubExpr() const { if (auto *ICE = dyn_cast(SubExpr)) return ICE->getSyntacticSubExpr(); return SubExpr; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_ImplicitConversionExpr && E->getKind() <= ExprKind::Last_ImplicitConversionExpr; } }; /// The implicit conversion from a class metatype to AnyObject. class ClassMetatypeToObjectExpr : public ImplicitConversionExpr { public: ClassMetatypeToObjectExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ClassMetatypeToObject, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ClassMetatypeToObject; } }; /// The implicit conversion from a class existential metatype to AnyObject. class ExistentialMetatypeToObjectExpr : public ImplicitConversionExpr { public: ExistentialMetatypeToObjectExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ExistentialMetatypeToObject, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ExistentialMetatypeToObject; } }; /// The implicit conversion from a protocol value metatype to ObjC's Protocol /// class type. class ProtocolMetatypeToObjectExpr : public ImplicitConversionExpr { public: ProtocolMetatypeToObjectExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ProtocolMetatypeToObject, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ProtocolMetatypeToObject; } }; /// InjectIntoOptionalExpr - The implicit conversion from T to T?. class InjectIntoOptionalExpr : public ImplicitConversionExpr { public: InjectIntoOptionalExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::InjectIntoOptional, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::InjectIntoOptional; } }; /// Convert the address of an inout property to a pointer. class InOutToPointerExpr : public ImplicitConversionExpr { public: InOutToPointerExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::InOutToPointer, subExpr, ty) { Bits.InOutToPointerExpr.IsNonAccessing = false; } /// Is this conversion "non-accessing"? That is, is it only using the /// pointer for its identity, as opposed to actually accessing the memory? bool isNonAccessing() const { return Bits.InOutToPointerExpr.IsNonAccessing; } void setNonAccessing(bool nonAccessing = true) { Bits.InOutToPointerExpr.IsNonAccessing = nonAccessing; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::InOutToPointer; } }; /// Convert the address of an array to a pointer. class ArrayToPointerExpr : public ImplicitConversionExpr { public: ArrayToPointerExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ArrayToPointer, subExpr, ty) { Bits.ArrayToPointerExpr.IsNonAccessing = false; } /// Is this conversion "non-accessing"? That is, is it only using the /// pointer for its identity, as opposed to actually accessing the memory? bool isNonAccessing() const { return Bits.ArrayToPointerExpr.IsNonAccessing; } void setNonAccessing(bool nonAccessing = true) { Bits.ArrayToPointerExpr.IsNonAccessing = nonAccessing; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ArrayToPointer; } }; /// Convert the a string to a pointer referencing its encoded representation. class StringToPointerExpr : public ImplicitConversionExpr { public: StringToPointerExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::StringToPointer, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::StringToPointer; } }; /// Convert a pointer to a different kind of pointer. class PointerToPointerExpr : public ImplicitConversionExpr { public: PointerToPointerExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::PointerToPointer, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::PointerToPointer; } }; /// Convert between a foreign object and its corresponding Objective-C object. class ForeignObjectConversionExpr : public ImplicitConversionExpr { public: ForeignObjectConversionExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ForeignObjectConversion, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ForeignObjectConversion; } }; /// Construct an unevaluated instance of the underlying metatype. class UnevaluatedInstanceExpr : public ImplicitConversionExpr { public: UnevaluatedInstanceExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::UnevaluatedInstance, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnevaluatedInstance; } }; /// TupleShuffleExpr - This represents a permutation of a tuple value to a new /// tuple type. /// /// If hasScalarSource() is true, the subexpression should be treated /// as if it were implicitly injected into a single-element tuple /// type. Otherwise, the subexpression is known to have a tuple type. class TupleShuffleExpr : public ImplicitConversionExpr { public: enum : int { /// The element mapping value indicating that a field of the destination /// tuple should be default-initialized. DefaultInitialize = -1, /// The element mapping is part of the variadic field. Variadic = -2, /// The element mapping value indicating that the field of the /// destination tuple should be default-initialized with an expression /// provided by the caller. /// FIXME: Yet another indication that TupleShuffleExpr uses the wrong /// formulation. CallerDefaultInitialize = -3 }; enum TypeImpact { /// The source value is a tuple which is destructured and modified to /// create the result, which is a tuple. TupleToTuple, /// The source value is a tuple which is destructured and modified to /// create the result, which is a scalar because it has one element and /// no labels. TupleToScalar, /// The source value is an individual value (possibly one with tuple /// type) which is inserted into a particular position in the result, /// which is a tuple. ScalarToTuple // (TupleShuffleExprs are never created for a scalar-to-scalar conversion.) }; private: /// This contains an entry for each element in the Expr type. Each element /// specifies which index from the SubExpr that the destination element gets. /// If the element value is DefaultInitialize, then the destination value /// gets the default initializer for that tuple element value. ArrayRef ElementMapping; /// If we're doing a varargs shuffle, this is the array type to build. Type VarargsArrayTy; /// If there are any default arguments, the owning function /// declaration. ConcreteDeclRef DefaultArgsOwner; /// The arguments that are packed into the variadic element. ArrayRef VariadicArgs; MutableArrayRef CallerDefaultArgs; public: TupleShuffleExpr(Expr *subExpr, ArrayRef elementMapping, TypeImpact typeImpact, ConcreteDeclRef defaultArgsOwner, ArrayRef VariadicArgs, Type VarargsArrayTy, MutableArrayRef CallerDefaultArgs, Type ty) : ImplicitConversionExpr(ExprKind::TupleShuffle, subExpr, ty), ElementMapping(elementMapping), VarargsArrayTy(VarargsArrayTy), DefaultArgsOwner(defaultArgsOwner), VariadicArgs(VariadicArgs), CallerDefaultArgs(CallerDefaultArgs) { Bits.TupleShuffleExpr.TypeImpact = typeImpact; } ArrayRef getElementMapping() const { return ElementMapping; } /// What is the type impact of this shuffle? TypeImpact getTypeImpact() const { return TypeImpact(Bits.TupleShuffleExpr.TypeImpact); } bool isSourceScalar() const { return getTypeImpact() == ScalarToTuple; } bool isResultScalar() const { return getTypeImpact() == TupleToScalar; } Type getVarargsArrayType() const { assert(!VarargsArrayTy.isNull()); return VarargsArrayTy; } Type getVarargsArrayTypeOrNull() const { return VarargsArrayTy; } /// Retrieve the argument indices for the variadic arguments. ArrayRef getVariadicArgs() const { return VariadicArgs; } /// Retrieve the owner of the default arguments. ConcreteDeclRef getDefaultArgsOwner() const { return DefaultArgsOwner; } /// Retrieve the caller-defaulted arguments. ArrayRef getCallerDefaultArgs() const { return CallerDefaultArgs; } /// Retrieve the caller-defaulted arguments. MutableArrayRef getCallerDefaultArgs() { return CallerDefaultArgs; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::TupleShuffle; } }; /// LoadExpr - Turn an l-value into an r-value by performing a "load" /// operation. This operation may actually be a logical operation, /// i.e. one implemented using a call to a potentially user-defined /// function instead of a simple memory transaction. class LoadExpr : public ImplicitConversionExpr { public: LoadExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::Load, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::Load; } }; /// This is a conversion from an expression of UnresolvedType to an arbitrary /// other type, and from an arbitrary type to UnresolvedType. This node does /// not appear in valid code, only in code involving diagnostics. class UnresolvedTypeConversionExpr : public ImplicitConversionExpr { public: UnresolvedTypeConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::UnresolvedTypeConversion, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedTypeConversion; } }; /// FunctionConversionExpr - Convert a function to another function type, /// which might involve renaming the parameters or handling substitutions /// of subtypes (in the return) or supertypes (in the input). /// /// FIXME: This should be a CapturingExpr. class FunctionConversionExpr : public ImplicitConversionExpr { public: FunctionConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::FunctionConversion, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::FunctionConversion; } }; /// Perform a function conversion from one function that to one that has a /// covariant result type. /// /// This conversion is technically unsafe; however, semantic analysis will /// only introduce such a conversion in cases where other language features /// (i.e., Self returns) enforce static safety. Additionally, this conversion /// avoids changing the ABI of the function in question. class CovariantFunctionConversionExpr : public ImplicitConversionExpr { public: CovariantFunctionConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::CovariantFunctionConversion, subExpr, type) { } static bool classof(const Expr *E) { return E->getKind() == ExprKind::CovariantFunctionConversion; } }; /// Perform a conversion from a superclass to a subclass for a call to /// a method with a covariant result type. /// /// This conversion is technically unsafe; however, semantic analysis will /// only introduce such a conversion in cases where other language features /// (i.e., Self returns) enforce static safety. class CovariantReturnConversionExpr : public ImplicitConversionExpr { public: CovariantReturnConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::CovariantReturnConversion, subExpr, type) { } static bool classof(const Expr *E) { return E->getKind() == ExprKind::CovariantReturnConversion; } }; /// MetatypeConversionExpr - Convert a metatype to another metatype /// using essentially a derived-to-base conversion. class MetatypeConversionExpr : public ImplicitConversionExpr { public: MetatypeConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::MetatypeConversion, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::MetatypeConversion; } }; /// CollectionUpcastConversionExpr - Convert a collection whose /// elements have some type T to the same kind of collection whose /// elements have type U, where U is a subtype of T. class CollectionUpcastConversionExpr : public ImplicitConversionExpr { public: struct ConversionPair { OpaqueValueExpr *OrigValue; Expr *Conversion; explicit operator bool() const { return OrigValue != nullptr; } }; private: ConversionPair KeyConversion; ConversionPair ValueConversion; public: CollectionUpcastConversionExpr(Expr *subExpr, Type type, ConversionPair keyConversion, ConversionPair valueConversion) : ImplicitConversionExpr( ExprKind::CollectionUpcastConversion, subExpr, type), KeyConversion(keyConversion), ValueConversion(valueConversion) { assert((!KeyConversion || ValueConversion) && "key conversion without value conversion"); } /// Returns the expression that should be used to perform a /// conversion of the collection's values; null if the conversion /// is formally trivial because the key type does not change. const ConversionPair &getKeyConversion() const { return KeyConversion; } void setKeyConversion(const ConversionPair &pair) { KeyConversion = pair; } /// Returns the expression that should be used to perform a /// conversion of the collection's values; null if the conversion /// is formally trivial because the value type does not change. const ConversionPair &getValueConversion() const { return ValueConversion; } void setValueConversion(const ConversionPair &pair) { ValueConversion = pair; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::CollectionUpcastConversion; } }; /// ErasureExpr - Perform type erasure by converting a value to existential /// type. For example: /// /// \code /// protocol Printable {} /// struct Book {} /// /// var printable: Printable = Book() // erases type /// var printableType: Printable.Type = Book.self // erases metatype /// \endcode /// /// The type of the expression should always satisfy isAnyExistentialType(). /// /// The type of the sub-expression should always be either: /// - a non-existential type of the appropriate kind or /// - an existential type of the appropriate kind which is a subtype /// of the result type. /// /// "Appropriate kind" means e.g. a concrete/existential metatype if the /// result is an existential metatype. class ErasureExpr final : public ImplicitConversionExpr, private llvm::TrailingObjects { friend TrailingObjects; ErasureExpr(Expr *subExpr, Type type, ArrayRef conformances) : ImplicitConversionExpr(ExprKind::Erasure, subExpr, type) { Bits.ErasureExpr.NumConformances = conformances.size(); std::uninitialized_copy(conformances.begin(), conformances.end(), getTrailingObjects()); } public: static ErasureExpr *create(ASTContext &ctx, Expr *subExpr, Type type, ArrayRef conformances); /// \brief Retrieve the mapping specifying how the type of the subexpression /// maps to the resulting existential type. If the resulting existential /// type involves several different protocols, there will be mappings for each /// of those protocols, in the order in which the existential type expands /// its properties. /// /// The entries in this array may be null, indicating that the conformance /// to the corresponding protocol is trivial (because the source /// type is either an archetype or an existential type that conforms to /// that corresponding protocol). ArrayRef getConformances() const { return {getTrailingObjects(), Bits.ErasureExpr.NumConformances }; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Erasure; } }; /// AnyHashableErasureExpr - Perform type erasure by converting a value /// to AnyHashable type. /// /// The type of the sub-expression should always be a type that implements /// the Hashable protocol. class AnyHashableErasureExpr : public ImplicitConversionExpr { ProtocolConformanceRef Conformance; public: AnyHashableErasureExpr(Expr *subExpr, Type type, ProtocolConformanceRef conformance) : ImplicitConversionExpr(ExprKind::AnyHashableErasure, subExpr, type), Conformance(conformance) {} /// \brief Retrieve the mapping specifying how the type of the /// subexpression conforms to the Hashable protocol. ProtocolConformanceRef getConformance() const { return Conformance; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::AnyHashableErasure; } }; /// ConditionalBridgeFromObjCExpr - Bridge a value from a non-native /// representation. class ConditionalBridgeFromObjCExpr : public ImplicitConversionExpr { ConcreteDeclRef Conversion; public: ConditionalBridgeFromObjCExpr(Expr *subExpr, Type type, ConcreteDeclRef conversion) : ImplicitConversionExpr(ExprKind::ConditionalBridgeFromObjC, subExpr, type), Conversion(conversion) { } /// \brief Retrieve the conversion function. ConcreteDeclRef getConversion() const { return Conversion; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ConditionalBridgeFromObjC; } }; /// BridgeFromObjCExpr - Bridge a value from a non-native representation. class BridgeFromObjCExpr : public ImplicitConversionExpr { public: BridgeFromObjCExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::BridgeFromObjC, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::BridgeFromObjC; } }; /// BridgeToObjCExpr - Bridge a value to a non-native representation. class BridgeToObjCExpr : public ImplicitConversionExpr { public: BridgeToObjCExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::BridgeToObjC, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::BridgeToObjC; } }; /// UnresolvedSpecializeExpr - Represents an explicit specialization using /// a type parameter list (e.g. "Vector") that has not been resolved. class UnresolvedSpecializeExpr final : public Expr, private llvm::TrailingObjects { friend TrailingObjects; Expr *SubExpr; SourceLoc LAngleLoc; SourceLoc RAngleLoc; UnresolvedSpecializeExpr(Expr *SubExpr, SourceLoc LAngleLoc, ArrayRef UnresolvedParams, SourceLoc RAngleLoc) : Expr(ExprKind::UnresolvedSpecialize, /*Implicit=*/false), SubExpr(SubExpr), LAngleLoc(LAngleLoc), RAngleLoc(RAngleLoc) { Bits.UnresolvedSpecializeExpr.NumUnresolvedParams = UnresolvedParams.size(); std::uninitialized_copy(UnresolvedParams.begin(), UnresolvedParams.end(), getTrailingObjects()); } public: static UnresolvedSpecializeExpr * create(ASTContext &ctx, Expr *SubExpr, SourceLoc LAngleLoc, ArrayRef UnresolvedParams, SourceLoc RAngleLoc); Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *e) { SubExpr = e; } /// \brief Retrieve the list of type parameters. These parameters have not yet /// been