//===--- Module.cpp - Swift Language Module Implementation ----------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements the Module class and subclasses. // //===----------------------------------------------------------------------===// #include "swift/AST/ASTWalker.h" #include "swift/AST/Diagnostics.h" #include "swift/AST/LazyResolver.h" #include "swift/AST/LinkLibrary.h" #include "swift/AST/Module.h" #include "swift/AST/ModuleLoader.h" #include "swift/AST/NameLookup.h" #include "swift/AST/AST.h" #include "swift/AST/PrintOptions.h" #include "swift/Basic/SourceManager.h" #include "clang/Basic/Module.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/SaveAndRestore.h" using namespace swift; //===----------------------------------------------------------------------===// // Builtin Module Name lookup //===----------------------------------------------------------------------===// namespace { /// BuiltinModuleCache - This is the type of the cache for the BuiltinModule. /// This is lazily created on its first use an hangs off /// Module::LookupCachePimpl. class BuiltinModuleCache { /// The cache of identifiers we've already looked up. We use a /// single hashtable for both types and values as a minor /// optimization; this prevents us from having both a builtin type /// and a builtin value with the same name, but that's okay. llvm::DenseMap Cache; public: void lookupValue(Identifier Name, NLKind LookupKind, BuiltinModule &M, SmallVectorImpl &Result); }; } // end anonymous namespace. static BuiltinModuleCache &getBuiltinCachePimpl(void *&Ptr) { // FIXME: This leaks. Sticking this into ASTContext isn't enough because then // the DenseMap will leak. if (Ptr == 0) Ptr = new BuiltinModuleCache(); return *(BuiltinModuleCache*)Ptr; } void BuiltinModuleCache::lookupValue(Identifier Name, NLKind LookupKind, BuiltinModule &M, SmallVectorImpl &Result) { // Only qualified lookup ever finds anything in the builtin module. if (LookupKind != NLKind::QualifiedLookup) return; ValueDecl *&Entry = Cache[Name]; if (Entry == 0) if (Type Ty = getBuiltinType(M.Ctx, Name.str())) Entry = new (M.Ctx) TypeAliasDecl(SourceLoc(), Name, SourceLoc(), TypeLoc::withoutLoc(Ty), M.Ctx.TheBuiltinModule, MutableArrayRef()); if (Entry == 0) Entry = getBuiltinValue(M.Ctx, Name); if (Entry) Result.push_back(Entry); } //===----------------------------------------------------------------------===// // Normal Module Name Lookup //===----------------------------------------------------------------------===// namespace { /// This is the type of the cache for the TranslationUnit. /// /// This is lazily created on its first use and hangs off /// Module::LookupCachePimpl. class TUModuleCache { llvm::DenseMap> TopLevelValues; llvm::DenseMap> ClassMembers; bool MemberCachePopulated = false; void doPopulateCache(ArrayRef decls, bool onlyOperators); void addToMemberCache(ArrayRef decls); void populateMemberCache(const TranslationUnit &TU); public: typedef Module::AccessPathTy AccessPathTy; TUModuleCache(const TranslationUnit &TU); void lookupValue(AccessPathTy AccessPath, Identifier Name, NLKind LookupKind, TranslationUnit &TU, SmallVectorImpl &Result); void lookupVisibleDecls(AccessPathTy AccessPath, VisibleDeclConsumer &Consumer, NLKind LookupKind, const TranslationUnit &TU); void lookupClassMembers(AccessPathTy AccessPath, VisibleDeclConsumer &consumer, const TranslationUnit &TU); void lookupClassMember(AccessPathTy accessPath, Identifier name, SmallVectorImpl &results, const TranslationUnit &TU); SmallVector AllVisibleValues; }; } // end anonymous namespace. static TUModuleCache &getTUCachePimpl(void *&Ptr, const TranslationUnit &TU) { // FIXME: This leaks. Sticking this into ASTContext isn't enough because then // the DenseMap will leak. if (Ptr == 0) Ptr = new TUModuleCache(TU); return *(TUModuleCache*)Ptr; } static void freeTUCachePimpl(void *&Ptr) { delete (TUModuleCache*)Ptr; Ptr = 0; } void TUModuleCache::doPopulateCache(ArrayRef decls, bool onlyOperators) { for (Decl *D : decls) { if (ValueDecl *VD = dyn_cast(D)) if (onlyOperators ? VD->getName().isOperator() : !VD->getName().empty()) TopLevelValues[VD->getName()].push_back(VD); if (NominalTypeDecl *NTD = dyn_cast(D)) doPopulateCache(NTD->getMembers(), true); if (ExtensionDecl *ED = dyn_cast(D)) doPopulateCache(ED->getMembers(), true); } } void TUModuleCache::populateMemberCache(const TranslationUnit &TU) { for (const Decl *D : TU.Decls) { if (const NominalTypeDecl *NTD = dyn_cast(D)) { addToMemberCache(NTD->getMembers()); } else if (const ExtensionDecl *ED = dyn_cast(D)) { addToMemberCache(ED->getMembers()); } } } void TUModuleCache::addToMemberCache(ArrayRef decls) { for (Decl *D : decls) { auto VD = dyn_cast(D); if (!VD) continue; if (auto NTD = dyn_cast(VD)) { assert(!VD->canBeAccessedByDynamicLookup() && "inner types cannot be accessed by dynamic lookup"); addToMemberCache(NTD->getMembers()); } else if (VD->canBeAccessedByDynamicLookup()) { ClassMembers[VD->getName()].push_back(VD); } } } /// Populate our cache on the first name lookup. TUModuleCache::TUModuleCache(const TranslationUnit &TU) { doPopulateCache(TU.Decls, false); } void TUModuleCache::lookupValue(AccessPathTy AccessPath, Identifier Name, NLKind LookupKind, TranslationUnit &TU, SmallVectorImpl &Result) { assert(AccessPath.size() <= 1 && "can only refer to top-level decls"); // If this import is specific to some named type or decl ("import swift.int") // then filter out any lookups that don't match. if (AccessPath.size() == 1 && AccessPath.front().first != Name) return; auto I = TopLevelValues.find(Name); if (I == TopLevelValues.end()) return; Result.reserve(I->second.size()); for (ValueDecl *Elt : I->second) Result.push_back(Elt); } void TUModuleCache::lookupVisibleDecls(AccessPathTy AccessPath, VisibleDeclConsumer &Consumer, NLKind LookupKind, const TranslationUnit &TU) { assert(AccessPath.size() <= 1 && "can only refer to top-level decls"); if (!AccessPath.empty()) { auto I = TopLevelValues.find(AccessPath.front().first); if (I == TopLevelValues.end()) return; for (auto vd : I->second) Consumer.foundDecl(vd); return; } for (auto &tlv : TopLevelValues) { for (ValueDecl *vd : tlv.second) Consumer.foundDecl(vd); } } void TUModuleCache::lookupClassMembers(AccessPathTy accessPath, VisibleDeclConsumer &consumer, const TranslationUnit &TU) { if (!MemberCachePopulated) populateMemberCache(TU); assert(accessPath.size() <= 1 && "can only refer to top-level decls"); if (!accessPath.empty()) { for (auto &member : ClassMembers) { for (ValueDecl *vd : member.second) { Type ty = vd->getDeclContext()->getDeclaredTypeOfContext(); if (auto nominal = ty->getAnyNominal()) if (nominal->getName() == accessPath.front().first) consumer.foundDecl(vd); } } return; } for (auto &member : ClassMembers) { for (ValueDecl *vd : member.second) consumer.foundDecl(vd); } } void TUModuleCache::lookupClassMember(AccessPathTy accessPath, Identifier name, SmallVectorImpl &results, const TranslationUnit &TU) { if (!MemberCachePopulated) populateMemberCache(TU); assert(accessPath.size() <= 1 && "can only refer to top-level decls"); auto iter = ClassMembers.find(name); if (iter == ClassMembers.end()) return; if (!accessPath.empty()) { for (ValueDecl *vd : iter->second) { Type ty = vd->getDeclContext()->getDeclaredTypeOfContext(); if (auto nominal = ty->getAnyNominal()) if (nominal->getName() == accessPath.front().first) results.push_back(vd); } return; } results.append(iter->second.begin(), iter->second.end()); } //===----------------------------------------------------------------------===// // Module Implementation //===----------------------------------------------------------------------===// void Module::lookupValue(AccessPathTy AccessPath, Identifier Name, NLKind LookupKind, SmallVectorImpl &Result) { if (BuiltinModule *BM = dyn_cast(this)) { assert(AccessPath.empty() && "builtin module's access path always empty!"); return getBuiltinCachePimpl(LookupCachePimpl) .lookupValue(Name, LookupKind, *BM, Result); } if (auto TU = dyn_cast(this)) { // Look in the translation unit. return