//===--- FrontendTool.cpp - Swift Compiler Frontend -----------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// /// /// \file /// This is the entry point to the swift -frontend functionality, which /// implements the core compiler functionality along with a number of additional /// tools for demonstration and testing purposes. /// /// This is separate from the rest of libFrontend to reduce the dependencies /// required by that library. /// //===----------------------------------------------------------------------===// #include "swift/FrontendTool/FrontendTool.h" #include "ImportedModules.h" #include "ScanDependencies.h" #include "TBD.h" #include "swift/Subsystems.h" #include "swift/AST/DiagnosticsFrontend.h" #include "swift/AST/DiagnosticsSema.h" #include "swift/AST/FileSystem.h" #include "swift/AST/FineGrainedDependencies.h" #include "swift/AST/GenericSignatureBuilder.h" #include "swift/AST/IRGenOptions.h" #include "swift/AST/IRGenRequests.h" #include "swift/AST/NameLookup.h" #include "swift/AST/ASTMangler.h" #include "swift/AST/TypeRefinementContext.h" #include "swift/Basic/Dwarf.h" #include "swift/Basic/Edit.h" #include "swift/Basic/FileSystem.h" #include "swift/Basic/JSONSerialization.h" #include "swift/Basic/LLVMInitialize.h" #include "swift/Basic/Platform.h" #include "swift/Basic/PrettyStackTrace.h" #include "swift/Basic/SourceManager.h" #include "swift/Basic/Statistic.h" #include "swift/Basic/Timer.h" #include "swift/Basic/UUID.h" #include "swift/Frontend/DiagnosticVerifier.h" #include "swift/Frontend/Frontend.h" #include "swift/Frontend/PrintingDiagnosticConsumer.h" #include "swift/Frontend/SerializedDiagnosticConsumer.h" #include "swift/Frontend/ModuleInterfaceLoader.h" #include "swift/Frontend/ModuleInterfaceSupport.h" #include "swift/Immediate/Immediate.h" #include "swift/Index/IndexRecord.h" #include "swift/Option/Options.h" #include "swift/Migrator/FixitFilter.h" #include "swift/Migrator/Migrator.h" #include "swift/PrintAsObjC/PrintAsObjC.h" #include "swift/Serialization/SerializationOptions.h" #include "swift/Serialization/SerializedModuleLoader.h" #include "swift/SILOptimizer/PassManager/Passes.h" #include "swift/SIL/SILRemarkStreamer.h" #include "swift/Syntax/Serialization/SyntaxSerialization.h" #include "swift/Syntax/SyntaxNodes.h" #include "swift/TBDGen/TBDGen.h" #include "clang/AST/ASTContext.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IRReader/IRReader.h" #include "llvm/Option/Option.h" #include "llvm/Option/OptTable.h" #include "llvm/Remarks/RemarkSerializer.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/Timer.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Target/TargetMachine.h" #include #include #include #if !defined(_MSC_VER) && !defined(__MINGW32__) #include #else #include #endif using namespace swift; static std::string displayName(StringRef MainExecutablePath) { std::string Name = llvm::sys::path::stem(MainExecutablePath).str(); Name += " -frontend"; return Name; } StringRef swift::frontend::utils::escapeForMake(StringRef raw, llvm::SmallVectorImpl &buffer) { buffer.clear(); // The escaping rules for GNU make are complicated due to the various // subsitutions and use of the tab in the leading position for recipes. // Various symbols have significance in different contexts. It is not // possible to correctly quote all characters in Make (as of 3.7). Match // gcc and clang's behaviour for the escaping which covers only a subset of // characters. for (unsigned I = 0, E = raw.size(); I != E; ++I) { switch (raw[I]) { case '#': // Handle '#' the broken GCC way buffer.push_back('\\'); break; case ' ': for (unsigned