bound to archetypes of the entity to be specialized. ArrayRef getUnresolvedParams() const { return {getTrailingObjects(), Bits.UnresolvedSpecializeExpr.NumUnresolvedParams}; } MutableArrayRef getUnresolvedParams() { return {getTrailingObjects(), Bits.UnresolvedSpecializeExpr.NumUnresolvedParams}; } SourceLoc getLoc() const { return LAngleLoc; } SourceLoc getLAngleLoc() const { return LAngleLoc; } SourceLoc getRAngleLoc() const { return RAngleLoc; } SourceLoc getStartLoc() const { return SubExpr->getStartLoc(); } SourceLoc getEndLoc() const { return RAngleLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedSpecialize; } }; /// \brief Describes an implicit conversion from a subclass to one of its /// superclasses. class DerivedToBaseExpr : public ImplicitConversionExpr { public: DerivedToBaseExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::DerivedToBase, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::DerivedToBase; } }; /// \brief Describes an implicit conversion from a value of archetype type to /// its concrete superclass. class ArchetypeToSuperExpr : public ImplicitConversionExpr { public: ArchetypeToSuperExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::ArchetypeToSuper, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ArchetypeToSuper; } }; /// The builtin unary '&' operator, which converts the /// given lvalue into an 'inout' argument value. class InOutExpr : public Expr { Expr *SubExpr; SourceLoc OperLoc; public: InOutExpr(SourceLoc operLoc, Expr *subExpr, Type baseType, bool isImplicit = false); SourceLoc getStartLoc() const { return OperLoc; } SourceLoc getEndLoc() const { return SubExpr->getEndLoc(); } SourceLoc getLoc() const { return OperLoc; } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *e) { SubExpr = e; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::InOut; } }; /// SequenceExpr - A list of binary operations which has not yet been /// folded into a tree. The operands all have even indices, while the /// subexpressions with odd indices are all (potentially overloaded) /// references to binary operators. class SequenceExpr final : public Expr, private llvm::TrailingObjects { friend TrailingObjects; SequenceExpr(ArrayRef elements) : Expr(ExprKind::Sequence, /*Implicit=*/false) { Bits.SequenceExpr.NumElements = elements.size(); assert(Bits.SequenceExpr.NumElements > 0 && "zero-length sequence!"); std::uninitialized_copy(elements.begin(), elements.end(), getTrailingObjects()); } public: static SequenceExpr *create(ASTContext &ctx, ArrayRef elements); SourceLoc getStartLoc() const { return getElement(0)->getStartLoc(); } SourceLoc getEndLoc() const { return getElement(getNumElements() - 1)->getEndLoc(); } unsigned getNumElements() const { return Bits.SequenceExpr.NumElements; } MutableArrayRef getElements() { return {getTrailingObjects(), Bits.SequenceExpr.NumElements}; } ArrayRef getElements() const { return {getTrailingObjects(), Bits.SequenceExpr.NumElements}; } Expr *getElement(unsigned i) const { return getElements()[i]; } void setElement(unsigned i, Expr *e) { getElements()[i] = e; } // Implement isa/cast/dyncast/etc. static bool classof(const Expr *E) { return E->getKind() == ExprKind::Sequence; } }; /// \brief A base class for closure expressions. class AbstractClosureExpr : public Expr, public DeclContext { CaptureInfo Captures; /// \brief The set of parameters. ParameterList *parameterList; public: AbstractClosureExpr(ExprKind Kind, Type FnType, bool Implicit, unsigned Discriminator, DeclContext *Parent) : Expr(Kind, Implicit, FnType), DeclContext(DeclContextKind::AbstractClosureExpr, Parent), parameterList(nullptr) { Bits.AbstractClosureExpr.Discriminator = Discriminator; } CaptureInfo &getCaptureInfo() { return Captures; } const CaptureInfo &getCaptureInfo() const { return Captures; } /// \brief Retrieve the parameters of this closure. ParameterList *getParameters() { return parameterList; } const ParameterList *getParameters() const { return parameterList; } void setParameterList(ParameterList *P); // Expose this to users. using DeclContext::setParent; /// Returns a discriminator which determines this expression's index /// in the sequence of closure expressions within the current /// function. /// /// There are separate sequences for explicit and implicit closures. /// This allows explicit closures to maintain a stable numbering /// across simple edits that introduce auto closures above them, /// which is the best we can reasonably do. /// /// (Autoclosures are likely to be eliminated immediately, even in /// unoptimized builds, so their names are fairly unimportant. It's /// much more likely that explicit closures will survive /// optimization and therefore make it into e.g. stack traces. /// Having their symbol names be stable across minor code changes is /// therefore pretty useful for debugging.) unsigned getDiscriminator() const { return Bits.AbstractClosureExpr.Discriminator; } void setDiscriminator(unsigned discriminator) { assert(getDiscriminator() == InvalidDiscriminator); assert(discriminator != InvalidDiscriminator); Bits.AbstractClosureExpr.Discriminator = discriminator; } enum : unsigned { InvalidDiscriminator = 0xFFFF }; ArrayRef getParameterLists() { return parameterList ? parameterList : ArrayRef(); } ArrayRef getParameterLists() const { return parameterList ? parameterList : ArrayRef(); } /// \brief Retrieve the result type of this closure. Type getResultType(llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }) const; /// \brief Return whether this closure is throwing when fully applied. bool isBodyThrowing() const; /// Whether this closure consists of a single expression. bool hasSingleExpressionBody() const; static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_AbstractClosureExpr && E->getKind() <= ExprKind::Last_AbstractClosureExpr; } static bool classof(const DeclContext *DC) { return DC->getContextKind() == DeclContextKind::AbstractClosureExpr; } using DeclContext::operator new; using Expr::dump; }; /// SerializedAbstractClosureExpr - This represents what was originally an /// AbstractClosureExpr during serialization. It is preserved only to maintain /// the correct AST structure and remangling after deserialization. class SerializedAbstractClosureExpr : public SerializedLocalDeclContext { const Type Ty; llvm::PointerIntPair TypeAndImplicit; const unsigned Discriminator; public: SerializedAbstractClosureExpr(Type Ty, bool Implicit, unsigned Discriminator, DeclContext *Parent) : SerializedLocalDeclContext(LocalDeclContextKind::AbstractClosure, Parent), TypeAndImplicit(llvm::PointerIntPair(Ty, Implicit)), Discriminator(Discriminator) {} Type getType() const { return TypeAndImplicit.getPointer(); } unsigned getDiscriminator() const { return Discriminator; } bool isImplicit() const { return TypeAndImplicit.getInt(); } static bool classof(const DeclContext *DC) { if (auto LDC = dyn_cast(DC)) return LDC->getLocalDeclContextKind() == LocalDeclContextKind::AbstractClosure; return false; } }; /// \brief An explicit unnamed function expression, which can optionally have /// named arguments. /// /// \code /// { $0 + $1 } /// { a, b -> Int in a + b } /// { (a : Int, b : Int) -> Int in a + b } /// { [weak c] (a : Int) -> Int in a + c!.getFoo() } /// \endcode class ClosureExpr : public AbstractClosureExpr { /// The location of the "throws", if present. SourceLoc ThrowsLoc; /// \brief The location of the '->' denoting an explicit return type, /// if present. SourceLoc ArrowLoc; /// The location of the "in", if present. SourceLoc InLoc; /// \brief The explicitly-specified result type. TypeLoc ExplicitResultType; /// \brief The body of the closure, along with a bit indicating whether it /// was originally just a single expression. llvm::PointerIntPair Body; public: ClosureExpr(ParameterList *params, SourceLoc throwsLoc, SourceLoc arrowLoc, SourceLoc inLoc, TypeLoc explicitResultType, unsigned discriminator, DeclContext *parent) : AbstractClosureExpr(ExprKind::Closure, Type(), /*Implicit=*/false, discriminator, parent), ThrowsLoc(throwsLoc), ArrowLoc(arrowLoc), InLoc(inLoc), ExplicitResultType(explicitResultType), Body(nullptr) { setParameterList(params); Bits.ClosureExpr.HasAnonymousClosureVars = false; } SourceRange getSourceRange() const; SourceLoc getStartLoc() const; SourceLoc getEndLoc() const; SourceLoc getLoc() const; BraceStmt *getBody() const { return Body.getPointer(); } void setBody(BraceStmt *S, bool isSingleExpression) { Body.setPointer(S); Body.setInt(isSingleExpression); } /// \brief Determine whether the parameters of this closure are actually /// anonymous closure variables. bool hasAnonymousClosureVars() const { return