getTUCachePimpl(LookupCachePimpl, *TU) .lookupValue(AccessPath, Name, LookupKind, *TU, Result); } ModuleLoader &owner = cast(this)->getOwner(); return owner.lookupValue(this, AccessPath, Name, LookupKind, Result); } void Module::lookupVisibleDecls(AccessPathTy AccessPath, VisibleDeclConsumer &Consumer, NLKind LookupKind) const { if (auto BM = dyn_cast(this)) { // TODO Look through the Builtin module. (void)BM; return; } if (auto TU = dyn_cast(this)) { return getTUCachePimpl(LookupCachePimpl, *TU) .lookupVisibleDecls(AccessPath, Consumer, LookupKind, *TU); } ModuleLoader &owner = cast(this)->getOwner(); return owner.lookupVisibleDecls(this, AccessPath, Consumer, LookupKind); } void Module::lookupClassMembers(AccessPathTy accessPath, VisibleDeclConsumer &consumer) const { if (isa(this)) { // The Builtin module defines no classes. return; } if (auto TU = dyn_cast(this)) { return getTUCachePimpl(LookupCachePimpl, *TU) .lookupClassMembers(accessPath, consumer, *TU); } ModuleLoader &owner = cast(this)->getOwner(); return owner.lookupClassMembers(this, accessPath, consumer); } void Module::lookupClassMember(AccessPathTy accessPath, Identifier name, SmallVectorImpl &results) const { if (isa(this)) { // The Builtin module defines no classes. return; } if (auto TU = dyn_cast(this)) { return getTUCachePimpl(LookupCachePimpl, *TU) .lookupClassMember(accessPath, name, results, *TU); } ModuleLoader &owner = cast(this)->getOwner(); return owner.lookupClassMember(this, accessPath, name, results); } void Module::getTopLevelDecls(SmallVectorImpl &Results) { if (isa(this)) { return; } if (auto TU = dyn_cast(this)) { Results.append(TU->Decls.begin(), TU->Decls.end()); return; } ModuleLoader &Owner = cast(this)->getOwner(); return Owner.getTopLevelDecls(this, Results); } ArrayRef BoundGenericType::getSubstitutions( Module *module, LazyResolver *resolver) { // FIXME: If there is no module, infer one. This is a hack for callers that // don't have access to the module. It will have to go away once we're // properly differentiating bound generic types based on the protocol // conformances visible from a given module. if (!module) { module = getDecl()->getParentModule(); } // If we already have a cached copy of the substitutions, return them. auto *canon = getCanonicalType()->castTo(); const ASTContext &ctx = canon->getASTContext(); if (auto known = ctx.getSubstitutions(canon)) return *known; // Compute the set of substitutions. llvm::SmallPtrSet knownArchetypes; SmallVector archetypeStack; TypeSubstitutionMap substitutions; auto genericParams = canon->getDecl()->getGenericParams(); unsigned index = 0; for (Type arg : canon->getGenericArgs()) { auto gp = genericParams->getParams()[index++]; auto archetype = gp.getAsTypeParam()->getArchetype(); substitutions[archetype] = arg; } // Collect all of the archetypes. SmallVector allArchetypesList; ArrayRef allArchetypes = genericParams->getAllArchetypes(); if (genericParams->getOuterParameters()) { SmallVector allGenericParams; unsigned numArchetypes = 0; for (; genericParams; genericParams = genericParams->getOuterParameters()) { allGenericParams.push_back(genericParams); numArchetypes += genericParams->getAllArchetypes().size(); } allArchetypesList.reserve(numArchetypes); for (auto gp = allGenericParams.rbegin(), gpEnd = allGenericParams.rend(); gp != gpEnd; ++gp) { allArchetypesList.append((*gp)->getAllArchetypes().begin(), (*gp)->getAllArchetypes().end()); } allArchetypes = allArchetypesList; } // For each of the archetypes, compute the substitution. bool hasTypeVariables = canon->hasTypeVariable(); SmallVector resultSubstitutions; resultSubstitutions.resize(allArchetypes.size()); index = 0; for (auto archetype : allArchetypes) { // Substitute into the type. auto type = Type(archetype).subst(module, substitutions, /*ignoreMissing=*/hasTypeVariables, resolver); assert(type && "Unable to perform type substitution"); SmallVector conformances; if (type->hasTypeVariable()) { // If the type involves a type variable, just fill in null conformances. // FIXME: It seems like we should record these as requirements (?). conformances.assign(archetype->getConformsTo().size(), nullptr); } else { // Find the conformances. for (auto proto : archetype->getConformsTo()) { auto conforms = module->lookupConformance(type, proto, resolver); switch (conforms.getInt()) { case ConformanceKind::Conforms: conformances.push_back(conforms.getPointer()); break; case ConformanceKind::DoesNotConform: case ConformanceKind::UncheckedConforms: llvm_unreachable("Couldn't find conformance"); } } } // Record this substitution. resultSubstitutions[index].Archetype = archetype; resultSubstitutions[index].Replacement = type; resultSubstitutions[index].Conformance = ctx.AllocateCopy(conformances); ++index; } // Copy and record the substitutions. auto permanentSubs = ctx.AllocateCopy(resultSubstitutions, hasTypeVariables ? AllocationArena::ConstraintSolver : AllocationArena::Permanent); ctx.setSubstitutions(canon, permanentSubs); return permanentSubs; } /// Gather the set of substitutions required to map from the generic form of /// the given type to the specialized form. static ArrayRef gatherSubstitutions(Module *module, Type type, LazyResolver *resolver) { assert(type->isSpecialized() && "Type is not specialized"); SmallVector, 2> allSubstitutions; while (type) { // Record the substitutions in a bound generic type. if (auto boundGeneric = type->getAs()) { allSubstitutions.push_back(boundGeneric->getSubstitutions(module, resolver)); type = boundGeneric->getParent(); continue; } // Skip to the parent of a nominal type. if (auto nominal = type->getAs()) { type = nominal->getParent(); continue; } llvm_unreachable("Not a nominal or bound generic type"); } assert(!allSubstitutions.empty() && "No substitutions?"); // If there is only one list of substitutions, return it. There's no // need to copy it. if (allSubstitutions.size() == 1) return allSubstitutions.front(); SmallVector flatSubstitutions; for (auto substitutions : allSubstitutions) flatSubstitutions.append(substitutions.begin(), substitutions.end()); auto &ctx = module->getASTContext(); return ctx.AllocateCopy(flatSubstitutions); } /// Given a type witness map and a set of substitutions, produce the specialized /// type witness map by applying the substitutions to each type witness. static TypeWitnessMap specializeTypeWitnesses(ASTContext &ctx, Module *module, const TypeWitnessMap &witnesses, ArrayRef substitutions, LazyResolver *resolver) { // Compute the substitution map, which is needed for substType(). TypeSubstitutionMap substitutionMap; for (const auto &substitution : substitutions) { substitutionMap[substitution.Archetype] = substitution.Replacement; } // Substitute into each of the type witnesses. TypeWitnessMap result; for (const auto &genericWitness : witnesses) { // Substitute into the type witness to produce the type witness for // the specialized type. auto specializedType = genericWitness.second.Replacement.subst(module, substitutionMap, /*ignoreMissing=*/false, resolver); // If the type witness was unchanged, just copy it directly. if (specializedType.getPointer() == genericWitness.second.Replacement.getPointer()) { result.insert(genericWitness); continue; } // Gather the conformances for the type witness. These should never fail. SmallVector conformances; auto archetype = genericWitness.second.Archetype; for (auto proto : archetype->getConformsTo()) { auto conforms = module->lookupConformance(specializedType, proto, resolver); switch (conforms.getInt()) { case ConformanceKind::Conforms: conformances.push_back(conforms.getPointer()); break; case ConformanceKind::DoesNotConform: case ConformanceKind::UncheckedConforms: // FIXME: Signal errors in a more sane way. return TypeWitnessMap(); } } result[genericWitness.first] = Substitution{archetype, specializedType, ctx.AllocateCopy(conformances)}; } return result; } /// Retrieve the explicit conformance of the given nominal type declaration /// to the given protocol. static std::tuple findExplicitConformance(NominalTypeDecl *nominal, ProtocolDecl *protocol, LazyResolver *resolver) { // FIXME: Introduce a cache/lazy lookup