J = I; J && raw[J - 1] == '\\'; --J) buffer.push_back('\\'); buffer.push_back('\\'); break; case '$': // $ is escaped by $ buffer.push_back('$'); break; } buffer.push_back(raw[I]); } buffer.push_back('\0'); return buffer.data(); } static std::vector reversePathSortedFilenames(const ArrayRef elts) { std::vector tmp(elts.begin(), elts.end()); std::sort(tmp.begin(), tmp.end(), [](const std::string &a, const std::string &b) -> bool { return std::lexicographical_compare(a.rbegin(), a.rend(), b.rbegin(), b.rend()); }); return tmp; } /// Emits a Make-style dependencies file. static bool emitMakeDependenciesIfNeeded(DiagnosticEngine &diags, DependencyTracker *depTracker, const FrontendOptions &opts, const InputFile &input) { const std::string &dependenciesFilePath = input.dependenciesFilePath(); if (dependenciesFilePath.empty()) return false; std::error_code EC; llvm::raw_fd_ostream out(dependenciesFilePath, EC, llvm::sys::fs::F_None); if (out.has_error() || EC) { diags.diagnose(SourceLoc(), diag::error_opening_output, dependenciesFilePath, EC.message()); out.clear_error(); return true; } llvm::SmallString<256> buffer; // FIXME: Xcode can't currently handle multiple targets in a single // dependency line. opts.forAllOutputPaths(input, [&](const StringRef targetName) { out << swift::frontend::utils::escapeForMake(targetName, buffer) << " :"; // First include all other files in the module. Make-style dependencies // need to be conservative! for (auto const &path : reversePathSortedFilenames(opts.InputsAndOutputs.getInputFilenames())) out << ' ' << swift::frontend::utils::escapeForMake(path, buffer); // Then print dependencies we've picked up during compilation. for (auto const &path : reversePathSortedFilenames(depTracker->getDependencies())) out << ' ' << swift::frontend::utils::escapeForMake(path, buffer); out << '\n'; }); return false; } static bool emitMakeDependenciesIfNeeded(DiagnosticEngine &diags, DependencyTracker *depTracker, const FrontendOptions &opts) { return opts.InputsAndOutputs.forEachInputProducingSupplementaryOutput( [&](const InputFile &f) -> bool { return emitMakeDependenciesIfNeeded(diags, depTracker, opts, f); }); } namespace { struct SwiftModuleTraceInfo { Identifier Name; std::string Path; bool IsImportedDirectly; bool SupportsLibraryEvolution; }; struct LoadedModuleTraceFormat { static const unsigned CurrentVersion = 2; unsigned Version; Identifier Name; std::string Arch; std::vector SwiftModules; }; } namespace swift { namespace json { template <> struct ObjectTraits { static void mapping(Output &out, SwiftModuleTraceInfo &contents) { StringRef name = contents.Name.str(); out.mapRequired("name", name); out.mapRequired("path", contents.Path); out.mapRequired("isImportedDirectly", contents.IsImportedDirectly); out.mapRequired("supportsLibraryEvolution", contents.SupportsLibraryEvolution); } }; // Version notes: // 1. Keys: name, arch, swiftmodules // 2. New keys: version, swiftmodulesDetailedInfo template <> struct ObjectTraits { static void mapping(Output &out, LoadedModuleTraceFormat &contents) { out.mapRequired("version", contents.Version); StringRef name = contents.Name.str(); out.mapRequired("name", name); out.mapRequired("arch", contents.Arch); // The 'swiftmodules' key is kept for backwards compatibility. std::vector moduleNames; for (auto &m : contents.SwiftModules) moduleNames.push_back(m.Path); out.mapRequired("swiftmodules", moduleNames); out.mapRequired("swiftmodulesDetailedInfo", contents.SwiftModules); } }; } } /// Compute the per-module information to be recorded in the trace file. // // The most interesting/tricky thing here is _which_ paths get recorded in // the trace file as dependencies. It depends on how the module was synthesized. // The key points are: // // 1. Paths to swiftmodules in the module cache or in the prebuilt cache are not // recorded - Precondition: the corresponding path to the swiftinterface must // already be present as a key in pathToModuleDecl. // 2. swiftmodules next to a swiftinterface are saved if they are up-to-date. // // FIXME: Use the VFS instead of handling paths directly. We are particularly // sloppy about handling relative paths in the dependency tracker. static void computeSwiftModuleTraceInfo( const SmallPtrSetImpl &importedModules, const llvm::DenseMap &pathToModuleDecl, const DependencyTracker &depTracker, StringRef prebuiltCachePath, std::vector &traceInfo) { SmallString<256> buffer; std::string errMsg; llvm::raw_string_ostream err(errMsg); // FIXME: Use PrettyStackTrace instead. auto errorUnexpectedPath = [&pathToModuleDecl](llvm::raw_string_ostream &errStream) { errStream << "The module <-> path mapping we have is:\n"; for (auto &m: pathToModuleDecl) errStream << m.second->getName() << " <-> " << m.first << '\n'; llvm::report_fatal_error(errStream.str()); }; using namespace llvm::sys; auto computeAdjacentInterfacePath = [](SmallVectorImpl &modPath) { auto swiftInterfaceExt = file_types::getExtension(file_types::TY_SwiftModuleInterfaceFile); path::replace_extension(modPath, swiftInterfaceExt); }; for (auto &depPath : depTracker.getDependencies()) { // Decide if this is a swiftmodule based on the extension of the raw // dependency path, as the true file may have a different one. // For example, this might happen when the canonicalized path points to // a Content Addressed Storage (CAS) location. auto moduleFileType = file_types::lookupTypeForExtension(path::extension(depPath)); auto isSwiftmodule = moduleFileType == file_types::TY_SwiftModuleFile; auto isSwiftinterface = moduleFileType == file_types::TY_SwiftModuleInterfaceFile; if (!(isSwiftmodule || isSwiftinterface)) continue; auto dep = pathToModuleDecl.find(depPath); if (dep != pathToModuleDecl.end()) { // Great, we recognize the path! Check if the file is still around. ModuleDecl *depMod = dep->second; if(depMod->isResilient() && !isSwiftinterface) { // FIXME: Ideally, we would check that the swiftmodule has a // swiftinterface next to it. Tracked by rdar://problem/56351399. } // FIXME: Better error handling StringRef realDepPath = fs::real_path(depPath, buffer, /*expand_tile*/true) ? StringRef(depPath) // Couldn't find the canonical path, assume // this is good enough. : buffer.str(); traceInfo.push_back( {/*Name=*/ depMod->getName(), /*Path=*/ realDepPath.str(), // TODO: There is an edge case which is not handled here. // When we build a framework using -import-underlying-module, or an // app/test using -import-objc-header, we should look at the direct // imports of the bridging modules, and mark those as our direct // imports. /*IsImportedDirectly=*/ importedModules.find(depMod) != importedModules.end(), /*SupportsLibraryEvolution=*/ depMod->isResilient()}); buffer.clear(); continue; } // If the depTracker had an interface, that means that we must've // built a swiftmodule from that interface, so we should have that // filename available. if (isSwiftinterface) { err << "Unexpected path for swiftinterface file:\n" << depPath << "\n"; errorUnexpectedPath(err); } // Skip cached modules in the prebuilt cache. We will add the corresponding // swiftinterface from the SDK directly, but this isn't checked. :-/ // // FIXME: This is incorrect if both paths are not relative w.r.t. to the // same