Bits.ClosureExpr.HasAnonymousClosureVars; } /// \brief Set the parameters of this closure along with a flag indicating /// whether these parameters are actually anonymous closure variables. void setHasAnonymousClosureVars() { Bits.ClosureExpr.HasAnonymousClosureVars = true; } /// \brief Determine whether this closure expression has an /// explicitly-specified result type. bool hasExplicitResultType() const { return ArrowLoc.isValid(); } /// \brief Retrieve the location of the \c '->' for closures with an /// explicit result type. SourceLoc getArrowLoc() const { assert(hasExplicitResultType() && "No arrow location"); return ArrowLoc; } /// \brief Retrieve the location of the \c in for a closure that has it. SourceLoc getInLoc() const { return InLoc; } /// \brief Retrieve the location of the 'throws' for a closure that has it. SourceLoc getThrowsLoc() const { return ThrowsLoc; } /// \brief Retrieve the explicit result type location information. TypeLoc &getExplicitResultTypeLoc() { assert(hasExplicitResultType() && "No explicit result type"); return ExplicitResultType; } void setExplicitResultType(SourceLoc arrowLoc, TypeLoc resultType) { ArrowLoc = arrowLoc; ExplicitResultType = resultType; } /// \brief Determine whether the closure has a single expression for its /// body. /// /// This will be true for closures such as, e.g., /// \code /// { $0 + 1 } /// \endcode /// /// or /// /// \code /// { x, y in x > y } /// \endcode /// /// ... even if the closure has been coerced to return Void by the type /// checker. This function does not return true for empty closures. bool hasSingleExpressionBody() const { return Body.getInt(); } /// \brief Retrieve the body for closure that has a single expression for /// its body. /// /// Only valid when \c hasSingleExpressionBody() is true. Expr *getSingleExpressionBody() const; /// \brief Set the body for a closure that has a single expression as its /// body. /// /// This routine cannot change whether a closure has a single expression as /// its body; it can only update that expression. void setSingleExpressionBody(Expr *NewBody); static bool classof(const Expr *E) { return E->getKind() == ExprKind::Closure; } static bool classof(const AbstractClosureExpr *E) { return E->getKind() == ExprKind::Closure; } static bool classof(const DeclContext *C) { return isa(C) && classof(cast(C)); } }; /// \brief This is a closure of the contained subexpression that is formed /// when a scalar expression is converted to @autoclosure function type. /// For example: /// \code /// func f(x : @autoclosure () -> Int) /// f(42) // AutoclosureExpr convert from Int to ()->Int /// \endcode class AutoClosureExpr : public AbstractClosureExpr { BraceStmt *Body; public: AutoClosureExpr(Expr *Body, Type ResultTy, unsigned Discriminator, DeclContext *Parent) : AbstractClosureExpr(ExprKind::AutoClosure, ResultTy, /*Implicit=*/true, Discriminator, Parent) { setBody(Body); } SourceRange getSourceRange() const; SourceLoc getStartLoc() const; SourceLoc getEndLoc() const; SourceLoc getLoc() const; BraceStmt *getBody() const { return Body; } void setBody(Expr *E); // Expose this to users. using DeclContext::setParent; /// Returns the body of the autoclosure as an \c Expr. /// /// The body of an autoclosure always consists of a single expression. Expr *getSingleExpressionBody() const; // Implement isa/cast/dyncast/etc. static bool classof(const Expr *E) { return E->getKind() == ExprKind::AutoClosure; } static bool classof(const AbstractClosureExpr *E) { return E->getKind() == ExprKind::AutoClosure; } static bool classof(const DeclContext *C) { return isa(C) && classof(cast(C)); } }; /// Instances of this structure represent elements of the capture list that can /// optionally occur in a capture expression. struct CaptureListEntry { VarDecl *Var; PatternBindingDecl *Init; CaptureListEntry(VarDecl *Var, PatternBindingDecl *Init) : Var(Var), Init(Init) { } }; /// CaptureListExpr - This expression represents the capture list on an explicit /// closure. Because the capture list is evaluated outside of the closure, this /// CaptureList wraps the ClosureExpr. The dynamic semantics are that evaluates /// the variable bindings from the capture list, then evaluates the /// subexpression (the closure itself) and returns the result. class CaptureListExpr final : public Expr, private llvm::TrailingObjects { friend TrailingObjects; ClosureExpr *closureBody; CaptureListExpr(ArrayRef captureList, ClosureExpr *closureBody) : Expr(ExprKind::CaptureList, /*Implicit=*/false, Type()), closureBody(closureBody) { Bits.CaptureListExpr.NumCaptures = captureList.size(); std::uninitialized_copy(captureList.begin(), captureList.end(), getTrailingObjects()); } public: static CaptureListExpr *create(ASTContext &ctx, ArrayRef captureList, ClosureExpr *closureBody); ArrayRef getCaptureList() { return {getTrailingObjects(), Bits.CaptureListExpr.NumCaptures}; } ClosureExpr *getClosureBody() { return closureBody; } const ClosureExpr *getClosureBody() const { return closureBody; } void setClosureBody(ClosureExpr *body) { closureBody = body; } /// This is a bit weird, but the capture list is lexically contained within /// the closure, so the ClosureExpr has the full source range. SWIFT_FORWARD_SOURCE_LOCS_TO(closureBody) // Implement isa/cast/dyncast/etc. static bool classof(const Expr *E) { return E->getKind() == ExprKind::CaptureList; } }; /// DynamicTypeExpr - "type(of: base)" - Produces a metatype value. /// /// The metatype value comes from evaluating an expression then retrieving the /// metatype of the result. class DynamicTypeExpr : public Expr { SourceLoc KeywordLoc; SourceLoc LParenLoc; Expr *Base; SourceLoc RParenLoc; public: explicit DynamicTypeExpr(SourceLoc KeywordLoc, SourceLoc LParenLoc, Expr *Base, SourceLoc RParenLoc, Type Ty) : Expr(ExprKind::DynamicType, /*Implicit=*/false, Ty), KeywordLoc(KeywordLoc), LParenLoc(LParenLoc), Base(Base), RParenLoc(RParenLoc) { } Expr *getBase() const { return Base; } void setBase(Expr *base) { Base = base; } SourceLoc getLoc() const { return KeywordLoc; } SourceRange getSourceRange() const { return SourceRange(KeywordLoc, RParenLoc); } SourceLoc getStartLoc() const { return KeywordLoc; } SourceLoc getEndLoc() const { return RParenLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DynamicType; } }; /// An expression referring to an opaque object of a fixed type. /// /// Opaque value expressions occur when a particular value within the AST /// needs to be re-used without being re-evaluated or for a value that is /// a placeholder. OpaqueValueExpr nodes are introduced by some other AST /// node (say, a \c DynamicMemberRefExpr) and can only be used within the /// subexpressions of that AST node. class OpaqueValueExpr : public Expr { SourceLoc Loc; public: explicit OpaqueValueExpr(SourceLoc Loc, Type Ty) : Expr(ExprKind::OpaqueValue, /*Implicit=*/true, Ty), Loc(Loc) { } SourceRange getSourceRange() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OpaqueValue; } }; /// ApplyExpr - Superclass of various function calls, which apply an argument to /// a function to get a result. class ApplyExpr : public Expr { /// The function being called. Expr *Fn; /// The argument being passed to it, and whether it's a 'super' argument. llvm::PointerIntPair ArgAndIsSuper; protected: ApplyExpr(ExprKind Kind, Expr *Fn, Expr *Arg, bool Implicit, Type Ty = Type()) : Expr(Kind, Implicit, Ty), Fn(Fn), ArgAndIsSuper(Arg, false) { assert(classof((Expr*)this) && "ApplyExpr::classof out of date"); Bits.ApplyExpr.ThrowsIsSet = false; } public: Expr *getFn() const { return Fn; } void setFn(Expr *e) { Fn = e; } Expr *getSemanticFn() const { return Fn->getSemanticsProvidingExpr(); } Expr *getArg() const { return ArgAndIsSuper.getPointer(); } void setArg(Expr *e) { assert((getKind() != ExprKind::Binary || isa(e)) && "BinaryExprs must have a TupleExpr as the argument"); ArgAndIsSuper = {e, ArgAndIsSuper.getInt()}; } bool isSuper() const { return ArgAndIsSuper.getInt(); } void setIsSuper(bool super) { ArgAndIsSuper = {ArgAndIsSuper.getPointer(), super}; } /// Has the type-checker set the 'throws' bit yet? /// /// In general, this should only be used for debugging purposes. bool isThrowsSet() const { return Bits.ApplyExpr.ThrowsIsSet; } /// Does this application throw? This is only meaningful after /// complete type-checking. /// /// If true, the function expression must have a throwing function /// type. The converse is not true because of 'rethrows' functions. bool throws() const { assert(Bits.ApplyExpr.ThrowsIsSet); return Bits.ApplyExpr.Throws; } void setThrows(bool throws) { assert(!Bits.ApplyExpr.ThrowsIsSet); Bits.ApplyExpr.ThrowsIsSet = true; Bits.ApplyExpr.Throws = throws; } ValueDecl *getCalledValue() const; /// Retrieve the argument labels provided at the call site. /// /// \param scratch Scratch space that will be used when the argument labels /// aren't already stored in the AST context. ArrayRef getArgumentLabels(SmallVectorImpl &scratch) const; /// Whether this application was written using a trailing closure. bool hasTrailingClosure() const; static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_ApplyExpr && E->getKind() <= ExprKind::Last_ApplyExpr; } }; /// CallExpr - Application of an argument to a function, which occurs /// syntactically through juxtaposition with a TupleExpr whose /// leading '(' is unspaced. class CallExpr final : public ApplyExpr, public TrailingCallArguments { friend TrailingCallArguments; CallExpr(Expr *fn, Expr *arg, bool Implicit, ArrayRef argLabels, ArrayRef argLabelLocs, bool hasTrailingClosure, Type ty); public: /// Create a new call expression. /// /// Note: prefer to use the entry points that separate out the arguments. static CallExpr * create(ASTContext &ctx, Expr *fn, Expr *arg, ArrayRef argLabels, ArrayRef argLabelLocs, bool hasTrailingClosure, bool implicit, Type type = Type(), llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }); /// Create a new implicit call expression without any source-location /// information. /// /// \param fn The function being called /// \param args The call arguments, not including a trailing closure (if any). /// \param argLabels The argument labels, whose size must equal args.size(), /// or which must be empty. static CallExpr * createImplicit(ASTContext &ctx, Expr *fn, ArrayRef args, ArrayRef argLabels, llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }) { return create(ctx, fn, SourceLoc(), args, argLabels, { }, SourceLoc(), /*trailingClosure=*/nullptr, /*implicit=*/true, getType); } /// Create a new call expression. /// /// \param fn The function being called /// \param args The call arguments, not including a trailing closure (if any). /// \param argLabels The argument labels, whose size must equal args.size(), /// or which must be empty. /// \param argLabelLocs The locations of the argument labels, whose size must /// equal args.size() or which must be empty. /// \param trailingClosure The trailing closure, if any. static CallExpr * create(ASTContext &ctx, Expr *fn, SourceLoc lParenLoc, ArrayRef args, ArrayRef argLabels, ArrayRef argLabelLocs, SourceLoc rParenLoc, Expr *trailingClosure, bool implicit, llvm::function_ref getType = [](const Expr *E) -> Type { return E->getType(); }); SourceLoc getStartLoc() const { SourceLoc fnLoc = getFn()->getStartLoc(); return (fnLoc.isValid() ? fnLoc : getArg()->getStartLoc()); } SourceLoc getEndLoc() const { SourceLoc argLoc = getArg()->getEndLoc(); return (argLoc.isValid() ? argLoc : getFn()->getEndLoc()); } SourceLoc getLoc() const { SourceLoc FnLoc = getFn()->getLoc(); return FnLoc.isValid() ? FnLoc : getArg()->getLoc(); } unsigned getNumArguments() const { return Bits.CallExpr.NumArgLabels; } bool hasArgumentLabelLocs() const { return Bits.CallExpr.HasArgLabelLocs; } /// Whether this call with written with a trailing closure. bool hasTrailingClosure() const { return Bits.CallExpr.HasTrailingClosure; } using TrailingCallArguments::getArgumentLabels; /// Retrieve the expression that directly represents the callee. /// /// The "direct" callee is the expression representing the callee /// after looking through top-level constructs that don't affect the /// identity of the callee, e.g., extra parentheses, optional /// unwrapping (?)/forcing (!), etc. Expr *getDirectCallee() const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::Call; } }; /// PrefixUnaryExpr - Prefix unary expressions like '!y'. class PrefixUnaryExpr : public ApplyExpr { public: PrefixUnaryExpr(Expr *Fn, Expr *Arg, Type Ty = Type()) : ApplyExpr(ExprKind::PrefixUnary, Fn, Arg, /*Implicit=*/false, Ty) {} SourceLoc getLoc() const { return getFn()->getStartLoc(); } SourceLoc getStartLoc() const { return getFn()->getStartLoc(); } SourceLoc getEndLoc() const { return getArg()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::PrefixUnary; } }; /// PostfixUnaryExpr - Prefix unary expressions like '!y'. class PostfixUnaryExpr : public ApplyExpr { public: PostfixUnaryExpr(Expr *Fn, Expr *Arg, Type Ty = Type()) : ApplyExpr(ExprKind::PostfixUnary, Fn, Arg, /*Implicit=*/false, Ty) {} SourceLoc getLoc() const { return getFn()->getStartLoc(); } SourceLoc getStartLoc() const { return getArg()->getStartLoc(); } SourceLoc getEndLoc() const { return getFn()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::PostfixUnary; } }; /// BinaryExpr - Infix binary expressions like 'x+y'. The argument is always /// an implicit tuple expression of the type expected by the function. class BinaryExpr : public ApplyExpr { public: BinaryExpr(Expr *Fn, TupleExpr *Arg, bool Implicit, Type Ty = Type()) : ApplyExpr(ExprKind::Binary, Fn, Arg, Implicit, Ty) {} SourceLoc getLoc() const { return getFn()->getLoc(); } SourceRange getSourceRange() const { return getArg()->getSourceRange(); } SourceLoc getStartLoc() const { return getArg()->getStartLoc(); } SourceLoc getEndLoc() const { return getArg()->getEndLoc(); } TupleExpr *getArg() const { return cast(ApplyExpr::getArg()); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Binary;} }; /// SelfApplyExpr - Abstract application that provides the 'self' pointer for /// a method curried as (this : Self) -> (params) -> result. /// /// The application of a curried method to 'self' semantically differs from /// normal function application because the 'self' parameter can be implicitly /// materialized from an rvalue. class SelfApplyExpr : public ApplyExpr { protected: SelfApplyExpr(ExprKind K, Expr *FnExpr, Expr *BaseExpr, Type Ty) : ApplyExpr(K, FnExpr, BaseExpr, FnExpr->isImplicit(), Ty) { } public: Expr *getBase() const { return getArg(); } void setBase(Expr *E) { setArg(E); } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_SelfApplyExpr && E->getKind() <= ExprKind::Last_SelfApplyExpr; } }; /// DotSyntaxCallExpr - Refer to a method of a type, e.g. P.x. 'x' /// is modeled as a DeclRefExpr or OverloadSetRefExpr on the method. class DotSyntaxCallExpr : public SelfApplyExpr { SourceLoc DotLoc; public: DotSyntaxCallExpr(Expr *FnExpr, SourceLoc DotLoc, Expr *BaseExpr, Type Ty = Type()) : SelfApplyExpr(ExprKind::DotSyntaxCall, FnExpr, BaseExpr, Ty), DotLoc(DotLoc) { setImplicit(DotLoc.isInvalid()); } SourceLoc getDotLoc() const { return DotLoc; } SourceLoc getLoc() const { return isImplicit() ? getBase()->getStartLoc() : getFn()->getLoc(); } SourceLoc getStartLoc() const { return getBase()->getStartLoc(); } SourceLoc getEndLoc() const { return isImplicit() ? getBase()->getEndLoc() : getFn()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DotSyntaxCall; } }; /// ConstructorRefCallExpr - Refer to a constructor for a type P. The /// actual reference to function which returns the constructor is modeled /// as a DeclRefExpr. class ConstructorRefCallExpr : public SelfApplyExpr { public: ConstructorRefCallExpr(Expr *FnExpr, Expr *BaseExpr, Type Ty = Type()) : SelfApplyExpr(ExprKind::ConstructorRefCall, FnExpr, BaseExpr, Ty) {} SourceLoc getLoc() const { return getFn()->getLoc(); } SourceLoc getStartLoc() const { return getBase()->getStartLoc(); } SourceLoc getEndLoc() const { return getFn()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ConstructorRefCall; } }; /// DotSyntaxBaseIgnoredExpr - When a.b resolves to something that does not need /// the actual value of the base (e.g. when applied to a metatype, module, or /// the base of a 'static' function) this expression node is created. The /// semantics are that its base is evaluated and discarded, then 'b' is /// evaluated and returned as the result of the expression. class DotSyntaxBaseIgnoredExpr : public Expr { Expr *LHS; SourceLoc DotLoc; Expr *RHS; public: DotSyntaxBaseIgnoredExpr(Expr *LHS, SourceLoc DotLoc, Expr *RHS, Type rhsTy) : Expr(ExprKind::DotSyntaxBaseIgnored, /*Implicit=*/false, rhsTy), LHS(LHS), DotLoc(DotLoc), RHS(RHS) { } Expr *getLHS() const { return LHS; } void setLHS(Expr *E) { LHS = E; } SourceLoc getDotLoc() const { return DotLoc; } Expr *getRHS() const { return RHS; } void setRHS(Expr *E) { RHS = E; } SourceLoc getStartLoc() const { return DotLoc.isValid() ? LHS->getStartLoc() : RHS->getStartLoc(); } SourceLoc getEndLoc() const { return RHS->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DotSyntaxBaseIgnored; } }; /// \brief Represents an explicit cast, 'a as T' or 'a is T', where "T" is a /// type, and "a" is the expression that will be converted to the type. class