//===--- ASTContext.cpp - ASTContext Implementation -----------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements the ASTContext class. // //===----------------------------------------------------------------------===// #include "swift/AST/ASTContext.h" #include "swift/Strings.h" #include "swift/AST/ArchetypeBuilder.h" #include "swift/AST/AST.h" #include "swift/AST/ConcreteDeclRef.h" #include "swift/AST/DiagnosticEngine.h" #include "swift/AST/ExprHandle.h" #include "swift/AST/KnownProtocols.h" #include "swift/AST/LazyResolver.h" #include "swift/AST/ModuleLoader.h" #include "swift/AST/NameLookup.h" #include "swift/AST/RawComment.h" #include "swift/AST/TypeCheckerDebugConsumer.h" #include "swift/Basic/SourceManager.h" #include "llvm/Support/Allocator.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringMap.h" #include using namespace swift; LazyResolver::~LazyResolver() = default; void ModuleLoader::anchor() {} void DependencyTracker::anchor() {} llvm::StringRef swift::getProtocolName(KnownProtocolKind kind) { switch (kind) { #define PROTOCOL(Id) \ case KnownProtocolKind::Id: \ return #Id; #include "swift/AST/KnownProtocols.def" } } struct ASTContext::Implementation { Implementation(); ~Implementation(); llvm::BumpPtrAllocator Allocator; // used in later initializations /// The set of cleanups to be called when the ASTContext is destroyed. std::vector> Cleanups; llvm::StringMap IdentifierTable; /// The declaration of Swift.String. NominalTypeDecl *StringDecl = nullptr; /// The declaration of Swift.Array. NominalTypeDecl *ArrayDecl = nullptr; /// The declaration of Swift.Dictionary. NominalTypeDecl *DictionaryDecl = nullptr; /// The declaration of Swift.Optional. EnumDecl *OptionalDecl = nullptr; /// The declaration of Swift.Optional.Some. EnumElementDecl *OptionalSomeDecl = nullptr; /// The declaration of Swift.Optional.None. EnumElementDecl *OptionalNoneDecl = nullptr; /// The declaration of Swift.ImplicitlyUnwrappedOptional.Some. EnumElementDecl *ImplicitlyUnwrappedOptionalSomeDecl = nullptr; /// The declaration of Swift.ImplicitlyUnwrappedOptional.None. EnumElementDecl *ImplicitlyUnwrappedOptionalNoneDecl = nullptr; /// The declaration of Swift.UnsafePointer. NominalTypeDecl *UnsafePointerDecl = nullptr; /// The declaration of Swift.ConstUnsafePointer. NominalTypeDecl *ConstUnsafePointerDecl = nullptr; /// The declaration of Swift.AutoreleasingUnsafePointer. NominalTypeDecl *AutoreleasingUnsafePointerDecl = nullptr; /// The declaration of Swift.CFunctionPointer U>. NominalTypeDecl *CFunctionPointerDecl = nullptr; /// The declaration of NSObject. NominalTypeDecl *NSObjectDecl = nullptr; // Declare cached declarations for each of the known declarations. #define FUNC_DECL(Name, Id) FuncDecl *Get##Name = nullptr; #include "swift/AST/KnownDecls.def" /// func _preconditionOptionalHasValue(v : [inout] Optional) -> T FuncDecl *PreconditionOptionalHasValueDecls[NumOptionalTypeKinds] = {}; /// func _doesOptionalHaveValue(v : [inout] Optional) -> T FuncDecl *DoesOptionalHaveValueDecls[NumOptionalTypeKinds] = {}; /// func _getOptionalValue(v : Optional) -> T FuncDecl *GetOptionalValueDecls[NumOptionalTypeKinds] = {}; /// func _injectValueIntoOptional(v : T) -> Optional FuncDecl *InjectValueIntoOptionalDecls[NumOptionalTypeKinds] = {}; /// func _injectNothingIntoOptional() -> Optional FuncDecl *InjectNothingIntoOptionalDecls[NumOptionalTypeKinds] = {}; /// The declaration of Swift.ImplicitlyUnwrappedOptional. EnumDecl *ImplicitlyUnwrappedOptionalDecl = nullptr; /// func _getBool(Builtin.Int1) -> Bool FuncDecl *GetBoolDecl = nullptr; /// The declaration of Swift.nil. VarDecl *NilDecl = nullptr; /// func _unimplemented_initializer(className: StaticString). FuncDecl *UnimplementedInitializerDecl = nullptr; /// \brief The set of known protocols, lazily populated as needed. ProtocolDecl *KnownProtocols[NumKnownProtocols] = { }; /// \brief The various module loaders that import external modules into this /// ASTContext. SmallVector, 4> ModuleLoaders; /// \brief The module loader used to load Clang modules. ClangModuleLoader *TheClangModuleLoader = nullptr; /// \brief Map from Swift declarations to raw comments. llvm::DenseMap RawComments; /// \brief Map from Swift declarations to brief comments. llvm::DenseMap BriefComments; /// \brief Map from local declarations to their discriminators. /// Missing entries implicitly have value 0. llvm::DenseMap LocalDiscriminators; /// \brief A cached unused pattern-binding initializer context. PatternBindingInitializer *UnusedPatternBindingContext = nullptr; /// \brief A cached unused default-argument initializer context. DefaultArgumentInitializer *UnusedDefaultArgumentContext = nullptr; /// \brief Structure that captures data that is segregated into different /// arenas. struct Arena { llvm::FoldingSet TupleTypes; llvm::DenseMap, MetatypeType*> MetatypeTypes; llvm::DenseMap, ExistentialMetatypeType*> ExistentialMetatypeTypes; llvm::DenseMap>, FunctionType*> FunctionTypes; llvm::DenseMap ArraySliceTypes; llvm::DenseMap, DictionaryType *> DictionaryTypes; llvm::DenseMap OptionalTypes; llvm::DenseMap ImplicitlyUnwrappedOptionalTypes; llvm::DenseMap ParenTypes; llvm::DenseMap ReferenceStorageTypes; llvm::DenseMap LValueTypes; llvm::DenseMap InOutTypes; llvm::DenseMap, SubstitutedType *> SubstitutedTypes; llvm::DenseMap, DependentMemberType *> DependentMemberTypes; llvm::DenseMap DynamicSelfTypes; llvm::FoldingSet EnumTypes; llvm::FoldingSet StructTypes; llvm::FoldingSet ClassTypes; llvm::FoldingSet UnboundGenericTypes; llvm::FoldingSet BoundGenericTypes; llvm::DenseMap> BoundGenericSubstitutions; /// The set of normal protocol conformances. llvm::FoldingSet NormalConformances; /// The set of specialized protocol conformances. llvm::FoldingSet SpecializedConformances; /// The set of inherited protocol conformances. llvm::FoldingSet InheritedConformances; /// ConformsTo - Caches the results of checking whether a given (canonical) /// type conforms to a given protocol. ConformsToMap ConformsTo; ~Arena() { for (auto &conformance : SpecializedConformances) conformance.~SpecializedProtocolConformance(); for (auto &conformance : InheritedConformances) conformance.~InheritedProtocolConformance(); // Call the normal conformance destructors last since they could be // referenced by the other conformance types. for (auto &conformance : NormalConformances) conformance.~NormalProtocolConformance(); } size_t getTotalMemory() const; }; llvm::DenseMap ModuleTypes; llvm::DenseMap, GenericTypeParamType *> GenericParamTypes; llvm::FoldingSet GenericFunctionTypes; llvm::FoldingSet SILFunctionTypes; llvm::DenseMap SILBlockStorageTypes; llvm::DenseMap IntegerTypes; llvm::FoldingSet ProtocolCompositionTypes; llvm::FoldingSet BuiltinVectorTypes; llvm::FoldingSet GenericSignatures; llvm::FoldingSet CompoundNames; std::vector OpenedExistentialArchetypes; /// \brief The permanent arena. Arena Permanent; using ConformanceListPair = std::pair>; /// \brief The set of nominal types and extensions thereof known to conform /// to compiler-known protocols. ConformanceListPair KnownProtocolConformances[NumKnownProtocols]; /// Temporary arena used for a constraint solver. struct ConstraintSolverArena : public Arena { /// The allocator used for all allocations within this arena. llvm::BumpPtrAllocator &Allocator; /// Callback used to get a type member of a type variable. GetTypeVariableMemberCallback GetTypeMember; ConstraintSolverArena(llvm::BumpPtrAllocator &allocator, GetTypeVariableMemberCallback &&getTypeMember) : Allocator(allocator), GetTypeMember(std::move(getTypeMember)) { } ConstraintSolverArena(const ConstraintSolverArena &) = delete; ConstraintSolverArena(ConstraintSolverArena &&) = delete; ConstraintSolverArena &operator=(const ConstraintSolverArena &) = delete; ConstraintSolverArena &operator=(ConstraintSolverArena &&) = delete; }; /// \brief The current constraint solver arena, if any. std::unique_ptr CurrentConstraintSolverArena; Arena &getArena(AllocationArena arena) { switch (arena) { case AllocationArena::Permanent: return Permanent; case AllocationArena::ConstraintSolver: assert(CurrentConstraintSolverArena && "No constraint solver active?"); return *CurrentConstraintSolverArena; } } }; ASTContext::Implementation::Implementation() : IdentifierTable(Allocator) {} ASTContext::Implementation::~Implementation() { for (auto &cleanup : Cleanups) cleanup(); } ConstraintCheckerArenaRAII:: ConstraintCheckerArenaRAII(ASTContext &self, llvm::BumpPtrAllocator &allocator, GetTypeVariableMemberCallback getTypeMember) : Self(self), Data(self.Impl.CurrentConstraintSolverArena.release()) { Self.Impl.CurrentConstraintSolverArena.reset( new ASTContext::Implementation::ConstraintSolverArena( allocator, std::move(getTypeMember))); } ConstraintCheckerArenaRAII::~ConstraintCheckerArenaRAII() { Self.Impl.CurrentConstraintSolverArena.reset( (ASTContext::Implementation::ConstraintSolverArena *)Data); } static Module *createBuiltinModule(ASTContext &ctx) { auto M = Module::create(ctx.getIdentifier("Builtin"), ctx); M->addFile(*new (ctx) BuiltinUnit(*M)); return M; } ASTContext::ASTContext(LangOptions &langOpts, SearchPathOptions &SearchPathOpts, SourceManager &SourceMgr, DiagnosticEngine &Diags) : Impl(*new Implementation()), LangOpts(langOpts), SearchPathOpts(SearchPathOpts), SourceMgr(SourceMgr), Diags(Diags), TheBuiltinModule(createBuiltinModule(*this)), StdlibModuleName(getIdentifier(STDLIB_NAME)), ObjCModuleName(getIdentifier(OBJC_MODULE_NAME)), TypeCheckerDebug(new StderrTypeCheckerDebugConsumer()), TheErrorType(new (*this, AllocationArena::Permanent) ErrorType(*this)), TheEmptyTupleType(TupleType::get(ArrayRef(), *this)), TheNativeObjectType(new (*this, AllocationArena::Permanent) BuiltinNativeObjectType(*this)), TheUnknownObjectType(new (*this, AllocationArena::Permanent) BuiltinUnknownObjectType(*this)), TheRawPointerType(new (*this, AllocationArena::Permanent) BuiltinRawPointerType(*this)), TheIEEE32Type(new (*this, AllocationArena::Permanent) BuiltinFloatType(BuiltinFloatType::IEEE32,*this)), TheIEEE64Type(new (*this, AllocationArena::Permanent) BuiltinFloatType(BuiltinFloatType::IEEE64,*this)), TheIEEE16Type(new (*this, AllocationArena::Permanent) BuiltinFloatType(BuiltinFloatType::IEEE16,*this)), TheIEEE80Type(new (*this, AllocationArena::Permanent) BuiltinFloatType(BuiltinFloatType::IEEE80,*this)), TheIEEE128Type(new (*this, AllocationArena::Permanent) BuiltinFloatType(BuiltinFloatType::IEEE128, *this)), ThePPC128Type(new (*this, AllocationArena::Permanent) BuiltinFloatType(BuiltinFloatType::PPC128,*this)) { // Initialize all of the known identifiers. #define IDENTIFIER(Id) Id_##Id = getIdentifier(#Id); #define IDENTIFIER_WITH_NAME(Name, IdStr) Id_##Name = getIdentifier(IdStr); #include "swift/AST/KnownIdentifiers.def" } ASTContext::~ASTContext() { delete &Impl; } llvm::BumpPtrAllocator &ASTContext::getAllocator(AllocationArena arena) const { switch (arena) { case AllocationArena::Permanent: return Impl.Allocator; case AllocationArena::ConstraintSolver: assert(Impl.CurrentConstraintSolverArena.get() != nullptr); return Impl.CurrentConstraintSolverArena->Allocator; } } /// getIdentifier - Return the uniqued and AST-Context-owned version of the /// specified string. Identifier ASTContext::getIdentifier(StringRef Str) const { // Make sure null pointers stay null. if (Str.data() == nullptr) return Identifier(0); return Identifier(Impl.IdentifierTable.GetOrCreateValue(Str).getKeyData()); } void ASTContext::lookupInSwiftModule( StringRef name, SmallVectorImpl &results) const { Module *M = getStdlibModule(); if (!M) return; // Find all of the declarations with this name in the Swift module. auto identifier = getIdentifier(name); M->lookupValue({ }, identifier, NLKind::UnqualifiedLookup, results); } NominalTypeDecl *ASTContext::getBoolDecl() const { SmallVector results; lookupInSwiftModule("Bool", results); for (auto result : results) { if (auto nominal = dyn_cast(result)) { return nominal; } } return nullptr; } NominalTypeDecl *ASTContext::getIntDecl() const { SmallVector results; lookupInSwiftModule("Int", results); for (auto result : results) { if (auto nominal = dyn_cast(result)) { return nominal; } } return nullptr; } NominalTypeDecl *ASTContext::getStringDecl() const { if (Impl.StringDecl) return Impl.StringDecl; SmallVector results; lookupInSwiftModule("String", results); for (auto result : results) { if (auto nominal = dyn_cast(result)) { Impl.StringDecl = nominal; return Impl.StringDecl; } } return nullptr; } /// Find the generic implementation declaration for the named syntactic-sugar /// type. static NominalTypeDecl *findSyntaxSugarImpl(const ASTContext &ctx, StringRef name) { // Find all of the declarations with this name in the Swift module. SmallVector results; ctx.lookupInSwiftModule(name, results); for (auto result : results) { if (auto nominal = dyn_cast(result)) { if (auto params = nominal->getGenericParams()) { if (params->size() == 1) { // We found it. return nominal; } } } } return nullptr; } NominalTypeDecl *ASTContext::getArrayDecl() const { if (!Impl.ArrayDecl) Impl.ArrayDecl = findSyntaxSugarImpl(*this, "Array"); return Impl.ArrayDecl; } NominalTypeDecl *ASTContext::getDictionaryDecl() const { if (!Impl.DictionaryDecl) { // Find all of the declarations with this name in the Swift module. SmallVector results; lookupInSwiftModule("Dictionary", results); for (auto result : results) { if (auto nominal = dyn_cast(result)) { if (auto params = nominal->getGenericParams()) { if (params->size() == 2) { Impl.DictionaryDecl = nominal; break; } } } } } return Impl.DictionaryDecl; } EnumDecl *ASTContext::getOptionalDecl() const { if (!Impl.OptionalDecl) Impl.OptionalDecl = dyn_cast_or_null(findSyntaxSugarImpl(*this, "Optional")); return Impl.OptionalDecl; } static EnumElementDecl *findEnumElement(EnumDecl *e, StringRef name) { if (!e) return nullptr; auto ident = e->getASTContext().getIdentifier(name); for (auto elt : e->getAllElements()) { if (elt->getName() == ident) return elt; } return nullptr; } EnumElementDecl *ASTContext::getOptionalSomeDecl(OptionalTypeKind kind) const { switch (kind) { case OTK_Optional: return getOptionalSomeDecl(); case OTK_ImplicitlyUnwrappedOptional: return getImplicitlyUnwrappedOptionalSomeDecl(); case OTK_None: llvm_unreachable("getting Some decl for non-optional type?"); } llvm_unreachable("bad OTK"); } EnumElementDecl *ASTContext::getOptionalNoneDecl(OptionalTypeKind kind) const { switch (kind) { case OTK_Optional: return getOptionalNoneDecl(); case OTK_ImplicitlyUnwrappedOptional: return getImplicitlyUnwrappedOptionalNoneDecl(); case OTK_None: llvm_unreachable("getting None decl for non-optional type?"); } llvm_unreachable("bad OTK"); } EnumElementDecl *ASTContext::getOptionalSomeDecl() const { if (!Impl.OptionalSomeDecl) Impl.OptionalSomeDecl = findEnumElement(getOptionalDecl(), "Some"); return Impl.OptionalSomeDecl; } EnumElementDecl *ASTContext::getOptionalNoneDecl() const { if (!Impl.OptionalNoneDecl) Impl.OptionalNoneDecl = findEnumElement(getOptionalDecl(), "None"); return Impl.OptionalNoneDecl; } EnumDecl *ASTContext::getImplicitlyUnwrappedOptionalDecl() const { if (!Impl.ImplicitlyUnwrappedOptionalDecl) Impl.ImplicitlyUnwrappedOptionalDecl = dyn_cast_or_null(findSyntaxSugarImpl(*this, "ImplicitlyUnwrappedOptional")); return Impl.ImplicitlyUnwrappedOptionalDecl; } EnumElementDecl *ASTContext::getImplicitlyUnwrappedOptionalSomeDecl() const { if (!Impl.ImplicitlyUnwrappedOptionalSomeDecl) Impl.ImplicitlyUnwrappedOptionalSomeDecl = findEnumElement(getImplicitlyUnwrappedOptionalDecl(), "Some"); return Impl.ImplicitlyUnwrappedOptionalSomeDecl; } EnumElementDecl *ASTContext::getImplicitlyUnwrappedOptionalNoneDecl() const { if (!Impl.ImplicitlyUnwrappedOptionalNoneDecl) Impl.ImplicitlyUnwrappedOptionalNoneDecl = findEnumElement(getImplicitlyUnwrappedOptionalDecl(), "None"); return Impl.ImplicitlyUnwrappedOptionalNoneDecl; } NominalTypeDecl *ASTContext::getUnsafePointerDecl() const { if (!Impl.UnsafePointerDecl) Impl.UnsafePointerDecl = findSyntaxSugarImpl(*this, "UnsafePointer"); return Impl.UnsafePointerDecl; } NominalTypeDecl *ASTContext::getConstUnsafePointerDecl() const { if (!Impl.ConstUnsafePointerDecl) Impl.ConstUnsafePointerDecl = findSyntaxSugarImpl(*this, "ConstUnsafePointer"); return Impl.ConstUnsafePointerDecl; } NominalTypeDecl *ASTContext::getAutoreleasingUnsafePointerDecl() const { if (!Impl.AutoreleasingUnsafePointerDecl) Impl.AutoreleasingUnsafePointerDecl = findSyntaxSugarImpl(*this, "AutoreleasingUnsafePointer"); return Impl.AutoreleasingUnsafePointerDecl; } NominalTypeDecl *ASTContext::getCFunctionPointerDecl() const { if (!Impl.CFunctionPointerDecl) Impl.CFunctionPointerDecl = findSyntaxSugarImpl(*this, "CFunctionPointer"); return Impl.CFunctionPointerDecl; } ProtocolDecl *ASTContext::getProtocol(KnownProtocolKind kind) const { // Check whether we've already looked for and cached this protocol. unsigned index = (unsigned)kind; assert(index < NumKnownProtocols && "Number of known protocols is wrong"); if (Impl.KnownProtocols[index]) return Impl.KnownProtocols[index]; // Find all of the declarations with this name in the Swift module. SmallVector results; lookupInSwiftModule(getProtocolName(kind), results); for (auto result : results) { if (auto protocol = dyn_cast(result)) { Impl.KnownProtocols[index] = protocol; return protocol; } } return nullptr; } /// Find the implementation for the given "intrinsic" library function. static FuncDecl *findLibraryIntrinsic(const ASTContext &ctx, StringRef name, LazyResolver *resolver) { SmallVector results; ctx.lookupInSwiftModule(name, results); if (results.size() == 1) { if (auto FD = dyn_cast(results.front())) { if (resolver) resolver->resolveDeclSignature(FD); return FD; } } return nullptr; } static CanType