root. if (StringRef(depPath).startswith(prebuiltCachePath)) continue; // If we have a swiftmodule next to an interface, that interface path will // be saved (not checked), so don't save the path to this swiftmodule. SmallString<256> moduleAdjacentInterfacePath(depPath); computeAdjacentInterfacePath(moduleAdjacentInterfacePath); if (pathToModuleDecl.find(moduleAdjacentInterfacePath) != pathToModuleDecl.end()) continue; // FIXME: The behavior of fs::exists for relative paths is undocumented. // Use something else instead? if (fs::exists(moduleAdjacentInterfacePath)) { // This should be an error but it is not because of funkiness around // compatible modules such as us having both armv7s.swiftinterface // and armv7.swiftinterface in the dependency tracker. continue; } buffer.clear(); // We might land here when we have a arm.swiftmodule in the cache path // which added a dependency on a arm.swiftinterface (which was not loaded). } // Almost a re-implementation of reversePathSortedFilenames :(. std::sort( traceInfo.begin(), traceInfo.end(), [](const SwiftModuleTraceInfo &m1, const SwiftModuleTraceInfo &m2) -> bool { return std::lexicographical_compare( m1.Path.rbegin(), m1.Path.rend(), m2.Path.rbegin(), m2.Path.rend()); }); } static bool emitLoadedModuleTraceIfNeeded(ModuleDecl *mainModule, DependencyTracker *depTracker, StringRef prebuiltCachePath, StringRef loadedModuleTracePath) { ASTContext &ctxt = mainModule->getASTContext(); assert(!ctxt.hadError() && "We should've already exited earlier if there was an error."); if (loadedModuleTracePath.empty()) return false; std::error_code EC; llvm::raw_fd_ostream out(loadedModuleTracePath, EC, llvm::sys::fs::F_Append); if (out.has_error() || EC) { ctxt.Diags.diagnose(SourceLoc(), diag::error_opening_output, loadedModuleTracePath, EC.message()); out.clear_error(); return true; } ModuleDecl::ImportFilter filter = ModuleDecl::ImportFilterKind::Public; filter |= ModuleDecl::ImportFilterKind::Private; filter |= ModuleDecl::ImportFilterKind::ImplementationOnly; filter |= ModuleDecl::ImportFilterKind::ShadowedBySeparateOverlay; SmallVector imports; mainModule->getImportedModules(imports, filter); SmallPtrSet importedModules; for (ModuleDecl::ImportedModule &import : imports) importedModules.insert(import.importedModule); llvm::DenseMap pathToModuleDecl; for (auto &module : ctxt.LoadedModules) { ModuleDecl *loadedDecl = module.second; if (!loadedDecl) llvm::report_fatal_error("Expected loaded modules to be non-null."); if (loadedDecl == mainModule) continue; if (loadedDecl->getModuleFilename().empty()) { // FIXME: rdar://problem/59853077 // Ideally, this shouldn't happen. As a temporary workaround, avoid // crashing with a message while we investigate the problem. llvm::errs() << "WARNING: Module '" << loadedDecl->getName().str() << "' has an empty filename. This is probably an " << "invariant violation.\n" << "Please report it as a compiler bug.\n"; continue; } pathToModuleDecl.insert( std::make_pair(loadedDecl->getModuleFilename(), loadedDecl)); } std::vector swiftModules; computeSwiftModuleTraceInfo(importedModules, pathToModuleDecl, *depTracker, prebuiltCachePath, swiftModules); LoadedModuleTraceFormat trace = { /*version=*/LoadedModuleTraceFormat::CurrentVersion, /*name=*/mainModule->getName(), /*arch=*/ctxt.LangOpts.Target.getArchName().str(), swiftModules}; // raw_fd_ostream is unbuffered, and we may have multiple processes writing, // so first write to memory and then dump the buffer to the trace file. std::string stringBuffer; { llvm::raw_string_ostream memoryBuffer(stringBuffer); json::Output