ExplicitCastExpr : public Expr { Expr *SubExpr; SourceLoc AsLoc; TypeLoc CastTy; protected: ExplicitCastExpr(ExprKind kind, Expr *sub, SourceLoc AsLoc, TypeLoc castTy, Type resultTy) : Expr(kind, /*Implicit=*/false), SubExpr(sub), AsLoc(AsLoc), CastTy(castTy) {} public: Expr *getSubExpr() const { return SubExpr; } /// Get the type syntactically spelled in the cast. For some forms of checked /// cast this is different from the result type of the expression. TypeLoc &getCastTypeLoc() { return CastTy; } /// Get the type syntactically spelled in the cast. For some forms of checked /// cast this is different from the result type of the expression. TypeLoc getCastTypeLoc() const { return CastTy; } void setSubExpr(Expr *E) { SubExpr = E; } SourceLoc getLoc() const { if (AsLoc.isValid()) return AsLoc; return SubExpr->getLoc(); } SourceLoc getAsLoc() const { return AsLoc; } SourceRange getSourceRange() const { SourceRange castTyRange = CastTy.getSourceRange(); if (castTyRange.isInvalid()) return SubExpr->getSourceRange(); auto startLoc = SubExpr ? SubExpr->getStartLoc() : AsLoc; auto endLoc = castTyRange.End; return {startLoc, endLoc}; } /// True if the node has been processed by SequenceExpr folding. bool isFolded() const { return SubExpr; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_ExplicitCastExpr && E->getKind() <= ExprKind::Last_ExplicitCastExpr; } }; /// Return a string representation of a CheckedCastKind. StringRef getCheckedCastKindName(CheckedCastKind kind); /// \brief Abstract base class for checked casts 'as' and 'is'. These represent /// casts that can dynamically fail. class CheckedCastExpr : public ExplicitCastExpr { public: CheckedCastExpr(ExprKind kind, Expr *sub, SourceLoc asLoc, TypeLoc castTy, Type resultTy) : ExplicitCastExpr(kind, sub, asLoc, castTy, resultTy) { Bits.CheckedCastExpr.CastKind = unsigned(CheckedCastKind::Unresolved); } /// Return the semantic kind of cast performed. CheckedCastKind getCastKind() const { return CheckedCastKind(Bits.CheckedCastExpr.CastKind); } void setCastKind(CheckedCastKind kind) { Bits.CheckedCastExpr.CastKind = unsigned(kind); } /// True if the cast has been type-checked and its kind has been set. bool isResolved() const { return getCastKind() >= CheckedCastKind::First_Resolved; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_CheckedCastExpr && E->getKind() <= ExprKind::Last_CheckedCastExpr; } }; /// Represents an explicit forced checked cast, which converts /// from a value of some type to some specified subtype and fails dynamically /// if the value does not have that type. /// Spelled 'a as! T' and produces a value of type 'T'. class ForcedCheckedCastExpr : public CheckedCastExpr { SourceLoc ExclaimLoc; public: ForcedCheckedCastExpr(Expr *sub, SourceLoc asLoc, SourceLoc exclaimLoc, TypeLoc type) : CheckedCastExpr(ExprKind::ForcedCheckedCast, sub, asLoc, type, type.getType()), ExclaimLoc(exclaimLoc) { } ForcedCheckedCastExpr(SourceLoc asLoc, SourceLoc exclaimLoc, TypeLoc type) : ForcedCheckedCastExpr(nullptr, asLoc, exclaimLoc, type) { } /// Retrieve the location of the '!' that follows 'as'. SourceLoc getExclaimLoc() const { return ExclaimLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ForcedCheckedCast; } }; /// \brief Represents an explicit conditional checked cast, which converts /// from a type to some subtype and produces an Optional value, which will be /// .Some(x) if the cast succeeds, or .None if the cast fails. /// Spelled 'a as? T' and produces a value of type 'T?'. class ConditionalCheckedCastExpr : public CheckedCastExpr { SourceLoc QuestionLoc; public: ConditionalCheckedCastExpr(Expr *sub, SourceLoc asLoc, SourceLoc questionLoc, TypeLoc type) : CheckedCastExpr(ExprKind::ConditionalCheckedCast, sub, asLoc, type, type.getType()), QuestionLoc(questionLoc) { } ConditionalCheckedCastExpr(SourceLoc asLoc, SourceLoc questionLoc, TypeLoc type) : ConditionalCheckedCastExpr(nullptr, asLoc, questionLoc, type) {} /// Retrieve the location of the '?' that follows 'as'. SourceLoc getQuestionLoc() const { return QuestionLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ConditionalCheckedCast; } }; /// \brief Represents a runtime type check query, 'a is T', where 'T' is a type /// and 'a' is a value of some related type. Evaluates to a Bool true if 'a' is /// of the type and 'a as T' would succeed, false otherwise. /// /// FIXME: We should support type queries with a runtime metatype value too. class IsExpr : public CheckedCastExpr { public: IsExpr(Expr *sub, SourceLoc isLoc, TypeLoc type) : CheckedCastExpr(ExprKind::Is, sub, isLoc, type, Type()) {} IsExpr(SourceLoc isLoc, TypeLoc type) : IsExpr(nullptr, isLoc, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::Is; } }; /// \brief Represents an explicit coercion from a value to a specific type. /// /// Spelled 'a as T' and produces a value of type 'T'. class CoerceExpr : public ExplicitCastExpr { public: CoerceExpr(Expr *sub, SourceLoc asLoc, TypeLoc type) : ExplicitCastExpr(ExprKind::Coerce, sub, asLoc, type, type.getType()) { } CoerceExpr(SourceLoc asLoc, TypeLoc type) : CoerceExpr(nullptr, asLoc, type) { } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Coerce; } }; /// \brief Represents two expressions joined by the arrow operator '->', which /// may be preceded by the 'throws' keyword. Currently this only exists to be /// transformed into a FunctionTypeRepr by simplifyTypeExpr() in Sema. class ArrowExpr : public Expr { SourceLoc ThrowsLoc; SourceLoc ArrowLoc; Expr *Args; Expr *Result; public: ArrowExpr(Expr *Args, SourceLoc ThrowsLoc, SourceLoc ArrowLoc, Expr *Result) : Expr(ExprKind::Arrow, /*implicit=*/false, Type()), ThrowsLoc(ThrowsLoc), ArrowLoc(ArrowLoc), Args(Args), Result(Result) { } ArrowExpr(SourceLoc ThrowsLoc, SourceLoc ArrowLoc) : Expr(ExprKind::Arrow, /*implicit=*/false, Type()), ThrowsLoc(ThrowsLoc), ArrowLoc(ArrowLoc), Args(nullptr), Result(nullptr) { } Expr *getArgsExpr() const { return Args; } void setArgsExpr(Expr *E) { Args = E; } Expr *getResultExpr() const { return Result; } void setResultExpr(Expr *E) { Result = E; } SourceLoc getThrowsLoc() const { return ThrowsLoc; } SourceLoc getArrowLoc() const { return ArrowLoc; } bool isFolded() const { return Args != nullptr && Result != nullptr; } SourceLoc getSourceLoc() const { return ArrowLoc; } SourceLoc getStartLoc() const { return isFolded() ? Args->getStartLoc() : ThrowsLoc.isValid() ? ThrowsLoc : ArrowLoc; } SourceLoc getEndLoc() const { return isFolded() ? Result->getEndLoc() : ArrowLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Arrow; } }; /// \brief Represents the rebinding of 'self' in a constructor that calls out /// to another constructor. The result of the subexpression is assigned to /// 'self', and the expression returns void. /// /// When a super.init or delegating initializer is invoked, 'self' is /// reassigned to the result of the initializer (after being downcast in the /// case of super.init). /// /// This is needed for reference types with ObjC interop, where /// reassigning 'self' is a supported feature, and for value type delegating /// constructors, where the delegatee constructor is responsible for /// initializing 'self' in-place before the delegator's logic executes. class RebindSelfInConstructorExpr : public Expr { Expr *SubExpr; VarDecl *Self; public: RebindSelfInConstructorExpr(Expr *SubExpr, VarDecl *Self); SWIFT_FORWARD_SOURCE_LOCS_TO(SubExpr) VarDecl *getSelf() const { return Self; } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *Sub) { SubExpr = Sub; } OtherConstructorDeclRefExpr *getCalledConstructor(bool &isChainToSuper) const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::RebindSelfInConstructor; } }; /// \brief The conditional expression 'x ? y : z'. class IfExpr : public Expr { Expr *CondExpr, *ThenExpr, *ElseExpr; SourceLoc QuestionLoc, ColonLoc; public: IfExpr(Expr *CondExpr, SourceLoc QuestionLoc, Expr *ThenExpr, SourceLoc ColonLoc, Expr *ElseExpr, Type Ty = Type()) : Expr(ExprKind::If, /*Implicit=*/false, Ty), CondExpr(CondExpr), ThenExpr(ThenExpr), ElseExpr(ElseExpr), QuestionLoc(QuestionLoc), ColonLoc(ColonLoc) {} IfExpr(SourceLoc QuestionLoc, Expr *ThenExpr, SourceLoc ColonLoc) : IfExpr(nullptr, QuestionLoc, ThenExpr, ColonLoc, nullptr) {} SourceLoc getLoc() const { return QuestionLoc; } SourceLoc getStartLoc() const { return (isFolded() ? CondExpr->getStartLoc() : QuestionLoc); } SourceLoc getEndLoc() const { return (isFolded() ? ElseExpr->getEndLoc() : ColonLoc); } SourceLoc getQuestionLoc() const { return QuestionLoc; } SourceLoc getColonLoc() const { return ColonLoc; } Expr *getCondExpr() const { return CondExpr; } void setCondExpr(Expr *E) { CondExpr = E; } Expr *getThenExpr() const { return ThenExpr; } void setThenExpr(Expr *E) { ThenExpr = E; } Expr *getElseExpr() const { return ElseExpr; } void setElseExpr(Expr *E) { ElseExpr = E; } /// True if the node has been processed by binary expression folding. bool isFolded() const { return CondExpr && ElseExpr; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::If; } }; /// EnumIsCaseExpr - A boolean expression that is true if an enum value is of /// a particular case. class EnumIsCaseExpr : public Expr { Expr *SubExpr; EnumElementDecl *Element; public: EnumIsCaseExpr(Expr *SubExpr, EnumElementDecl *Element) : Expr(ExprKind::EnumIsCase, /*implicit*/ true), SubExpr(SubExpr), Element(Element) {} Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *e) { SubExpr = e; } EnumElementDecl *getEnumElement() const { return Element; } void setEnumElement(EnumElementDecl *elt) { Element = elt; } SourceLoc getLoc() const { return SubExpr->getLoc(); } SourceLoc getStartLoc() const { return SubExpr->getStartLoc(); } SourceLoc getEndLoc() const { return SubExpr->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::EnumIsCase; } }; /// AssignExpr - A value assignment, like "x = y". class AssignExpr : public Expr { Expr *Dest; Expr *Src; SourceLoc EqualLoc; public: AssignExpr(Expr *Dest, SourceLoc EqualLoc, Expr *Src, bool Implicit) : Expr(ExprKind::Assign, Implicit), Dest(Dest), Src(Src), EqualLoc(EqualLoc) {} AssignExpr(SourceLoc EqualLoc) : AssignExpr(nullptr, EqualLoc, nullptr, /*Implicit=*/false) {} Expr *getDest() const { return Dest; } void setDest(Expr *e) { Dest = e; } Expr *getSrc() const { return Src; } void setSrc(Expr *e) { Src = e; } SourceLoc getEqualLoc() const { return EqualLoc; } SourceLoc getLoc() const { SourceLoc loc = EqualLoc; if (loc.isValid()) { return loc; } return getStartLoc(); } SourceLoc getStartLoc() const { if (!isFolded()) return EqualLoc; return ( Dest->getStartLoc().isValid() ? Dest->getStartLoc() : Src->getStartLoc()); } SourceLoc getEndLoc() const { if (!isFolded()) return EqualLoc; return (Src->getEndLoc().isValid() ? Src->getEndLoc() : Dest->getEndLoc()); } /// True if the node has been processed by binary expression folding. bool isFolded() const { return Dest && Src; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Assign; } }; /// \brief A pattern production that has been parsed but hasn't been resolved /// into a complete pattern. Name binding converts these into standalone pattern /// nodes or raises an error if a pattern production appears in an invalid /// position. class UnresolvedPatternExpr : public Expr { Pattern *subPattern; public: explicit UnresolvedPatternExpr(Pattern *subPattern) : Expr(ExprKind::UnresolvedPattern, /*Implicit=*/false), subPattern(subPattern) { } const Pattern *getSubPattern() const { return subPattern; } Pattern *getSubPattern() { return subPattern; } void setSubPattern(Pattern *p) { subPattern = p; } SourceRange getSourceRange() const; SourceLoc getStartLoc() const; SourceLoc getEndLoc() const; SourceLoc getLoc() const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedPattern; } }; /// An editor placeholder (<#such as this#>) that occurred in an expression /// context. If the placeholder is a typed one (see \c EditorPlaceholderData) /// its type string will be typechecked and will be associated with this expr. class EditorPlaceholderExpr : public Expr { Identifier Placeholder; SourceLoc Loc; TypeLoc PlaceholderTy; TypeRepr *ExpansionTyR; Expr *SemanticExpr; public: EditorPlaceholderExpr(Identifier Placeholder, SourceLoc Loc, TypeLoc PlaceholderTy, TypeRepr *ExpansionTyR) : Expr(ExprKind::EditorPlaceholder, /*Implicit=*/false), Placeholder(Placeholder), Loc(Loc), PlaceholderTy(PlaceholderTy), ExpansionTyR(ExpansionTyR), SemanticExpr(nullptr) { } Identifier getPlaceholder() const { return Placeholder; } SourceRange getSourceRange() const { return Loc; } TypeLoc &getTypeLoc() { return PlaceholderTy; } TypeLoc getTypeLoc() const { return PlaceholderTy; } /// The TypeRepr to be considered for placeholder expansion. TypeRepr *getTypeForExpansion() const { return ExpansionTyR; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::EditorPlaceholder; } Expr *getSemanticExpr() const { return SemanticExpr; } void setSemanticExpr(Expr *SE) { SemanticExpr = SE; } }; /// Produces the Objective-C selector of the referenced method. /// /// \code /// #selector(UIView.insertSubview(_:aboveSubview:)) /// \endcode class ObjCSelectorExpr : public Expr { SourceLoc KeywordLoc; SourceLoc LParenLoc; SourceLoc ModifierLoc; Expr *SubExpr; SourceLoc RParenLoc; AbstractFunctionDecl *ResolvedMethod = nullptr; public: /// The kind of #selector expression this is. enum ObjCSelectorKind { Method, Getter, Setter }; ObjCSelectorExpr(ObjCSelectorKind kind, SourceLoc keywordLoc, SourceLoc lParenLoc, SourceLoc modifierLoc, Expr *subExpr, SourceLoc rParenLoc) : Expr(ExprKind::ObjCSelector, /*Implicit=*/false), KeywordLoc(keywordLoc), LParenLoc(lParenLoc), ModifierLoc(modifierLoc), SubExpr(subExpr), RParenLoc(rParenLoc) { Bits.ObjCSelectorExpr.SelectorKind = static_cast(kind); } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *expr) { SubExpr = expr; } /// Whether this selector references a property getter or setter. bool isPropertySelector() const { switch (getSelectorKind()) { case ObjCSelectorKind::Method: return false; case ObjCSelectorKind::Getter: case ObjCSelectorKind::Setter: return true; } llvm_unreachable("Unhandled ObjcSelectorKind in switch."); } /// Whether this selector references a method. bool isMethodSelector() const { switch (getSelectorKind()) { case ObjCSelectorKind::Method: return true; case ObjCSelectorKind::Getter: case ObjCSelectorKind::Setter: return false; } } /// Retrieve the Objective-C method to which this expression refers. AbstractFunctionDecl *getMethod() const { return ResolvedMethod; } /// Set the Objective-C method to which this expression refers. void setMethod(AbstractFunctionDecl *method) { ResolvedMethod = method; } SourceLoc getLoc() const { return KeywordLoc; } SourceRange getSourceRange() const { return SourceRange(KeywordLoc, RParenLoc); } /// The location at which the getter: or setter: starts. Requires the selector /// to be a getter or setter. SourceLoc getModifierLoc() const { assert(isPropertySelector() && "Modifiers only set on property selectors"); return ModifierLoc; } /// Retrieve the kind of the selector (method, getter, setter) ObjCSelectorKind getSelectorKind() const { return static_cast(Bits.ObjCSelectorExpr.SelectorKind); } /// Override the selector kind. /// /// Used by the type checker to recover from ill-formed #selector /// expressions. void overrideObjCSelectorKind(ObjCSelectorKind newKind, SourceLoc modifierLoc) { Bits.ObjCSelectorExpr.SelectorKind = static_cast(newKind); ModifierLoc = modifierLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ObjCSelector; } }; /// Produces a keypath string for the given referenced property. /// /// \code /// #keyPath(Person.friends.firstName) /// \endcode class KeyPathExpr : public Expr { SourceLoc StartLoc; SourceLoc LParenLoc; SourceLoc EndLoc; Expr *ObjCStringLiteralExpr = nullptr; // The parsed root of a Swift keypath (the section before an unusual dot, like // Foo.Bar in \Foo.Bar.?.baz). Expr *ParsedRoot = nullptr; // The parsed path of a Swift keypath (the section after an unusual dot, like // ?.baz in \Foo.Bar.?.baz). Expr *ParsedPath = nullptr; // The processed/resolved type, like Foo.Bar in \Foo.Bar.?.baz. TypeRepr *RootType = nullptr; public: /// A single stored component, which will be one of: /// - an unresolved DeclName, which has to be type-checked /// - a resolved ValueDecl, referring to /// - a subscript index expression, which may or may not be resolved /// - an optional chaining, forcing, or wrapping component class Component { public: enum class Kind: unsigned { Invalid, UnresolvedProperty, UnresolvedSubscript, Property, Subscript, OptionalForce, OptionalChain, OptionalWrap }; private: union DeclNameOrRef { DeclName UnresolvedName; ConcreteDeclRef ResolvedDecl; DeclNameOrRef() : UnresolvedName{} {} DeclNameOrRef(DeclName un) : UnresolvedName(un) {} DeclNameOrRef(ConcreteDeclRef rd) : ResolvedDecl(rd) {} } Decl; llvm::PointerIntPair SubscriptIndexExprAndKind; ArrayRef SubscriptLabels; ArrayRef SubscriptHashableConformances; Type ComponentType; SourceLoc Loc; explicit Component(ASTContext *ctxForCopyingLabels, DeclNameOrRef decl, Expr *indexExpr, ArrayRef subscriptLabels, ArrayRef indexHashables, Kind kind, Type type, SourceLoc loc); public: Component() : Component(nullptr, {}, nullptr, {}, {}, Kind::Invalid, Type(), SourceLoc()) {} /// Create an unresolved component for a property. static Component forUnresolvedProperty(DeclName UnresolvedName, SourceLoc Loc) { return Component(nullptr, UnresolvedName, nullptr, {}, {}, Kind::UnresolvedProperty, Type(), Loc); } /// Create an unresolved component for a subscript. static Component forUnresolvedSubscript(ASTContext &ctx, SourceLoc lSquareLoc, ArrayRef indexArgs, ArrayRef indexArgLabels, ArrayRef indexArgLabelLocs, SourceLoc rSquareLoc, Expr *trailingClosure); /// Create an unresolved component for a subscript. /// /// You shouldn't add new uses of this overload; use the one that takes a /// list of index arguments. static Component forUnresolvedSubscriptWithPrebuiltIndexExpr( ASTContext &context, Expr *index, ArrayRef subscriptLabels, SourceLoc loc) { return Component(&context, {}, index, subscriptLabels, {}, Kind::UnresolvedSubscript, Type(), loc); } /// Create an unresolved optional force `!