stripImmediateLabels(CanType type) { while (auto tuple = dyn_cast(type)) { if (tuple->getNumElements() == 1) { type = tuple.getElementType(0); } else { break; } } return type; } /// Check whether the given function is non-generic. static bool isNonGenericIntrinsic(FuncDecl *fn, CanType &input, CanType &output) { auto fnType = dyn_cast(fn->getType()->getCanonicalType()); if (!fnType) return false; input = stripImmediateLabels(fnType.getInput()); output = stripImmediateLabels(fnType.getResult()); return true; } /// Check whether the given type is Builtin.Int1. static bool isBuiltinInt1Type(CanType type) { if (auto intType = dyn_cast(type)) return intType->isFixedWidth() && intType->getFixedWidth() == 1; return false; } FuncDecl *ASTContext::getGetBoolDecl(LazyResolver *resolver) const { if (Impl.GetBoolDecl) return Impl.GetBoolDecl; // Look for the function. CanType input, output; auto decl = findLibraryIntrinsic(*this, "_getBool", resolver); if (!decl || !isNonGenericIntrinsic(decl, input, output)) return nullptr; // Input must be Builtin.Int1 if (!isBuiltinInt1Type(input)) return nullptr; // Output must be a global type named Bool. auto nominalType = dyn_cast(output); if (!nominalType || nominalType.getParent() || nominalType->getDecl()->getName().str() != "Bool") return nullptr; Impl.GetBoolDecl = decl; return decl; } FuncDecl * ASTContext::getUnimplementedInitializerDecl(LazyResolver *resolver) const { if (Impl.UnimplementedInitializerDecl) return Impl.UnimplementedInitializerDecl; // Look for the function. CanType input, output; auto decl = findLibraryIntrinsic(*this, "_unimplemented_initializer", resolver); if (!decl || !isNonGenericIntrinsic(decl, input, output)) return nullptr; // FIXME: Check inputs and outputs. Impl.UnimplementedInitializerDecl = decl; return decl; } /// Check whether the given function is generic over a single, /// unconstrained archetype. static bool isGenericIntrinsic(FuncDecl *fn, CanType &input, CanType &output, CanType ¶m) { auto fnType = dyn_cast(fn->getInterfaceType()->getCanonicalType()); if (!fnType || fnType->getGenericParams().size() != 1) return false; bool hasRequirements = std::any_of(fnType->getRequirements().begin(), fnType->getRequirements().end(), [](const Requirement &req) -> bool { return req.getKind() != RequirementKind::WitnessMarker; }); if (hasRequirements) return false; param = CanGenericTypeParamType(fnType->getGenericParams().front()); input = stripImmediateLabels(fnType.getInput()); output = stripImmediateLabels(fnType.getResult()); return true; } // Find library intrinsic function. static FuncDecl *findLibraryFunction(const ASTContext &ctx, FuncDecl *&cache, StringRef name, LazyResolver *resolver) { if (cache) return cache; // Look for a generic function. cache = findLibraryIntrinsic(ctx, name, resolver); return cache; } #define FUNC_DECL(Name, Id) \ FuncDecl *ASTContext::get##Name(LazyResolver *resolver) const { \ return findLibraryFunction(*this, Impl.Get##Name, Id, resolver); \ } #include "swift/AST/KnownDecls.def" /// Check whether the given type is Optional applied to the given /// type argument. static bool isOptionalType(const ASTContext &ctx, OptionalTypeKind optionalKind, CanType type, CanType arg) { if (auto boundType = dyn_cast(type)) { return (boundType->getDecl()->classifyAsOptionalType() == optionalKind && boundType.getGenericArgs().size() == 1 && boundType.getGenericArgs()[0] == arg); } return false; } /// Turn an OptionalTypeKind into an index into one of the caches. static unsigned asIndex(OptionalTypeKind optionalKind) { assert(optionalKind && "passed a non-optional type kind?"); return unsigned(optionalKind) - 1; } #define getOptionalIntrinsicName(PREFIX, KIND, SUFFIX) \ ((KIND) == OTK_Optional \ ? (PREFIX "Optional" SUFFIX) \ : (PREFIX "ImplicitlyUnwrappedOptional" SUFFIX)) FuncDecl *ASTContext::getPreconditionOptionalHasValueDecl( LazyResolver *resolver, OptionalTypeKind optionalKind) const { auto &cache = Impl.PreconditionOptionalHasValueDecls[asIndex(optionalKind)]; if (cache) return cache; auto name = getOptionalIntrinsicName("_precondition", optionalKind, "HasValue"); // Look for a generic function. CanType input, output, param; auto decl = findLibraryIntrinsic(*this, name, resolver); if (!decl || !isGenericIntrinsic(decl, input, output, param)) return nullptr; // Input must be inout Optional. auto inputInOut = dyn_cast(input); if (!inputInOut || !isOptionalType(*this, optionalKind, inputInOut.getObjectType(), param)) return nullptr; // Output must be (). if (output != CanType(TheEmptyTupleType)) return nullptr; cache = decl; return decl; } FuncDecl *ASTContext::getDoesOptionalHaveValueDecl(LazyResolver *resolver, OptionalTypeKind optionalKind) const { auto &cache = Impl.DoesOptionalHaveValueDecls[asIndex(optionalKind)]; if (cache) return cache; auto name = getOptionalIntrinsicName("_does", optionalKind, "HaveValue"); // Look for a generic function. CanType input, output, param; auto decl = findLibraryIntrinsic(*this, name, resolver); if (!decl || !isGenericIntrinsic(decl, input, output, param)) return nullptr; // Input must be inout Optional. auto inputInOut = dyn_cast(input); if (!inputInOut || !isOptionalType(*this, optionalKind, inputInOut.getObjectType(), param)) return nullptr; // Output must be Builtin.Int1. if (!isBuiltinInt1Type(output)) return nullptr; cache = decl; return decl; } FuncDecl *ASTContext::getGetOptionalValueDecl(LazyResolver *resolver, OptionalTypeKind optionalKind) const { auto &cache = Impl.GetOptionalValueDecls[asIndex(optionalKind)]; if (cache) return cache; auto name = getOptionalIntrinsicName("_get", optionalKind, "Value"); // Look for the function. CanType input, output, param; auto decl = findLibraryIntrinsic(*this, name, resolver); if (!decl || !isGenericIntrinsic(decl, input, output, param)) return nullptr; // Input must be Optional. if (!isOptionalType(*this, optionalKind, input, param)) return nullptr; // Output must be T. if (output != param) return nullptr; cache = decl; return decl; } FuncDecl *ASTContext::getInjectValueIntoOptionalDecl(LazyResolver *resolver, OptionalTypeKind optionalKind) const { auto &cache = Impl.InjectValueIntoOptionalDecls[asIndex(optionalKind)]; if (cache) return cache; auto name = getOptionalIntrinsicName("_injectValueInto", optionalKind, ""); // Look for the function. CanType input, output, param; auto decl = findLibraryIntrinsic(*this, name, resolver); if (!decl || !isGenericIntrinsic(decl, input, output, param)) return nullptr; // Input must be T. if (input != param) return nullptr; // Output must be Optional. if (!isOptionalType(*this, optionalKind, output, param)) return nullptr; cache = decl; return decl; } FuncDecl *ASTContext::getInjectNothingIntoOptionalDecl(LazyResolver *resolver, OptionalTypeKind optionalKind) const { auto &cache = Impl.InjectNothingIntoOptionalDecls[asIndex(optionalKind)]; if (cache) return cache; auto name = getOptionalIntrinsicName("_injectNothingInto", optionalKind, ""); // Look for the function. CanType input, output, param; auto decl = findLibraryIntrinsic(*this, name, resolver); if (!decl || !isGenericIntrinsic(decl, input, output, param)) return nullptr; // Input must be (). auto inputTuple = dyn_cast(input); if (!inputTuple || inputTuple->getNumElements() != 0) return nullptr; // Output must be Optional. if (!isOptionalType(*this, optionalKind, output, param)) return nullptr; cache = decl; return decl; } static bool hasOptionalIntrinsics(const ASTContext &ctx, LazyResolver *resolver, OptionalTypeKind optionalKind) { return ctx.getPreconditionOptionalHasValueDecl(resolver, optionalKind) && ctx.getDoesOptionalHaveValueDecl(resolver, optionalKind) && ctx.getGetOptionalValueDecl(resolver, optionalKind) && ctx.getInjectValueIntoOptionalDecl(resolver, optionalKind) && ctx.getInjectNothingIntoOptionalDecl(resolver, optionalKind); } bool ASTContext::hasOptionalIntrinsics(LazyResolver *resolver) const { return getOptionalDecl() && getOptionalSomeDecl() && getOptionalNoneDecl() && ::hasOptionalIntrinsics(*this, resolver, OTK_Optional) && ::hasOptionalIntrinsics(*this, resolver, OTK_ImplicitlyUnwrappedOptional); } bool ASTContext::hasPointerArgumentIntrinsics(LazyResolver *resolver) const { return getUnsafePointerDecl() && getConstUnsafePointerDecl() && getAutoreleasingUnsafePointerDecl() && getConvertPointerToPointerArgument(resolver) && getConvertMutableArrayToPointerArgument(resolver) && getConvertConstArrayToPointerArgument(resolver) && getConvertConstStringToUTF8PointerArgument(resolver) && getConvertInOutToPointerArgument(resolver); } void ASTContext::addedExternalDecl(Decl *decl) { ExternalDefinitions.insert(decl); } void ASTContext::addCleanup(std::function cleanup) { Impl.Cleanups.push_back(std::move(cleanup)); } bool ASTContext::hadError() const { return Diags.hadAnyError(); } /// \brief Retrieve the arena from which we should allocate storage for a type. static AllocationArena