structure to make this more efficient? // Walk the nominal type, its extensions, superclasses, and so on. llvm::SmallPtrSet visitedProtocols; SmallVector,4> stack; NominalTypeDecl *owningNominal = nullptr; Decl *declaresConformance = nullptr; ProtocolConformance *nominalConformance = nullptr; // Local function that checks for our protocol in the given array of // protocols. auto isProtocolInList = [&](NominalTypeDecl *currentNominal, Decl *currentOwner, ArrayRef protocols, ArrayRef conformances) -> bool { for (unsigned i = 0, n = protocols.size(); i != n; ++i) { auto testProto = protocols[i]; if (testProto == protocol) { owningNominal = currentNominal; declaresConformance = currentOwner; if (i < conformances.size()) nominalConformance = conformances[i]; return true; } if (visitedProtocols.insert(testProto)) stack.push_back({testProto, currentNominal, currentOwner}); } return false; }; resolver->resolveDeclSignature(nominal); // Walk the stack of types to find a conformance. stack.push_back({nominal, nominal, nominal}); while (!stack.empty()) { NominalTypeDecl *current; NominalTypeDecl *currentNominal; Decl *currentOwner; std::tie(current, currentNominal, currentOwner) = stack.back(); stack.pop_back(); // Visit the superclass of a class. if (auto classDecl = dyn_cast(current)) { if (auto superclassTy = classDecl->getSuperclass()) { auto nominal = superclassTy->getAnyNominal(); stack.push_back({nominal, nominal, nominal}); } } // Visit the protocols this type conforms to directly. if (isProtocolInList(currentNominal, currentOwner, current->getProtocols(), current->getConformances())) break; // Visit the extensions of this type. for (auto ext : current->getExtensions()) { if (isProtocolInList(currentNominal, ext, ext->getProtocols(), ext->getConformances())) break; } } // If we didn't find the protocol, we don't conform. Cache the negative result // and return. if (!owningNominal) { return { nullptr, nullptr, nullptr }; } // If we don't have a nominal conformance, but we do have a resolver, try // to resolve the nominal conformance now. if (!nominalConformance && resolver) { nominalConformance = resolver->resolveConformance( owningNominal, protocol, dyn_cast(declaresConformance)); } // If we have a nominal conformance, we're done. if (nominalConformance) { return { owningNominal, declaresConformance, nominalConformance }; } return { nullptr, nullptr, nullptr }; } LookupConformanceResult Module::lookupConformance(Type type, ProtocolDecl *protocol, LazyResolver *resolver) { ASTContext &ctx = getASTContext(); // An archetype conforms to a protocol if the protocol is listed in the // archetype's list of conformances. if (auto archetype = type->getAs()) { for (auto ap : archetype->getConformsTo()) { if (ap == protocol || ap->inheritsFrom(protocol)) return { nullptr, ConformanceKind::Conforms }; } return { nullptr, ConformanceKind::DoesNotConform }; } // An archetype conforms to a protocol if the protocol is listed in the // existential's list of conformances and the existential conforms to // itself. if (type->isExistentialType()) { // If the protocol doesn't conform to itself, there's no point in looking // further. auto known = protocol->existentialConformsToSelf(); if (!known && resolver) { resolver->resolveExistentialConformsToItself(protocol); known = protocol->existentialConformsToSelf(); } // If we know that protocol doesn't conform to itself, we're done. if (known && !*known) return { nullptr, ConformanceKind::DoesNotConform }; // Look for this protocol within the existential's list of conformances. SmallVector protocols; type->isExistentialType(protocols); for (auto ap : protocols) { if (ap == protocol || ap->inheritsFrom(protocol)) { return { nullptr, known? ConformanceKind::Conforms : ConformanceKind::UncheckedConforms }; } } // We didn't find our protocol in the existential's list; it doesn't // conform. return { nullptr, ConformanceKind::DoesNotConform }; } // Check whether we have already cached an answer to this query. ASTContext::ConformsToMap::key_type key(type->getCanonicalType(), protocol); auto