` component. static Component forUnresolvedOptionalForce(SourceLoc BangLoc) { return Component(nullptr, {}, nullptr, {}, {}, Kind::OptionalForce, Type(), BangLoc); } /// Create an unresolved optional chain `?` component. static Component forUnresolvedOptionalChain(SourceLoc QuestionLoc) { return Component(nullptr, {}, nullptr, {}, {}, Kind::OptionalChain, Type(), QuestionLoc); } /// Create a component for a property. static Component forProperty(ConcreteDeclRef property, Type propertyType, SourceLoc loc) { return Component(nullptr, property, nullptr, {}, {}, Kind::Property, propertyType, loc); } /// Create a component for a subscript. static Component forSubscript(ASTContext &ctx, ConcreteDeclRef subscript, SourceLoc lSquareLoc, ArrayRef indexArgs, ArrayRef indexArgLabels, ArrayRef indexArgLabelLocs, SourceLoc rSquareLoc, Expr *trailingClosure, Type elementType, ArrayRef indexHashables); /// Create a component for a subscript. /// /// You shouldn't add new uses of this overload; use the one that takes a /// list of index arguments. static Component forSubscriptWithPrebuiltIndexExpr( ConcreteDeclRef subscript, Expr *index, ArrayRef labels, Type elementType, SourceLoc loc, ArrayRef indexHashables); /// Create an optional-forcing `!` component. static Component forOptionalForce(Type forcedType, SourceLoc bangLoc) { return Component(nullptr, {}, nullptr, {}, {}, Kind::OptionalForce, forcedType, bangLoc); } /// Create an optional-chaining `?` component. static Component forOptionalChain(Type unwrappedType, SourceLoc questionLoc) { return Component(nullptr, {}, nullptr, {}, {}, Kind::OptionalChain, unwrappedType, questionLoc); } /// Create an optional-wrapping component. This doesn't have a surface /// syntax but may appear when the non-optional result of an optional chain /// is implicitly wrapped. static Component forOptionalWrap(Type wrappedType) { return Component(nullptr, {}, nullptr, {}, {}, Kind::OptionalWrap, wrappedType, SourceLoc()); } SourceLoc getLoc() const { return Loc; } Kind getKind() const { return SubscriptIndexExprAndKind.getInt(); } bool isValid() const { return getKind() != Kind::Invalid; } bool isResolved() const { if (!getComponentType()) return false; switch (getKind()) { case Kind::Subscript: case Kind::OptionalChain: case Kind::OptionalWrap: case Kind::OptionalForce: case Kind::Property: return true; case Kind::UnresolvedSubscript: case Kind::UnresolvedProperty: case Kind::Invalid: return false; } } Expr *getIndexExpr() const { switch (getKind()) { case Kind::Subscript: case Kind::UnresolvedSubscript: return SubscriptIndexExprAndKind.getPointer(); case Kind::Invalid: case Kind::OptionalChain: case Kind::OptionalWrap: case Kind::OptionalForce: case Kind::UnresolvedProperty: case Kind::Property: llvm_unreachable("no index expr for this kind"); } } ArrayRef getSubscriptLabels() const { switch (getKind()) { case Kind::Subscript: case Kind::UnresolvedSubscript: return SubscriptLabels; case Kind::Invalid: case Kind::OptionalChain: case Kind::OptionalWrap: case Kind::OptionalForce: case Kind::UnresolvedProperty: case Kind::Property: llvm_unreachable("no subscript labels for this kind"); } } ArrayRef getSubscriptIndexHashableConformances() const { switch (getKind()) { case Kind::Subscript: return SubscriptHashableConformances; case Kind::UnresolvedSubscript: case Kind::Invalid: case Kind::OptionalChain: case Kind::OptionalWrap: case Kind::OptionalForce: case Kind::UnresolvedProperty: case Kind::Property: llvm_unreachable("no hashable conformances for this kind"); } } void setSubscriptIndexHashableConformances( ArrayRef hashables); DeclName getUnresolvedDeclName() const { switch (getKind()) { case Kind::UnresolvedProperty: return Decl.UnresolvedName; case Kind::Invalid: case Kind::Subscript: case Kind::UnresolvedSubscript: case Kind::OptionalChain: case Kind::OptionalWrap: case Kind::OptionalForce: case Kind::Property: llvm_unreachable("no unresolved name for this kind"); } } ConcreteDeclRef getDeclRef() const { switch (getKind()) { case Kind::Property: case Kind::Subscript: return Decl.ResolvedDecl; case Kind::Invalid: case Kind::UnresolvedProperty: case Kind::UnresolvedSubscript: case Kind::OptionalChain: case Kind::OptionalWrap: case Kind::OptionalForce: llvm_unreachable("no decl ref for this kind"); } } Type getComponentType() const { return ComponentType; } void setComponentType(Type t) { ComponentType = t; } }; private: llvm::MutableArrayRef Components; public: /// Create a new #keyPath expression. KeyPathExpr(ASTContext &C, SourceLoc keywordLoc, SourceLoc lParenLoc, ArrayRef components, SourceLoc rParenLoc, bool isImplicit = false); KeyPathExpr(SourceLoc backslashLoc, Expr *parsedRoot, Expr *parsedPath, bool isImplicit = false) : Expr(ExprKind::KeyPath, isImplicit), StartLoc(backslashLoc), EndLoc(parsedPath ? parsedPath->getEndLoc() : parsedRoot->getEndLoc()), ParsedRoot(parsedRoot), ParsedPath(parsedPath) { assert((parsedRoot || parsedPath) && "keypath must have either root or path"); Bits.KeyPathExpr.IsObjC = false; } SourceLoc getLoc() const { return StartLoc; } SourceRange getSourceRange() const { return SourceRange(StartLoc, EndLoc); } /// Get the components array. ArrayRef getComponents() const { return Components; } MutableArrayRef getMutableComponents() { return Components; } /// Resolve the components of an un-type-checked expr. This copies over the /// components from the argument array. void resolveComponents(ASTContext &C, ArrayRef resolvedComponents); /// Retrieve the string literal expression, which will be \c NULL prior to /// type checking and a string literal after type checking for an /// @objc key path. Expr *getObjCStringLiteralExpr() const { return ObjCStringLiteralExpr; } /// Set the semantic expression. void setObjCStringLiteralExpr(Expr *expr) { ObjCStringLiteralExpr = expr; } Expr *getParsedRoot() const { assert(!isObjC() && "cannot get parsed root of ObjC keypath"); return ParsedRoot; } void setParsedRoot(Expr *root) { assert(!isObjC() && "cannot get parsed root of ObjC keypath"); ParsedRoot = root; } Expr *getParsedPath() const { assert(!isObjC() && "cannot get parsed path of ObjC keypath"); return ParsedPath; } void setParsedPath(Expr *path) { assert(!isObjC() && "cannot set parsed path of ObjC keypath"); ParsedPath = path; } TypeRepr *getRootType() const { assert(!isObjC() && "cannot get root type of ObjC keypath"); return RootType; } void setRootType(TypeRepr *rootType) { assert(!isObjC() && "cannot set root type of ObjC keypath"); RootType = rootType; } /// True if this is an ObjC key path expression. bool isObjC() const { return Bits.KeyPathExpr.IsObjC; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::KeyPath; } }; /// Represents the unusual behavior of a . in a \ keypath expression, such as /// \.[0] and \Foo.?. class KeyPathDotExpr : public Expr { SourceLoc DotLoc; public: KeyPathDotExpr(SourceLoc dotLoc) : Expr(ExprKind::KeyPathDot, /*isImplicit=*/true), DotLoc(dotLoc) {} SourceLoc getLoc() const { return DotLoc; } SourceRange getSourceRange() const { return SourceRange(DotLoc, DotLoc); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::KeyPathDot; } }; inline bool Expr::isInfixOperator() const { return isa(this) || isa(this) || isa(this) || isa(this); } inline Expr *const *CollectionExpr::getTrailingObjectsPointer() const { if (auto ty = dyn_cast(this)) return ty->getTrailingObjects(); if (auto ty = dyn_cast(this)) return ty->getTrailingObjects(); llvm_unreachable("Unhandled CollectionExpr!"); } inline const SourceLoc *CollectionExpr::getTrailingSourceLocs() const { if (auto ty = dyn_cast(this)) return ty->getTrailingObjects(); if (auto ty = dyn_cast(this)) return ty->getTrailingObjects(); llvm_unreachable("Unhandled CollectionExpr!"); } #undef SWIFT_FORWARD_SOURCE_LOCS_TO } // end namespace swift #endif