getArena(RecursiveTypeProperties properties) { bool hasTypeVariable = properties.hasTypeVariable(); return hasTypeVariable? AllocationArena::ConstraintSolver : AllocationArena::Permanent; } Optional> ASTContext::createTrivialSubstitutions(BoundGenericType *BGT) const { assert(BGT->isCanonical() && "Requesting non-canonical substitutions"); auto Params = BGT->getDecl()->getGenericParams()->getParams(); assert(Params.size() == 1); auto Param = Params[0]; assert(Param->getArchetype() && "Not type-checked yet"); Substitution Subst; Subst.Archetype = Param->getArchetype(); Subst.Replacement = BGT->getGenericArgs()[0]; auto Substitutions = AllocateCopy(llvm::makeArrayRef(Subst)); auto arena = getArena(BGT->getRecursiveProperties()); Impl.getArena(arena).BoundGenericSubstitutions. insert(std::make_pair(BGT, Substitutions)); return Substitutions; } Optional> ASTContext::getSubstitutions(BoundGenericType* bound) const { auto arena = getArena(bound->getRecursiveProperties()); assert(bound->isCanonical() && "Requesting non-canonical substitutions"); auto &boundGenericSubstitutions = Impl.getArena(arena).BoundGenericSubstitutions; auto known = boundGenericSubstitutions.find(bound); if (known != boundGenericSubstitutions.end()) return known->second; // We can trivially create substitutions for Array and Optional. if (bound->getDecl() == getArrayDecl() || bound->getDecl() == getOptionalDecl()) return createTrivialSubstitutions(bound); return Nothing; } void ASTContext::setSubstitutions(BoundGenericType* Bound, ArrayRef Subs) const { auto arena = getArena(Bound->getRecursiveProperties()); auto &boundGenericSubstitutions = Impl.getArena(arena).BoundGenericSubstitutions; assert(Bound->isCanonical() && "Requesting non-canonical substitutions"); assert(boundGenericSubstitutions.count(Bound) == 0 && "Already have substitutions?"); boundGenericSubstitutions[Bound] = Subs; } Type ASTContext::getTypeVariableMemberType(TypeVariableType *baseTypeVar, AssociatedTypeDecl *assocType) { auto &arena = *Impl.CurrentConstraintSolverArena; return arena.GetTypeMember(baseTypeVar, assocType); } void ASTContext::addModuleLoader(std::unique_ptr loader, bool IsClang) { if (IsClang) { assert(!Impl.TheClangModuleLoader && "Already have a Clang module loader"); Impl.TheClangModuleLoader = static_cast(loader.get()); } Impl.ModuleLoaders.push_back(std::move(loader)); } void ASTContext::loadExtensions(NominalTypeDecl *nominal, unsigned previousGeneration) { for (auto &loader : Impl.ModuleLoaders) { loader->loadExtensions(nominal, previousGeneration); } } ClangModuleLoader *ASTContext::getClangModuleLoader() const { return Impl.TheClangModuleLoader; } static void recordKnownProtocol(Module *Stdlib, StringRef Name, KnownProtocolKind Kind) { Identifier ID = Stdlib->Ctx.getIdentifier(Name); UnqualifiedLookup Lookup(ID, Stdlib, nullptr, SourceLoc(), /*IsType=*/true); if (auto Proto = dyn_cast_or_null(Lookup.getSingleTypeResult())) Proto->setKnownProtocolKind(Kind); } void ASTContext::recordKnownProtocols(Module *Stdlib) { #define PROTOCOL(Name) \ recordKnownProtocol(Stdlib, #Name, KnownProtocolKind::Name); #include "swift/AST/KnownProtocols.def" } void ASTContext::recordConformingDecl(ValueDecl *ConformingD, ValueDecl *ConformanceD) { assert(ConformingD && ConformanceD); auto &Vec = ConformingDeclMap[ConformingD]; // The vector should commonly have few elements. if (std::find(Vec.begin(), Vec.end(), ConformanceD) == Vec.end()) { Vec.push_back(ConformanceD); ConformingD->setConformsToProtocolRequirement(); } } ArrayRef ASTContext::getConformances(const ValueDecl *D) { return ConformingDeclMap[D]; } Module *ASTContext::getLoadedModule( ArrayRef> ModulePath) const { assert(!ModulePath.empty()); // TODO: Swift submodules. if (ModulePath.size() == 1) { return getLoadedModule(ModulePath[0].first); } return nullptr; } Module *ASTContext::getLoadedModule(Identifier ModuleName) const { return LoadedModules.lookup(ModuleName.str()); } Module * ASTContext::getModule(ArrayRef> ModulePath) { assert(!ModulePath.empty()); if (auto *M = getLoadedModule(ModulePath)) return M; auto moduleID = ModulePath[0]; for (auto &importer : Impl.ModuleLoaders) { if (Module *M = importer->loadModule(moduleID.second, ModulePath)) { if (ModulePath.size() == 1 && ModulePath[0].first == StdlibModuleName) recordKnownProtocols(M); return M; } } return nullptr; } Module *ASTContext::getStdlibModule(bool loadIfAbsent) { if (TheStdlibModule) return TheStdlibModule; if (loadIfAbsent) { auto mutableThis = const_cast(this); TheStdlibModule = mutableThis->getModule({ std::make_pair(StdlibModuleName, SourceLoc()) }); } else { TheStdlibModule = getLoadedModule(StdlibModuleName); } return TheStdlibModule; } Optional ASTContext::getRawComment(const Decl *D) { auto Known = Impl.RawComments.find(D); if (Known == Impl.RawComments.end()) return Nothing; return Known->second; } void ASTContext::setRawComment(const Decl *D, RawComment RC) { Impl.RawComments[D] = RC; } Optional ASTContext::getBriefComment(const Decl *D) { auto Known = Impl.BriefComments.find(D); if (Known == Impl.BriefComments.end()) return Nothing; return Known->second; } void ASTContext::setBriefComment(const Decl *D, StringRef Comment) { Impl.BriefComments[D] = Comment; } unsigned ValueDecl::getLocalDiscriminator() const { assert(getDeclContext()->isLocalContext()); auto &discriminators = getASTContext().Impl.LocalDiscriminators; auto it = discriminators.find(this); if (it == discriminators.end()) return 0; return it->second; } void ValueDecl::setLocalDiscriminator(unsigned index) { assert(getDeclContext()->isLocalContext()); if (!index) { assert(!getASTContext().Impl.LocalDiscriminators.count(this)); return; } getASTContext().Impl.LocalDiscriminators.insert({this, index}); } PatternBindingInitializer * ASTContext::createPatternBindingContext(PatternBindingDecl *binding) { // Check for an existing context we can re-use. if (auto existing = Impl.UnusedPatternBindingContext) { Impl.UnusedPatternBindingContext = nullptr; existing->reset(binding); return existing; } return new (*this) PatternBindingInitializer(binding); } void ASTContext::destroyPatternBindingContext(PatternBindingInitializer *DC) { // There isn't much value in caching more than one of these. Impl.UnusedPatternBindingContext = DC; } DefaultArgumentInitializer * ASTContext::createDefaultArgumentContext(DeclContext *fn, unsigned index) { // Check for an existing context we can re-use. if (auto existing = Impl.UnusedDefaultArgumentContext) { Impl.UnusedDefaultArgumentContext = nullptr; existing->reset(fn, index); return existing; } return new (*this) DefaultArgumentInitializer(fn, index); } void ASTContext::destroyDefaultArgumentContext(DefaultArgumentInitializer *DC) { // There isn't much value in caching more than one of these. Impl.UnusedDefaultArgumentContext = DC; } Optional ASTContext::getConformsTo(CanType type, ProtocolDecl *proto) { auto arena = getArena(type->getRecursiveProperties()); auto &conformsTo = Impl.getArena(arena).ConformsTo; auto known = conformsTo.find({type, proto}); if (known == conformsTo.end()) return Nothing; return known->second; } void ASTContext::setConformsTo(CanType type, ProtocolDecl *proto, ConformanceEntry entry) { assert(!type->is()); auto arena = getArena(type->getRecursiveProperties()); auto &conformsTo = Impl.getArena(arena).ConformsTo; conformsTo[{type, proto}] = entry; } void ASTContext::recordConformance(KnownProtocolKind protocolKind, Decl *decl) { assert(isa(decl) || isa(decl)); auto index = static_cast(protocolKind); assert(index < NumKnownProtocols); Impl.KnownProtocolConformances[index].second.push_back(decl); } /// \brief Retrieve the set of nominal types and extensions thereof that /// conform to the given protocol. ArrayRef ASTContext::getTypesThatConformTo(KnownProtocolKind kind) { auto index = static_cast(kind); assert(index < NumKnownProtocols); for (auto &loader : Impl.ModuleLoaders) { loader->loadDeclsConformingTo(kind, Impl.KnownProtocolConformances[index].first); } Impl.KnownProtocolConformances[index].first = CurrentGeneration; return Impl.KnownProtocolConformances[index].second; } NormalProtocolConformance * ASTContext::getConformance(Type conformingType, ProtocolDecl *protocol, SourceLoc loc, DeclContext *dc, ProtocolConformanceState state) { llvm::FoldingSetNodeID id; NormalProtocolConformance::Profile(id, conformingType, protocol, dc->getParentModule()); // Did we already record the specialized conformance? void *insertPos; auto &normalConformances = Impl.getArena(AllocationArena::Permanent).NormalConformances; if (auto result = normalConformances.FindNodeOrInsertPos(id, insertPos)) return result; // Build a new normal protocol conformance. auto result = new (*this, AllocationArena::Permanent) NormalProtocolConformance(conformingType, protocol, loc, dc, state); normalConformances.InsertNode(result, insertPos); return result; } SpecializedProtocolConformance * ASTContext::getSpecializedConformance(Type type, ProtocolConformance *generic, ArrayRef substitutions) { llvm::FoldingSetNodeID id; SpecializedProtocolConformance::Profile(id, type, generic); // Figure out which arena this conformance should go into. AllocationArena arena = getArena(type->getRecursiveProperties()); // Did we already record the specialized conformance? void *insertPos; auto &specializedConformances = Impl.getArena(arena).SpecializedConformances; if (auto result = specializedConformances.FindNodeOrInsertPos(id, insertPos)) return result; // Build a new specialized conformance. substitutions = AllocateCopy(substitutions, arena); auto result = new (*this, arena) SpecializedProtocolConformance(type, generic, substitutions); specializedConformances.InsertNode(result, insertPos); return result; } InheritedProtocolConformance * ASTContext::getInheritedConformance(Type type, ProtocolConformance *inherited) { llvm::FoldingSetNodeID id; InheritedProtocolConformance::Profile(id, type, inherited); // Figure out which arena this conformance should go into. AllocationArena arena = getArena(type->getRecursiveProperties()); // Did we already record the normal protocol conformance? void *insertPos; auto &inheritedConformances = Impl.getArena(arena).InheritedConformances; if (auto result = inheritedConformances.FindNodeOrInsertPos(id, insertPos)) return result; // Build a new normal protocol conformance. auto result = new (*this, arena) InheritedProtocolConformance(type, inherited); inheritedConformances.InsertNode(result, insertPos); return result; } size_t ASTContext::getTotalMemory() const { size_t Size = sizeof(*this) + //LoadedModules ? // ExternalDefinitions ? llvm::capacity_in_bytes(ConformingDeclMap) + llvm::capacity_in_bytes(CanonicalGenericTypeParamTypeNames) + // RemappedTypes ? sizeof(Impl) + Impl.Allocator.getTotalMemory() + Impl.Cleanups.capacity() + llvm::capacity_in_bytes(Impl.ModuleLoaders) + llvm::capacity_in_bytes(Impl.RawComments) + llvm::capacity_in_bytes(Impl.BriefComments) + llvm::capacity_in_bytes(Impl.LocalDiscriminators) + llvm::capacity_in_bytes(Impl.ModuleTypes) + llvm::capacity_in_bytes(Impl.GenericParamTypes) + // Impl.GenericFunctionTypes ? // Impl.SILFunctionTypes ? llvm::capacity_in_bytes(Impl.SILBlockStorageTypes) + llvm::capacity_in_bytes(Impl.IntegerTypes) + // Impl.ProtocolCompositionTypes ? // Impl.BuiltinVectorTypes ? // Impl.GenericSignatures ? // Impl.CompoundNames ? Impl.OpenedExistentialArchetypes.capacity() + Impl.Permanent.getTotalMemory(); if (Impl.CurrentConstraintSolverArena) { Size += Impl.CurrentConstraintSolverArena->getTotalMemory(); } return Size; } size_t ASTContext::Implementation::Arena::getTotalMemory() const { return sizeof(*this) + // TupleTypes ? llvm::capacity_in_bytes(MetatypeTypes) + llvm::capacity_in_bytes(ExistentialMetatypeTypes) + llvm::capacity_in_bytes(FunctionTypes) + llvm::capacity_in_bytes(ArraySliceTypes) + llvm::capacity_in_bytes(DictionaryTypes) + llvm::capacity_in_bytes(OptionalTypes) + llvm::capacity_in_bytes(ImplicitlyUnwrappedOptionalTypes) + llvm::capacity_in_bytes(ParenTypes) + llvm::capacity_in_bytes(ReferenceStorageTypes) + llvm::capacity_in_bytes(LValueTypes) + llvm::capacity_in_bytes(InOutTypes) + llvm::capacity_in_bytes(SubstitutedTypes) + llvm::capacity_in_bytes(DependentMemberTypes) + llvm::capacity_in_bytes(DynamicSelfTypes) + // EnumTypes ? // StructTypes ? // ClassTypes ? // UnboundGenericTypes ? // BoundGenericTypes ? llvm::capacity_in_bytes(BoundGenericSubstitutions) + // NormalConformances ? // SpecializedConformances ? // InheritedConformances ? llvm::capacity_in_bytes(ConformsTo); } //===----------------------------------------------------------------------===// // Type manipulation routines. //===----------------------------------------------------------------------===// // Simple accessors. Type ErrorType::get(const ASTContext &C) { return C.TheErrorType; } BuiltinIntegerType *BuiltinIntegerType::get(BuiltinIntegerWidth BitWidth, const ASTContext &C) { BuiltinIntegerType *&Result = C.Impl.IntegerTypes[BitWidth]; if (Result == 0) Result = new (C, AllocationArena::Permanent) BuiltinIntegerType(BitWidth,C); return Result; } BuiltinVectorType *BuiltinVectorType::get(const ASTContext &context, Type elementType, unsigned numElements) { llvm::FoldingSetNodeID id; BuiltinVectorType::Profile(id, elementType, numElements); void *insertPos; if (BuiltinVectorType *vecType = context.Impl.BuiltinVectorTypes.FindNodeOrInsertPos(id, insertPos)) return vecType; assert(elementType->isCanonical() && "Non-canonical builtin vector?"); BuiltinVectorType *vecTy = new (context, AllocationArena::Permanent) BuiltinVectorType(context, elementType, numElements); context.Impl.BuiltinVectorTypes.InsertNode(vecTy, insertPos); return vecTy; } ParenType *ParenType::get(const ASTContext &C, Type underlying) { auto properties = underlying->getRecursiveProperties(); auto arena = getArena(properties); ParenType *&Result = C.Impl.getArena(arena).ParenTypes[underlying]; if (Result == 0) { Result = new (C, arena) ParenType(underlying, properties); } return Result; } CanTupleType TupleType::getEmpty(const ASTContext &C) { return cast(CanType(C.TheEmptyTupleType)); } void TupleType::Profile(llvm::FoldingSetNodeID &ID, ArrayRef Fields) { ID.AddInteger(Fields.size()); for (const TupleTypeElt &Elt : Fields) { ID.AddPointer(Elt.getName().get()); ID.AddPointer(Elt.TyAndDefaultOrVarArg.getOpaqueValue()); } } /// getTupleType - Return the uniqued tuple type with the specified elements. Type TupleType::get(ArrayRef Fields, const ASTContext &C) { if (Fields.size() == 1 && !Fields[0].isVararg() && !Fields[0].hasName() && Fields[0].getDefaultArgKind() == DefaultArgumentKind::None) return ParenType::get(C, Fields[0].getType()); RecursiveTypeProperties properties; for (const TupleTypeElt &Elt : Fields) { if (Elt.getType()) properties += Elt.getType()->getRecursiveProperties(); } auto arena = getArena(properties); void *InsertPos = 0; // Check to see if we've already seen this tuple before. llvm::FoldingSetNodeID ID; TupleType::Profile(ID, Fields); if (TupleType *TT = C.Impl.getArena(arena).TupleTypes.FindNodeOrInsertPos(ID,InsertPos)) return TT; // Make a copy of the fields list into ASTContext owned memory. TupleTypeElt *FieldsCopy = C.AllocateCopy(Fields.begin(), Fields.end(), arena); bool IsCanonical = true; // All canonical elts means this is canonical. for (const TupleTypeElt &Elt : Fields) { if (Elt.getType().isNull() || !Elt.getType()->isCanonical()) { IsCanonical = false; break; } } Fields = ArrayRef(FieldsCopy, Fields.size()); TupleType *New = new (C, arena) TupleType(Fields, IsCanonical ? &C : 0, properties); C.Impl.getArena(arena).TupleTypes.InsertNode(New, InsertPos); return New; } void UnboundGenericType::Profile(llvm::FoldingSetNodeID &ID, NominalTypeDecl *TheDecl, Type Parent) { ID.AddPointer(TheDecl); ID.AddPointer(Parent.getPointer()); } UnboundGenericType* UnboundGenericType::get(NominalTypeDecl *TheDecl, Type Parent, const ASTContext &C) { llvm::FoldingSetNodeID ID; UnboundGenericType::Profile(ID, TheDecl, Parent); void *InsertPos = 0; RecursiveTypeProperties properties; if (Parent) properties += Parent->getRecursiveProperties(); auto arena = getArena(properties); if (auto unbound = C.Impl.getArena(arena).UnboundGenericTypes .FindNodeOrInsertPos(ID, InsertPos)) return unbound; auto result = new (C, arena) UnboundGenericType(TheDecl, Parent, C, properties); C.Impl.getArena(arena).UnboundGenericTypes.InsertNode(result, InsertPos); return result; } void BoundGenericType::Profile(llvm::FoldingSetNodeID &ID, NominalTypeDecl *TheDecl, Type Parent, ArrayRef GenericArgs, RecursiveTypeProperties &properties) { ID.AddPointer(TheDecl); ID.AddPointer(Parent.getPointer()); if (Parent) properties += Parent->getRecursiveProperties(); ID.AddInteger(GenericArgs.size()); for (Type Arg : GenericArgs) { ID.AddPointer(Arg.getPointer()); properties += Arg->getRecursiveProperties(); } } BoundGenericType::BoundGenericType(TypeKind theKind, NominalTypeDecl *theDecl, Type parent, ArrayRef genericArgs, const ASTContext *context, RecursiveTypeProperties properties) : TypeBase(theKind, context, properties), TheDecl(theDecl), Parent(parent), GenericArgs(genericArgs) { } BoundGenericType *BoundGenericType::get(NominalTypeDecl *TheDecl, Type Parent, ArrayRef GenericArgs) { ASTContext &C = TheDecl->getDeclContext()->getASTContext(); llvm::FoldingSetNodeID ID; RecursiveTypeProperties properties; BoundGenericType::Profile(ID, TheDecl, Parent, GenericArgs, properties); auto arena = getArena(properties); void *InsertPos = 0; if (BoundGenericType *BGT = C.Impl.getArena(arena).BoundGenericTypes.FindNodeOrInsertPos(ID, InsertPos)) return BGT; ArrayRef ArgsCopy = C.AllocateCopy(GenericArgs, arena); bool IsCanonical = !Parent || Parent->isCanonical(); if (IsCanonical) { for (Type Arg : GenericArgs) { if (!Arg->isCanonical()) { IsCanonical = false; break; } } } BoundGenericType *newType; if (auto theClass = dyn_cast(TheDecl)) { newType = new (C, arena) BoundGenericClassType(theClass, Parent, ArgsCopy, IsCanonical ? &C : 0, properties); } else if (auto theStruct = dyn_cast(TheDecl)) { newType = new (C, arena) BoundGenericStructType(theStruct, Parent, ArgsCopy, IsCanonical ? &C : 0, properties); } else { auto theEnum = cast(TheDecl); newType = new (C, arena) BoundGenericEnumType(theEnum, Parent, ArgsCopy, IsCanonical ? &C : 0, properties); } C.Impl.getArena(arena).BoundGenericTypes.InsertNode(newType, InsertPos); return newType; } NominalType *NominalType::get(NominalTypeDecl *D, Type Parent, const ASTContext &C) { switch (D->getKind()) { case DeclKind::Enum: return EnumType::get(cast(D), Parent, C); case DeclKind::Struct: return StructType::get(cast(D), Parent, C); case DeclKind::Class: return ClassType::get(cast(D), Parent, C); case DeclKind::Protocol: { return ProtocolType::get(cast(D), C); } default: llvm_unreachable("Not a nominal declaration!"); } } EnumType::EnumType(EnumDecl *TheDecl, Type Parent, const ASTContext &C, RecursiveTypeProperties properties) : NominalType(TypeKind::Enum, &C, TheDecl, Parent, properties) { } EnumType *EnumType::get(EnumDecl *D, Type Parent, const ASTContext &C) { llvm::FoldingSetNodeID id; EnumType::Profile(id, D, Parent); RecursiveTypeProperties properties; if (Parent) properties += Parent->getRecursiveProperties(); auto arena = getArena(properties); void *insertPos = 0; if (auto enumTy = C.Impl.getArena(arena).EnumTypes.FindNodeOrInsertPos(id, insertPos)) return enumTy; auto enumTy = new (C, arena) EnumType(D, Parent, C, properties); C.Impl.getArena(arena).EnumTypes.InsertNode(enumTy, insertPos); return enumTy; } void EnumType::Profile(llvm::FoldingSetNodeID &ID, EnumDecl *D, Type Parent) { ID.AddPointer(D); ID.AddPointer(Parent.getPointer()); } StructType::StructType(StructDecl *TheDecl, Type Parent, const ASTContext &C, RecursiveTypeProperties properties) : NominalType(TypeKind::Struct, &C, TheDecl, Parent, properties) { } StructType *StructType::get(StructDecl *D, Type Parent, const ASTContext &C) { llvm::FoldingSetNodeID id; StructType::Profile(id, D, Parent); RecursiveTypeProperties properties; if (Parent) properties += Parent->getRecursiveProperties(); auto arena = getArena(properties); void *insertPos = 0; if (auto structTy = C.Impl.getArena(arena).StructTypes.FindNodeOrInsertPos(id, insertPos)) return structTy; auto structTy = new (C, arena) StructType(D, Parent, C, properties); C.Impl.getArena(arena).StructTypes.InsertNode(structTy, insertPos); return structTy; } void StructType::Profile(llvm::FoldingSetNodeID &ID, StructDecl *D, Type Parent) { ID.AddPointer(D); ID.AddPointer(Parent.getPointer()); } ClassType::ClassType(ClassDecl *TheDecl, Type Parent, const ASTContext &C, RecursiveTypeProperties properties) : NominalType(TypeKind::Class, &C, TheDecl, Parent, properties) { } ClassType *ClassType::get(ClassDecl *D, Type Parent, const ASTContext &C) { llvm::FoldingSetNodeID id; ClassType::Profile(id, D, Parent); RecursiveTypeProperties properties; if (Parent) properties += Parent->getRecursiveProperties(); auto arena = getArena(properties); void *insertPos = 0; if (auto classTy = C.Impl.getArena(arena).ClassTypes.FindNodeOrInsertPos(id, insertPos)) return classTy; auto classTy = new (C, arena) ClassType(D, Parent, C, properties); C.Impl.getArena(arena).ClassTypes.InsertNode(classTy, insertPos); return classTy; } void ClassType::Profile(llvm::FoldingSetNodeID &ID, ClassDecl *D, Type Parent) { ID.AddPointer(D); ID.AddPointer(Parent.getPointer()); } ProtocolCompositionType * ProtocolCompositionType::build(const ASTContext &C, ArrayRef Protocols) { // Check to see if we've already seen this protocol composition before. void *InsertPos = 0; llvm::FoldingSetNodeID ID; ProtocolCompositionType::Profile(ID, Protocols); if (ProtocolCompositionType *Result = C.Impl.ProtocolCompositionTypes.FindNodeOrInsertPos(ID, InsertPos)) return Result; bool isCanonical = true; for (Type t : Protocols) { if (!t->isCanonical()) isCanonical = false; } // Create a new protocol composition type. ProtocolCompositionType *New = new (C, AllocationArena::Permanent) ProtocolCompositionType(isCanonical ? &C : nullptr, C.AllocateCopy(Protocols)); C.Impl.ProtocolCompositionTypes.InsertNode(New, InsertPos); return New; } ReferenceStorageType *ReferenceStorageType::get(Type T, Ownership ownership, const ASTContext &C) { assert(ownership != Ownership::Strong && "ReferenceStorageType is unnecessary for strong ownership"); assert(!T->hasTypeVariable()); // not meaningful in type-checker auto arena = AllocationArena::Permanent; auto key = uintptr_t(T.getPointer()) | unsigned(ownership); auto &entry = C.Impl.getArena(arena).ReferenceStorageTypes[key]; if (entry) return entry; auto properties = T->getRecursiveProperties(); switch (ownership) { case Ownership::Strong: llvm_unreachable("not possible"); case Ownership::Unowned: return entry = new (C, arena) UnownedStorageType(T, T->isCanonical() ? &C : 0, properties); case Ownership::Weak: return entry = new (C, arena) WeakStorageType(T, T->isCanonical() ? &C : 0, properties); case Ownership::Unmanaged: return entry = new (C, arena) UnmanagedStorageType(T, T->isCanonical() ? &C : 0, properties); } llvm_unreachable("bad ownership"); } AnyMetatypeType::AnyMetatypeType(TypeKind kind, const ASTContext *C, RecursiveTypeProperties properties, Type instanceType, Optional repr) : TypeBase(kind, C, properties), InstanceType(instanceType) { if (repr) { AnyMetatypeTypeBits.Representation = static_cast(*repr) + 1; } else { AnyMetatypeTypeBits.Representation = 0; } } MetatypeType *MetatypeType::get(Type T, Optional Repr, const ASTContext &Ctx) { auto properties = T->getRecursiveProperties(); auto arena = getArena(properties); char reprKey; if (Repr.hasValue()) reprKey = static_cast(*Repr) + 1; else reprKey = 0; MetatypeType *&Entry = Ctx.Impl.getArena(arena).MetatypeTypes[{T, reprKey}]; if (Entry) return Entry; return Entry = new (Ctx, arena) MetatypeType(T, T->isCanonical() ? &Ctx : 0, properties, Repr); } MetatypeType::MetatypeType(Type T, const ASTContext *C, RecursiveTypeProperties properties, Optional repr) : AnyMetatypeType(TypeKind::Metatype, C, properties, T, repr) { } ExistentialMetatypeType * ExistentialMetatypeType::get(Type T, Optional repr, const ASTContext &ctx) { auto properties = T->getRecursiveProperties(); auto arena = getArena(properties); char reprKey; if (repr.hasValue()) reprKey = static_cast(*repr) + 1; else reprKey = 0; auto &entry = ctx.Impl.getArena(arena).ExistentialMetatypeTypes[{T, reprKey}]; if (entry) return entry; return entry = new (ctx, arena) ExistentialMetatypeType(T, T->isCanonical() ? &ctx : 0, properties, repr); } ExistentialMetatypeType::ExistentialMetatypeType(Type T, const ASTContext *C, RecursiveTypeProperties properties, Optional repr) : AnyMetatypeType(TypeKind::ExistentialMetatype, C, properties, T, repr) { if (repr) { assert(*repr != MetatypeRepresentation::Thin && "creating a thin existential metatype?"); } } ModuleType *ModuleType::get(Module *M) { ASTContext &C = M->getASTContext(); ModuleType *&Entry = C.Impl.ModuleTypes[M]; if (Entry) return Entry; return Entry = new (C, AllocationArena::Permanent) ModuleType(M, C); } DynamicSelfType *DynamicSelfType::get(Type selfType, const ASTContext &ctx) { auto properties = selfType->getRecursiveProperties() - RecursiveTypeProperties::IsNotMaterializable; auto arena = getArena(properties); auto &dynamicSelfTypes = ctx.Impl.getArena(arena).DynamicSelfTypes; auto known = dynamicSelfTypes.find(selfType); if (known != dynamicSelfTypes.end()) return known->second; auto result = new (ctx, arena) DynamicSelfType(selfType, ctx, properties); dynamicSelfTypes.insert({selfType, result}); return result; } /// FunctionType::get - Return a uniqued function type with the specified /// input and result. FunctionType *FunctionType::get(Type Input, Type Result, const ExtInfo &Info) { auto properties = Input->getRecursiveProperties() + Result->getRecursiveProperties() - RecursiveTypeProperties::IsNotMaterializable; auto arena = getArena(properties); char attrKey = Info.getFuncAttrKey(); const ASTContext &C = Input->getASTContext(); FunctionType *&Entry = C.Impl.getArena(arena).FunctionTypes[{Input, {Result, attrKey} }]; if (Entry) return Entry; return Entry = new (C, arena) FunctionType(Input, Result, properties, Info); } // If the input and result types are canonical, then so is the result. FunctionType::FunctionType(Type input, Type output, RecursiveTypeProperties properties, const ExtInfo &Info) : AnyFunctionType(TypeKind::Function, (input->isCanonical() && output->isCanonical()) ? &input->getASTContext() : 0, input, output, properties, Info) { } /// FunctionType::get - Return a uniqued function type with the specified /// input and result. PolymorphicFunctionType *PolymorphicFunctionType::get(Type input, Type output, GenericParamList *params, const ExtInfo &Info) { // FIXME: one day we should do canonicalization properly. auto properties = input->getRecursiveProperties() + output->getRecursiveProperties() - RecursiveTypeProperties::IsNotMaterializable; auto arena = getArena(properties); const ASTContext &C = input->getASTContext(); return new (C, arena) PolymorphicFunctionType(input, output, params, Info, C, properties); } PolymorphicFunctionType::PolymorphicFunctionType(Type input, Type output, GenericParamList *params, const ExtInfo &Info, const ASTContext &C, RecursiveTypeProperties properties) : AnyFunctionType(TypeKind::PolymorphicFunction, (input->isCanonical() && output->isCanonical()) ?