//===--- Stride.swift.gyb - Components for stride(...) iteration ----------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// /// Conforming types are notionally continuous, one-dimensional /// values that can be offset and measured. /// /// - Important: The `Strideable` protocol provides default implementations for /// the equal-to (`==`) and less-than (`<`) operators that depend on the /// `Stride` type's implementations. If a type conforming to `Strideable` /// is its own `Stride` type, it must provide concrete implementations of /// the two operators to avoid infinite recursion. public protocol Strideable : Comparable { /// A type that represents the distance between two values of `Self`. associatedtype Stride : SignedNumeric, Comparable /// Returns a stride `x` such that `self.advanced(by: x)` approximates /// `other`. /// /// If `Stride` conforms to `Integer`, then `self.advanced(by: x) == other`. /// /// - Complexity: O(1). func distance(to other: Self) -> Stride /// Returns a `Self` `x` such that `self.distance(to: x)` approximates `n`. /// /// If `Stride` conforms to `Integer`, then `self.distance(to: x) == n`. /// /// - Complexity: O(1). func advanced(by n: Stride) -> Self /// `_step` is an implementation detail of Strideable; do not use it directly. static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) associatedtype _DisabledRangeIndex = Never } extension Strideable { @_inlineable public static func < (x: Self, y: Self) -> Bool { return x.distance(to: y) > 0 } @_inlineable public static func == (x: Self, y: Self) -> Bool { return x.distance(to: y) == 0 } } //===----------------------------------------------------------------------===// %{ # Strideable used to provide + and - unconditionally. With the updated # collection indexing model of Swift 3 this became unnecessary for integer # types, and was deprecated, as it was a way to write mixed-type arithmetic # expressions, that are otherwise are not allowed. }% % for Base, VersionInfo in [ % ('Strideable where Self : _Pointer', None), % ('Strideable', 'deprecated: 3, obsoleted: 4'), % ]: % Availability = '@available(swift, %s, message: "Please use explicit type conversions or Strideable methods for mixed-type arithmetics.")' % (VersionInfo) if VersionInfo else '' extension ${Base} { @_inlineable // FIXME(sil-serialize-all) @_transparent ${Availability} public static func + (lhs: Self, rhs: Self.Stride) -> Self { return lhs.advanced(by: rhs) } @_inlineable // FIXME(sil-serialize-all) @_transparent ${Availability} public static func + (lhs: Self.Stride, rhs: Self) -> Self { return rhs.advanced(by: lhs) } @_inlineable // FIXME(sil-serialize-all) @_transparent ${Availability} public static func - (lhs: Self, rhs: Self.Stride) -> Self { return lhs.advanced(by: -rhs) } @_inlineable // FIXME(sil-serialize-all) @_transparent ${Availability} public static func - (lhs: Self, rhs: Self) -> Self.Stride { return rhs.distance(to: lhs) } @_inlineable // FIXME(sil-serialize-all) @_transparent ${Availability} public static func += (lhs: inout Self, rhs: Self.Stride) { lhs = lhs.advanced(by: rhs) } @_inlineable // FIXME(sil-serialize-all) @_transparent ${Availability} public static func -= (lhs: inout Self, rhs: Self.Stride) { lhs = lhs.advanced(by: -rhs) } } % end //===----------------------------------------------------------------------===// extension Strideable { @_inlineable public static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) { return (nil, current.value.advanced(by: distance)) } } extension Strideable where Stride : FloatingPoint { @_inlineable public static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) { if let i = current.index { // When Stride is a floating-point type, we should avoid accumulating // rounding error from repeated addition. return (i + 1, start.advanced(by: Stride(i + 1) * distance)) } return (nil, current.value.advanced(by: distance)) } } extension Strideable where Self : FloatingPoint, Self == Stride { @_inlineable public static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) { if let i = current.index { // When both Self and Stride are the same floating-point type, we should // take advantage of fused multiply-add (where supported) to eliminate // intermediate rounding