known = ctx.ConformsTo.find(key); if (known != ctx.ConformsTo.end()) { // If we conform, return the conformance. if (known->second.getInt()) { return { known->second.getPointer(), ConformanceKind::Conforms }; } // We don't conform. return { nullptr, ConformanceKind::DoesNotConform }; } auto nominal = type->getAnyNominal(); // If we don't have a nominal type, there are no conformances. // FIXME: We may have implicit conformances for some cases. Handle those // here. if (!nominal) { return { nullptr, ConformanceKind::DoesNotConform }; } // Find the explicit conformance. NominalTypeDecl *owningNominal = nullptr; Decl *declaresConformance = nullptr; ProtocolConformance *nominalConformance = nullptr; std::tie(owningNominal, declaresConformance, nominalConformance) = findExplicitConformance(nominal, protocol, resolver); // If we didn't find an owning nominal, we don't conform. Cache the negative // result and return. if (!owningNominal) { ctx.ConformsTo[key] = ConformanceEntry(nullptr, false); return { nullptr, ConformanceKind::DoesNotConform }; } // If we found an owning nominal but didn't have a conformance, this is // an unchecked conformance. if (!nominalConformance) { return { nullptr, ConformanceKind::UncheckedConforms }; } // If the nominal type in which we found the conformance is not the same // as the type we asked for, it's an inherited type. if (owningNominal != nominal) { // Find the superclass type Type superclassTy = type->getSuperclass(resolver); while (superclassTy->getAnyNominal() != owningNominal) superclassTy = superclassTy->getSuperclass(resolver); // Compute the conformance for the inherited type. auto inheritedConformance = lookupConformance(superclassTy, protocol, resolver); switch (inheritedConformance.getInt()) { case ConformanceKind::DoesNotConform: llvm_unreachable("We already found the inherited conformance"); case ConformanceKind::UncheckedConforms: return inheritedConformance; case ConformanceKind::Conforms: // Create inherited conformance below. break; } // Create the inherited conformance entry. auto result = ctx.getInheritedConformance(type, inheritedConformance.getPointer()); ctx.ConformsTo[key] = ConformanceEntry(result, true); return { result, ConformanceKind::Conforms }; } // If the type is specialized, find the conformance for the generic type. if (type->isSpecialized()) { // Figure out the type that's explicitly conforming to this protocol. Type explicitConformanceType; if (auto nominal = dyn_cast(declaresConformance)) { explicitConformanceType = nominal->getDeclaredTypeInContext(); } else { explicitConformanceType = cast(declaresConformance) ->getDeclaredTypeInContext(); } // If the explicit conformance is associated with a type that is different // from the type we're checking, retrieve generic conformance. if (!explicitConformanceType->isEqual(type)) { // Gather the substitutions we need to map the generic conformance to // the specialized conformance. auto substitutions = gatherSubstitutions(this, type, resolver); // The type witnesses for the specialized conformance. TypeWitnessMap typeWitnesses = specializeTypeWitnesses(ctx, this, nominalConformance->getTypeWitnesses(), substitutions, resolver); // Create the specialized conformance entry. ctx.ConformsTo[key] = ConformanceEntry(nullptr, false); auto result = ctx.getSpecializedConformance(type, nominalConformance, substitutions, std::move(typeWitnesses)); ctx.ConformsTo[key] = ConformanceEntry(result, true); return { result, ConformanceKind::Conforms }; } } // Record and return the simple conformance. ctx.ConformsTo[key] = ConformanceEntry(nominalConformance, true); return { nominalConformance, ConformanceKind::Conforms }; } void Module::getDisplayDecls(SmallVectorImpl &results) { if (isa(this)) { // FIXME: The Builtin module isn't usually visible, but it would be nice // to have the option to display its decls. Unfortunately those decls are // lazily generated. return; } if (auto TU = dyn_cast(this)) { results.append(TU->Decls.begin(), TU->Decls.end()); return; } ModuleLoader &owner = cast(this)->getOwner(); return owner.getDisplayDecls(this, results); } namespace { // Returns Nothing on error, Optional(nullptr) if no operator decl found, or // Optional(decl) if decl was found. template Optional lookupOperatorDeclForName(Module *M, SourceLoc Loc, Identifier Name, llvm::StringMap TranslationUnit::*OP_MAP) { if (auto loadedModule = dyn_cast(M)) return loadedModule->lookupOperator(Name); auto *TU = dyn_cast(M); if (!TU) return Nothing; // Look for an operator declaration in the current module. auto found = (TU->*OP_MAP).find(Name.get()); if (found != (TU->*OP_MAP).end()) return found->getValue()? Optional(found->getValue()) : Nothing; // Look for imported operator decls. llvm::DenseSet importedOperators; for (auto &imported : TU->getImports()) { Optional maybeOp = lookupOperatorDeclForName(imported.first.second, Loc, Name, OP_MAP); if (!maybeOp) return Nothing; if (OP_DECL *op = *maybeOp) importedOperators.insert(op); } // If we found a single import, use it. if (importedOperators.empty()) { // Cache the mapping so we don't need to troll imports next time. (TU->*OP_MAP)[Name.get()] = nullptr; return Nothing; } if (importedOperators.size() == 1) { // Cache the mapping so we don't need to troll imports next time. OP_DECL *result = *importedOperators.begin(); (TU->*OP_MAP)[Name.get()] = result; return result; } // Otherwise, check for conflicts. auto i = importedOperators.begin(), end = importedOperators.end(); OP_DECL *first = *i; for (++i; i != end; ++i) { if ((*i)->conflictsWith(first)) { if (Loc.isValid()) { ASTContext &C = M->getASTContext(); C.Diags.diagnose(Loc, diag::ambiguous_operator_decls); C.Diags.diagnose(first->getLoc(), diag::found_this_operator_decl); C.Diags.diagnose((*i)->getLoc(), diag::found_this_operator_decl); } return Nothing; } } // Cache the mapping so we don't need to troll imports next time. (TU->*OP_MAP)[Name.get()] = first; return first; } } // end anonymous namespace Optional Module::lookupPrefixOperator(Identifier name, SourceLoc diagLoc) { return lookupOperatorDeclForName(this, diagLoc, name, &TranslationUnit::PrefixOperators); } Optional Module::lookupPostfixOperator(Identifier name, SourceLoc diagLoc) { return lookupOperatorDeclForName(this, diagLoc, name, &TranslationUnit::PostfixOperators); } Optional Module::lookupInfixOperator(Identifier name, SourceLoc diagLoc) { return lookupOperatorDeclForName(this, diagLoc, name, &TranslationUnit::InfixOperators); } void Module::getImportedModules(SmallVectorImpl &modules, bool includePrivate) const { if (isa(this)) return; if (auto TU = dyn_cast(this)) { for (auto importPair : TU->getImports()) if (includePrivate || importPair.second) modules.push_back(importPair.first); return; } ModuleLoader &owner = cast(this)->getOwner(); return owner.getImportedModules(this, modules, includePrivate); } namespace { /// Arbitrarily orders ImportedModule records, for inclusion in sets and such. class OrderImportedModules { using ImportedModule = Module::ImportedModule; using AccessPathTy = Module::AccessPathTy; public: bool operator()(const ImportedModule &lhs, const ImportedModule &rhs) { if (lhs.second != rhs.second) return std::less()(lhs.second, rhs.second); if (lhs.first.data() != rhs.first.data()) return std::less()(lhs.first.begin(), rhs.first.begin()); return lhs.first.size() < rhs.first.size(); } }; } bool Module::isSameAccessPath(AccessPathTy lhs, AccessPathTy rhs) { using AccessPathElem = std::pair; if (lhs.size() != rhs.size()) return false; auto iters = std::mismatch(lhs.begin(), lhs.end(), rhs.begin(), [](const AccessPathElem &lElem, const AccessPathElem &rElem) { return lElem.first == rElem.first; }); return iters.first == lhs.end(); } StringRef Module::getModuleFilename() const { if (isa(this)) return StringRef(); if (auto TU = dyn_cast(this)) { if (TU->getImportBufferID() == -1) return StringRef(); return Ctx.SourceMgr->getMemoryBuffer( TU->getImportBufferID())->getBufferIdentifier(); } ModuleLoader &Owner = cast(this)->getOwner(); return Owner.getModuleFilename(this); } bool Module::isStdlibModule() const { return !getParent() && Name == Ctx.StdlibModuleName; } template static void forAllImportedModules(Module *topLevel, Optional thisPath, const Callback &fn) { using ImportedModule = Module::ImportedModule; using AccessPathTy = Module::AccessPathTy; llvm::SmallSet visited; SmallVector queue; AccessPathTy overridingPath; if (thisPath.hasValue()) { if (respectVisibility) overridingPath = thisPath.getValue(); queue.push_back(ImportedModule(overridingPath, topLevel)); } else { visited.insert(ImportedModule({}, topLevel)); } // Even if we're processing the top-level module like any other, we still want // to include non-exported modules. topLevel->getImportedModules(queue, true); while (!queue.empty()) { auto next = queue.pop_back_val(); // Filter any whole-module imports, and skip specific-decl imports if the // import path doesn't match exactly. if (next.first.empty() || !respectVisibility) next.first = overridingPath; else if (!overridingPath.empty() && !Module::isSameAccessPath(next.first, overridingPath)) { // If we ever allow importing non-top-level decls, it's possible the rule // above isn't what we want. assert(next.first.size() == 1 && "import of non-top-level decl"); continue; } if (!visited.insert(next)) continue; if (!fn(next)) break; next.second->getImportedModules(queue, !respectVisibility); } } void Module::forAllVisibleModules(Optional thisPath, std::function fn) { forAllImportedModules(this, thisPath, fn); } void Module::collectLinkLibraries(LinkLibraryCallback callback) { forAllImportedModules(this, AccessPathTy(), [=](ImportedModule import) -> bool { Module *module = import.second; if (isa(module)) { // The Builtin module requires no libraries. return true; } if (auto TU = dyn_cast(module)) { for (auto lib : TU->getLinkLibraries()) callback(lib); return true; } ModuleLoader &owner = cast(module)->getOwner(); owner.getLinkLibraries(module, callback); return true; }); } //===----------------------------------------------------------------------===// // TranslationUnit Implementation //===----------------------------------------------------------------------===// void TranslationUnit::print(raw_ostream &os) { print(os, PrintOptions::printEverything()); } void TranslationUnit::print(raw_ostream &os, const PrintOptions &options) { for (auto decl : Decls) { if (!decl->shouldPrintInContext()) continue; decl->print(os, options); os << "\n"; } } void TranslationUnit::clearLookupCache() { freeTUCachePimpl(LookupCachePimpl); } void TranslationUnit::cacheVisibleDecls(SmallVectorImpl &&globals) const{ auto &cached = getTUCachePimpl(LookupCachePimpl, *this).AllVisibleValues; static_cast&>(cached) = std::move(globals); } const SmallVectorImpl & TranslationUnit::getCachedVisibleDecls() const { return getTUCachePimpl(LookupCachePimpl, *this).AllVisibleValues; } bool TranslationUnit::walk(ASTWalker &Walker) { llvm::SaveAndRestore SAR(Walker.Parent, this); for (Decl *D : Decls) { if (D->walk(Walker)) return true; } return false; } //===----------------------------------------------------------------------===// // LoadedModule Implementation //===----------------------------------------------------------------------===// OperatorDecl *LoadedModule::lookupOperator(Identifier name, DeclKind fixity) { return getOwner().lookupOperator(this, name, fixity); } template<> PrefixOperatorDecl * LoadedModule::lookupOperator(Identifier name) { auto result = lookupOperator(name, DeclKind::PrefixOperator); return cast_or_null(result); } template<> PostfixOperatorDecl * LoadedModule::lookupOperator(Identifier name) { auto result = lookupOperator(name, DeclKind::PostfixOperator); return cast_or_null(result); } template<> InfixOperatorDecl * LoadedModule::lookupOperator(Identifier name) { auto result = lookupOperator(name, DeclKind::InfixOperator); return cast_or_null(result); } //===----------------------------------------------------------------------===// // ModuleLoader Implementation //===----------------------------------------------------------------------===// ModuleLoader::~ModuleLoader() {}