&C : 0, input, output, properties, Info), Params(params) { assert(!input->hasTypeVariable() && !output->hasTypeVariable()); } void GenericFunctionType::Profile(llvm::FoldingSetNodeID &ID, GenericSignature *sig, Type input, Type result, const ExtInfo &info) { ID.AddPointer(sig); ID.AddPointer(input.getPointer()); ID.AddPointer(result.getPointer()); ID.AddInteger(info.getFuncAttrKey()); } GenericFunctionType * GenericFunctionType::get(GenericSignature *sig, Type input, Type output, const ExtInfo &info) { assert(sig && "no generic signature for generic function type?!"); assert(!input->hasTypeVariable() && !output->hasTypeVariable()); llvm::FoldingSetNodeID id; GenericFunctionType::Profile(id, sig, input, output, info); const ASTContext &ctx = input->getASTContext(); // Do we already have this generic function type? void *insertPos; if (auto result = ctx.Impl.GenericFunctionTypes.FindNodeOrInsertPos(id, insertPos)) return result; // We have to construct this generic function type. Determine whether // it's canonical. bool isCanonical = sig->isCanonical() && input->isCanonical() && output->isCanonical(); // Allocate storage for the object. void *mem = ctx.Allocate(sizeof(GenericFunctionType), alignof(GenericFunctionType)); // For now, generic function types cannot be dependent (in fact, // they erase dependence) or contain type variables, and they're // always materializable. RecursiveTypeProperties properties; static_assert(RecursiveTypeProperties::BitWidth == 4, "revisit this if you add new recursive type properties"); auto result = new (mem) GenericFunctionType(sig, input, output, info, isCanonical ? &ctx : nullptr, properties); ctx.Impl.GenericFunctionTypes.InsertNode(result, insertPos); return result; } GenericFunctionType::GenericFunctionType( GenericSignature *sig, Type input, Type result, const ExtInfo &info, const ASTContext *ctx, RecursiveTypeProperties properties) : AnyFunctionType(TypeKind::GenericFunction, ctx, input, result, properties, info), Signature(sig) {} GenericTypeParamType *GenericTypeParamType::get(unsigned depth, unsigned index, const ASTContext &ctx) { auto known = ctx.Impl.GenericParamTypes.find({ depth, index }); if (known != ctx.Impl.GenericParamTypes.end()) return known->second; auto result = new (ctx, AllocationArena::Permanent) GenericTypeParamType(depth, index, ctx); ctx.Impl.GenericParamTypes[{depth, index}] = result; return result; } ArrayRef GenericFunctionType::getGenericParams() const{ return Signature->getGenericParams(); } /// Retrieve the requirements of this polymorphic function type. ArrayRef GenericFunctionType::getRequirements() const { return Signature->getRequirements(); } void SILFunctionType::Profile(llvm::FoldingSetNodeID &id, GenericSignature *genericParams, ExtInfo info, ParameterConvention calleeConvention, ArrayRef params, SILResultInfo result) { id.AddPointer(genericParams); id.AddInteger(info.getFuncAttrKey()); id.AddInteger(unsigned(calleeConvention)); id.AddInteger(params.size()); for (auto param : params) param.profile(id); result.profile(id); } SILFunctionType::SILFunctionType(GenericSignature *genericSig, ExtInfo ext, ParameterConvention calleeConvention, ArrayRef interfaceParams, SILResultInfo interfaceResult, const ASTContext &ctx, RecursiveTypeProperties properties) : TypeBase(TypeKind::SILFunction, &ctx, properties), GenericSig(genericSig), InterfaceResult(interfaceResult) { SILFunctionTypeBits.ExtInfo = ext.Bits; SILFunctionTypeBits.NumParameters = interfaceParams.size(); assert(!isIndirectParameter(calleeConvention)); SILFunctionTypeBits.CalleeConvention = unsigned(calleeConvention); memcpy(getMutableParameters().data(), interfaceParams.data(), interfaceParams.size() * sizeof(SILParameterInfo)); // Make sure the interface types are sane. #ifndef NDEBUG if (genericSig) { for (auto gparam : genericSig->getGenericParams()) { (void)gparam; assert(gparam->isCanonical() && "generic signature is not canonicalized"); } for (auto param : getParameters()) { (void)param; assert(!param.getType().findIf([](Type t) { return t->is() && !t->castTo()->getSelfProtocol(); }) && "interface type of generic type should not contain context archetypes"); } assert(!getResult().getType().findIf([](Type t) { return t->is(); }) && "interface type of generic type should not contain context archetypes"); } #endif } CanSILBlockStorageType SILBlockStorageType::get(CanType captureType) { ASTContext &ctx = captureType->getASTContext(); auto found = ctx.Impl.SILBlockStorageTypes.find(captureType); if (found != ctx.Impl.SILBlockStorageTypes.end()) return CanSILBlockStorageType(found->second); void *mem = ctx.Allocate(sizeof(SILBlockStorageType), alignof(SILBlockStorageType)); SILBlockStorageType *storageTy = new (mem) SILBlockStorageType(captureType); ctx.Impl.SILBlockStorageTypes.insert({captureType, storageTy}); return CanSILBlockStorageType(storageTy); } CanSILFunctionType SILFunctionType::get(GenericSignature *genericSig, ExtInfo ext, ParameterConvention callee, ArrayRef interfaceParams, SILResultInfo interfaceResult, const ASTContext &ctx) { llvm::FoldingSetNodeID id; SILFunctionType::Profile(id, genericSig, ext, callee, interfaceParams, interfaceResult); // Do we already have this generic function type? void *insertPos; if (auto result = ctx.Impl.SILFunctionTypes.FindNodeOrInsertPos(id, insertPos)) return CanSILFunctionType(result); // All SILFunctionTypes are canonical. // Allocate storage for the object. // FIXME: 2*params.size() so we can stash interface types. size_t bytes = sizeof(SILFunctionType) + sizeof(SILParameterInfo) * interfaceParams.size(); void *mem = ctx.Allocate(bytes, alignof(SILFunctionType)); // Right now, generic SIL function types cannot be dependent or contain type // variables, and they're always materializable. // FIXME: If we ever have first-class polymorphic values, we'll need to // revisit this. RecursiveTypeProperties properties; static_assert(RecursiveTypeProperties::BitWidth == 4, "revisit this if you add new recursive type properties"); if (!genericSig) { // Nongeneric SIL functions are dependent if they have dependent argument // or return types. They still never contain type variables and are always // materializable. properties += interfaceResult.getType()->getRecursiveProperties(); for (auto ¶m : interfaceParams) { properties += param.getType()->getRecursiveProperties(); } } auto fnType = new (mem) SILFunctionType(genericSig, ext, callee, interfaceParams, interfaceResult, ctx, properties); ctx.Impl.SILFunctionTypes.InsertNode(fnType, insertPos); return CanSILFunctionType(fnType); } ArraySliceType *ArraySliceType::get(Type base) { auto properties = base->getRecursiveProperties(); auto arena = getArena(properties); const ASTContext &C = base->getASTContext(); ArraySliceType *&entry = C.Impl.getArena(arena).ArraySliceTypes[base]; if (entry) return entry; return entry = new (C, arena) ArraySliceType(C, base, properties); } DictionaryType *DictionaryType::get(Type keyType, Type valueType) { auto properties = keyType->getRecursiveProperties() + valueType->getRecursiveProperties(); auto arena = getArena(properties); const ASTContext &C = keyType->getASTContext(); DictionaryType *&entry = C.Impl.getArena(arena).DictionaryTypes[{keyType, valueType}]; if (entry) return entry; return entry = new (C, arena) DictionaryType(C, keyType, valueType, properties); } Type OptionalType::get(OptionalTypeKind which, Type valueType) { switch (which) { // It wouldn't be unreasonable for this method to just ignore // OTK_None if we made code more convenient to write. case OTK_None: llvm_unreachable("building a non-optional type!"); case OTK_Optional: return OptionalType::get(valueType); case OTK_ImplicitlyUnwrappedOptional: return ImplicitlyUnwrappedOptionalType::get(valueType); } llvm_unreachable("bad optional type kind"); } OptionalType *OptionalType::get(Type base) { auto properties = base->getRecursiveProperties(); auto arena = getArena(properties); const ASTContext &C = base->getASTContext(); OptionalType *&entry = C.Impl.getArena(arena).OptionalTypes[base]; if (entry) return entry; return entry = new (C, arena) OptionalType(C, base, properties); } ImplicitlyUnwrappedOptionalType *ImplicitlyUnwrappedOptionalType::get(Type base) { auto properties = base->getRecursiveProperties(); auto arena = getArena(properties); const ASTContext &C = base->getASTContext(); auto *&entry = C.Impl.getArena(arena).ImplicitlyUnwrappedOptionalTypes[base]; if (entry) return entry; return entry = new (C, arena) ImplicitlyUnwrappedOptionalType(C, base, properties); } ProtocolType *ProtocolType::get(ProtocolDecl *D, const ASTContext &C) { if (auto declaredTy = D->getDeclaredType()) return declaredTy->castTo(); auto protoTy = new (C, AllocationArena::Permanent) ProtocolType(D, C); D->setDeclaredType(protoTy); return protoTy; } ProtocolType::ProtocolType(ProtocolDecl *TheDecl, const ASTContext &Ctx) : NominalType(TypeKind::Protocol, &Ctx, TheDecl, /*Parent=*/Type(), RecursiveTypeProperties()) { } LValueType *LValueType::get(Type objectTy) { assert(!objectTy->is() && "can not have ErrorType wrapped inside LValueType"); assert(!objectTy->is() && !objectTy->is() && "can not have 'inout' or @lvalue wrapped inside an @lvalue"); auto properties = objectTy->getRecursiveProperties() + RecursiveTypeProperties::IsNotMaterializable; auto arena = getArena(properties); auto &C = objectTy->getASTContext(); auto &entry = C.Impl.getArena(arena).LValueTypes[objectTy]; if (entry) return entry; const ASTContext *canonicalContext = objectTy->isCanonical() ? &C : nullptr; return entry = new (C, arena) LValueType(objectTy, canonicalContext, properties); } InOutType *InOutType::get(Type objectTy) { assert(!objectTy->is() && "can not have ErrorType wrapped inside InOutType"); assert(!objectTy->is() && !objectTy->is() && "can not have 'inout' or @lvalue wrapped inside an 'inout'"); auto properties = objectTy->getRecursiveProperties() + RecursiveTypeProperties::IsNotMaterializable; auto arena = getArena(properties); auto &C = objectTy->getASTContext(); auto &entry = C.Impl.getArena(arena).InOutTypes[objectTy]; if (entry) return entry; const ASTContext *canonicalContext = objectTy->isCanonical() ? &C : nullptr; return entry = new (C, arena) InOutType(objectTy, canonicalContext, properties); } /// Return a uniqued substituted type. SubstitutedType *SubstitutedType::get(Type Original, Type Replacement, const ASTContext &C) { auto properties = Replacement->getRecursiveProperties(); auto arena = getArena(properties); SubstitutedType *&Known = C.Impl.getArena(arena).SubstitutedTypes[{Original, Replacement}]; if (!Known) { Known = new (C, arena) SubstitutedType(Original, Replacement, properties); } return Known; } DependentMemberType *DependentMemberType::get(Type base, Identifier name, const ASTContext &ctx) { auto properties = base->getRecursiveProperties(); auto arena = getArena(properties); llvm::PointerUnion stored(name); auto *&known = ctx.Impl.getArena(arena).DependentMemberTypes[ {base, stored.getOpaqueValue()}]; if (!known) { const ASTContext *canonicalCtx = base->isCanonical() ? &ctx : nullptr; known = new (ctx, arena) DependentMemberType(base, name, canonicalCtx, properties); } return known; } DependentMemberType *DependentMemberType::get(Type base, AssociatedTypeDecl *assocType, const ASTContext &ctx) { auto properties = base->getRecursiveProperties(); auto arena = getArena(properties); llvm::PointerUnion stored(assocType); auto *&known = ctx.Impl.getArena(arena).DependentMemberTypes[ {base, stored.getOpaqueValue()}]; if (!known) { const ASTContext *canonicalCtx = base->isCanonical() ? &ctx : nullptr; known = new (ctx, arena) DependentMemberType(base, assocType, canonicalCtx, properties); } return known; } ArchetypeType *ArchetypeType::getOpened(Type existential, Optional knownID) { auto &ctx = existential->getASTContext(); auto &openedExistentialArchetypes = ctx.Impl.OpenedExistentialArchetypes; // If we know the ID already... if (knownID) { // ... and we already have an archetype for that ID, return it. if (*knownID < openedExistentialArchetypes.size()) { if (auto result = openedExistentialArchetypes[*knownID]) { assert(result->getOpenedExistentialType()->isEqual(existential) && "Retrieved the wrong opened existential type?"); return result; } // No archetype exists, but we've allocated the slot for it. } else { // Allocate enough space for this ID. openedExistentialArchetypes.resize(*knownID + 1); } } else { // Allocate a new ID at the end. knownID = openedExistentialArchetypes.size(); openedExistentialArchetypes.push_back(nullptr); } auto arena = AllocationArena::Permanent; llvm::SmallVector conformsTo; assert(existential->isExistentialType()); existential->getAnyExistentialTypeProtocols(conformsTo); auto result = new (ctx, arena) ArchetypeType(ctx, existential, *knownID, ctx.AllocateCopy(conformsTo), existential->getSuperclass(nullptr)); openedExistentialArchetypes[*knownID] = result; return result; } void *ExprHandle::operator new(size_t Bytes, ASTContext &C, unsigned Alignment) { return C.Allocate(Bytes, Alignment); } ExprHandle *ExprHandle::get(ASTContext &Context, Expr *E) { return new (Context) ExprHandle(E); } void TypeLoc::setInvalidType(ASTContext &C) { TAndValidBit.setPointerAndInt(ErrorType::get(C), true); } namespace { class raw_capturing_ostream : public raw_ostream { std::string Message; uint64_t Pos; CapturingTypeCheckerDebugConsumer &Listener; public: raw_capturing_ostream(CapturingTypeCheckerDebugConsumer &Listener) : Listener(Listener) {} ~raw_capturing_ostream() { flush(); } void write_impl(const char *Ptr, size_t Size) override { Message.append(Ptr, Size); Pos += Size; // Check if we have at least one complete line. size_t LastNewline = StringRef(Message).rfind('\n'); if (LastNewline == StringRef::npos) return; Listener.handleMessage(StringRef(Message.data(), LastNewline + 1)); Message.erase(0, LastNewline + 1); } uint64_t current_pos() const override { return Pos; } }; } // unnamed namespace TypeCheckerDebugConsumer::~TypeCheckerDebugConsumer() { } CapturingTypeCheckerDebugConsumer::CapturingTypeCheckerDebugConsumer() : Log(new raw_capturing_ostream(*this)) { Log->SetUnbuffered(); } CapturingTypeCheckerDebugConsumer::~CapturingTypeCheckerDebugConsumer() { delete Log; } void GenericSignature::Profile(llvm::FoldingSetNodeID &ID, ArrayRef genericParams, ArrayRef requirements) { for (auto p : genericParams) ID.AddPointer(p); for (auto &reqt : requirements) { ID.AddPointer(reqt.getFirstType().getPointer()); ID.AddPointer(reqt.getSecondType().getPointer()); ID.AddInteger(unsigned(reqt.getKind())); } } GenericSignature *GenericSignature::get(ArrayRef params, ArrayRef requirements) { if (params.empty() && requirements.empty()) return nullptr; // Check for an existing generic signature. llvm::FoldingSetNodeID ID; GenericSignature::Profile(ID, params, requirements); auto &ctx = getASTContext(params, requirements); void *insertPos; if (auto *sig = ctx.Impl.GenericSignatures.FindNodeOrInsertPos(ID, insertPos)) return sig; // Allocate and construct the new signature. size_t bytes = sizeof(GenericSignature) + sizeof(GenericTypeParamType *) * params.size() + sizeof(Requirement) * requirements.size(); void *mem = ctx.Allocate(bytes, alignof(GenericSignature)); auto newSig = new (mem) GenericSignature(params, requirements); ctx.Impl.GenericSignatures.InsertNode(newSig, insertPos); return newSig; } CanGenericSignature GenericSignature::getCanonical( ArrayRef params, ArrayRef requirements) { // Canonicalize the parameters and requirements. SmallVector canonicalParams; canonicalParams.reserve(params.size()); for (auto param : params) { canonicalParams.push_back(cast(param->getCanonicalType())); } SmallVector canonicalRequirements; canonicalRequirements.reserve(requirements.size()); for (auto &reqt : requirements) { canonicalRequirements.push_back(Requirement(reqt.getKind(), reqt.getFirstType()->getCanonicalType(), reqt.getSecondType().getCanonicalTypeOrNull())); } return CanGenericSignature(get(canonicalParams, canonicalRequirements)); } void DeclName::CompoundDeclName::Profile(llvm::FoldingSetNodeID &id, Identifier baseName, ArrayRef argumentNames) { id.AddPointer(baseName.get()); id.AddInteger(argumentNames.size()); for (auto arg : argumentNames) id.AddPointer(arg.get()); } DeclName::DeclName(ASTContext &C, Identifier baseName, ArrayRef argumentNames) { if (argumentNames.size() == 0) { SimpleOrCompound = IdentifierAndCompound(baseName, true); return; } llvm::FoldingSetNodeID id; CompoundDeclName::Profile(id, baseName, argumentNames); void *insert = nullptr; if (CompoundDeclName *compoundName = C.Impl.CompoundNames.FindNodeOrInsertPos(id, insert)) { SimpleOrCompound = compoundName; return; } auto buf = C.Allocate(sizeof(CompoundDeclName) + argumentNames.size() * sizeof(Identifier), alignof(CompoundDeclName)); auto compoundName = new (buf) CompoundDeclName(baseName,argumentNames.size()); std::uninitialized_copy(argumentNames.begin(), argumentNames.end(), compoundName->getArgumentNames().begin()); SimpleOrCompound = compoundName; C.Impl.CompoundNames.InsertNode(compoundName, insert); }