error. return (i + 1, start.addingProduct(Stride(i + 1), distance)) } return (nil, current.value.advanced(by: distance)) } } /// An iterator for `StrideTo`. @_fixed_layout public struct StrideToIterator { @_versioned internal let _start: Element @_versioned internal let _end: Element @_versioned internal let _stride: Element.Stride @_versioned internal var _current: (index: Int?, value: Element) @_inlineable @_versioned internal init(_start: Element, end: Element, stride: Element.Stride) { self._start = _start _end = end _stride = stride _current = (0, _start) } } extension StrideToIterator: IteratorProtocol { /// Advances to the next element and returns it, or `nil` if no next element /// exists. /// /// Once `nil` has been returned, all subsequent calls return `nil`. @_inlineable public mutating func next() -> Element? { let result = _current.value if _stride > 0 ? result >= _end : result <= _end { return nil } _current = Element._step(after: _current, from: _start, by: _stride) return result } } /// A `Sequence` of values formed by striding over a half-open interval. // FIXME: should really be a Collection, as it is multipass @_fixed_layout public struct StrideTo { @_versioned internal let _start: Element @_versioned internal let _end: Element @_versioned internal let _stride: Element.Stride @_inlineable @_versioned internal init(_start: Element, end: Element, stride: Element.Stride) { _precondition(stride != 0, "Stride size must not be zero") // At start, striding away from end is allowed; it just makes for an // already-empty Sequence. self._start = _start self._end = end self._stride = stride } } extension StrideTo: Sequence { /// Returns an iterator over the elements of this sequence. /// /// - Complexity: O(1). @_inlineable public func makeIterator() -> StrideToIterator { return StrideToIterator(_start: _start, end: _end, stride: _stride) } // FIXME(conditional-conformances): this is O(N) instead of O(1), leaving it // here until a proper Collection conformance is possible @_inlineable public var underestimatedCount: Int { var it = self.makeIterator() var count = 0 while it.next() != nil { count += 1 } return count } @_inlineable public func _preprocessingPass( _ preprocess: () throws -> R ) rethrows -> R? { return try preprocess() } @_inlineable public func _customContainsEquatableElement( _ element: Element ) -> Bool? { if element < _start || _end <= element { return false } return nil } } extension StrideTo: CustomReflectable { @_inlineable // FIXME(sil-serialize-all) public var customMirror: Mirror { return Mirror(self, children: ["from": _start, "to": _end, "by": _stride]) } } // FIXME(conditional-conformances): This does not yet compile (SR-6474). #if false extension StrideTo : RandomAccessCollection where Element.Stride : BinaryInteger { public typealias Index = Int public typealias SubSequence = Slice> public typealias Indices = CountableRange @_inlineable public var startIndex: Index { return 0 } @_inlineable public var endIndex: Index { return count } @_inlineable public var count: Int { let distance = _start.distance(to: _end) guard distance != 0 && (distance < 0) == (_stride < 0) else { return 0 } return Int((distance - 1) / _stride) + 1 } public subscript(position: Index) -> Element { _failEarlyRangeCheck(position, bounds: startIndex..) -> Slice> { _failEarlyRangeCheck(bounds, bounds: startIndex ..< endIndex) return Slice(base: self, bounds: bounds) } @_inlineable public func index(before i: Index) -> Index { _failEarlyRangeCheck(i, bounds: startIndex + 1...endIndex) return i - 1 } @_inlineable public func index(after i: Index) -> Index { _failEarlyRangeCheck(i, bounds: startIndex - 1..( from start: T, to end: T, by stride: T.Stride ) -> StrideTo { return StrideTo(_start: start, end: end, stride: stride) } /// An iterator for `StrideThrough`. @_fixed_layout public struct StrideThroughIterator { @_versioned internal let _start: Element @_versioned internal let _end: Element @_versioned internal let _stride: Element.Stride @_versioned internal var _current: (index: Int?, value: Element) @_versioned internal var _didReturnEnd: Bool = false @_inlineable @_versioned internal init(_start: Element, end: Element, stride: Element.Stride) { self._start = _start _end = end _stride = stride _current = (0, _start) } } extension StrideThroughIterator: IteratorProtocol { /// Advances to the next element and returns it, or `nil` if no next element /// exists. /// /// Once `nil` has been returned, all subsequent calls return `nil`. @_inlineable public mutating func next() -> Element? { let result = _current.value if _stride > 0 ? result >= _end : result <= _end { // This check is needed because if we just changed the above operators // to > and <, respectively, we might advance current past the end // and throw it out of bounds (e.g. above Int.max) unnecessarily. if result == _end && !_didReturnEnd { _didReturnEnd = true return result } return nil } _current = Element._step(after: _current, from: _start, by: _stride) return result } } /// A `Sequence` of values formed by striding over a closed interval. // FIXME: should really be a CollectionType, as it is multipass @_fixed_layout public struct StrideThrough { @_versioned internal let _start: Element @_versioned internal let _end: Element @_versioned internal let _stride: Element.Stride @_inlineable @_versioned internal init(_start: Element, end: Element, stride: Element.Stride) { _precondition(stride != 0, "Stride size must not be zero") self._start = _start self._end = end self._stride = stride } } extension StrideThrough: Sequence { /// Returns an iterator over the elements of this sequence. /// /// - Complexity: O(1). @_inlineable public func makeIterator() -> StrideThroughIterator { return StrideThroughIterator(_start: _start, end: _end, stride: _stride) } // FIXME(conditional-conformances): this is O(N) instead of O(1), leaving it // here until a proper Collection conformance is possible @_inlineable public var underestimatedCount: Int { var it = self.makeIterator() var count = 0 while it.next() != nil { count += 1 } return count } @_inlineable public func _preprocessingPass( _ preprocess: () throws -> R ) rethrows -> R? { return try preprocess() } @_inlineable public func _customContainsEquatableElement( _ element: Element ) -> Bool? { if element < _start || _end < element { return false } return nil } } extension StrideThrough: CustomReflectable { @_inlineable // FIXME(sil-serialize-all) public var customMirror: Mirror { return Mirror(self, children: ["from": _start, "through": _end, "by": _stride]) } } // FIXME(conditional-conformances): This does not yet compile (SR-6474). #if false extension StrideThrough : RandomAccessCollection where Element.Stride : BinaryInteger { public typealias Index = ClosedRangeIndex public typealias SubSequence = Slice> @_inlineable public var startIndex: Index { let distance = _start.distance(to: _end) return distance == 0 || (distance < 0) == (_stride < 0) ? ClosedRangeIndex(0) : ClosedRangeIndex() } @_inlineable public var endIndex: Index { return ClosedRangeIndex() } @_inlineable public var count: Int { let distance = _start.distance(to: _end) guard distance != 0 else { return 1 } guard (distance < 0) == (_stride < 0) else { return 0 } return Int(distance / _stride) + 1 } public subscript(position: Index) -> Element { let offset = Element.Stride(position._dereferenced) * _stride return _start.advanced(by: offset) } public subscript(bounds: Range) -> Slice> { return Slice(base: self, bounds: bounds) } @_inlineable public func index(before i: Index) -> Index { switch i._value { case .inRange(let n): _precondition(n > 0, "Incrementing past start index") return ClosedRangeIndex(n - 1) case .pastEnd: _precondition(_end >= _start, "Incrementing past start index") return ClosedRangeIndex(count - 1) } } @_inlineable public func index(after i: Index) -> Index { switch i._value { case .inRange(let n): return n == (count - 1) ? ClosedRangeIndex() : ClosedRangeIndex(n + 1) case .pastEnd: _preconditionFailure("Incrementing past end index") } } } #endif /// Returns the sequence of values (`self`, `self + stride`, `self + /// 2 * stride`, ... *last*) where *last* is the last value in the /// progression less than or equal to `end`. /// /// - Note: There is no guarantee that `end` is an element of the sequence. @_inlineable public func stride( from start: T, through end: T, by stride: T.Stride ) -> StrideThrough { return StrideThrough(_start: start, end: end, stride: stride) }