jsonOutput(memoryBuffer, /*UserInfo=*/{}, /*PrettyPrint=*/false); json::jsonize(jsonOutput, trace, /*Required=*/true); } stringBuffer += "\n"; out << stringBuffer; return true; } static bool emitLoadedModuleTraceForAllPrimariesIfNeeded(ModuleDecl *mainModule, DependencyTracker *depTracker, const FrontendOptions &opts) { return opts.InputsAndOutputs.forEachInputProducingSupplementaryOutput( [&](const InputFile &input) -> bool { return emitLoadedModuleTraceIfNeeded( mainModule, depTracker, opts.PrebuiltModuleCachePath, input.loadedModuleTracePath()); }); } /// Gets an output stream for the provided output filename, or diagnoses to the /// provided AST Context and returns null if there was an error getting the /// stream. static std::unique_ptr getFileOutputStream(StringRef OutputFilename, ASTContext &Ctx) { std::error_code errorCode; auto os = std::make_unique( OutputFilename, errorCode, llvm::sys::fs::F_None); if (errorCode) { Ctx.Diags.diagnose(SourceLoc(), diag::error_opening_output, OutputFilename, errorCode.message()); return nullptr; } return os; } /// Writes the Syntax tree to the given file static bool emitSyntax(SourceFile *SF, StringRef OutputFilename) { auto bufferID = SF->getBufferID(); assert(bufferID && "frontend should have a buffer ID " "for the main source file"); (void)bufferID; auto os = getFileOutputStream(OutputFilename, SF->getASTContext()); if (!os) return true; json::Output jsonOut(*os, /*UserInfo=*/{}, /*PrettyPrint=*/false); auto Root = SF->getSyntaxRoot().getRaw(); jsonOut << *Root; *os << "\n"; return false; } /// Writes SIL out to the given file. static bool writeSIL(SILModule &SM, ModuleDecl *M, const SILOptions &Opts, StringRef OutputFilename) { auto OS = getFileOutputStream(OutputFilename, M->getASTContext()); if (!OS) return true; SM.print(*OS, M, Opts); return M->getASTContext().hadError(); } static bool writeSIL(SILModule &SM, const PrimarySpecificPaths &PSPs, const CompilerInstance &Instance, const SILOptions &Opts) { return writeSIL(SM, Instance.getMainModule(), Opts, PSPs.OutputFilename); } /// Prints the Objective-C "generated header" interface for \p M to \p /// outputPath. /// /// ...unless \p outputPath is empty, in which case it does nothing. /// /// \returns true if there were any errors /// /// \see swift::printAsObjC static bool printAsObjCIfNeeded(StringRef outputPath, ModuleDecl *M, StringRef bridgingHeader, bool moduleIsPublic) { if (outputPath.empty()) return false; return withOutputFile(M->getDiags(), outputPath, [&](raw_ostream &out) -> bool { auto requiredAccess = moduleIsPublic ? AccessLevel::Public : AccessLevel::Internal; return printAsObjC(out, M, bridgingHeader, requiredAccess); }); } /// Prints the stable module interface for \p M to \p outputPath. /// /// ...unless \p outputPath is empty, in which case it does nothing. /// /// \returns true if there were any errors /// /// \see swift::emitSwiftInterface static bool printModuleInterfaceIfNeeded(StringRef outputPath, ModuleInterfaceOptions const &Opts, LangOptions const &LangOpts, ModuleDecl *M) { if (outputPath.empty()) return false; DiagnosticEngine &diags = M->getDiags(); if (!LangOpts.isSwiftVersionAtLeast(5)) { assert(LangOpts.isSwiftVersionAtLeast(4)); diags.diagnose(SourceLoc(), diag::warn_unsupported_module_interface_swift_version, LangOpts.isSwiftVersionAtLeast(4, 2) ? "4.2" : "4"); } if (M->getResilienceStrategy() != ResilienceStrategy::Resilient) { diags.diagnose(SourceLoc(), diag::warn_unsupported_module_interface_library_evolution); } return withOutputFile(diags, outputPath, [M, Opts](raw_ostream &out) -> bool { return swift::emitSwiftInterface(out, Opts, M); }); } namespace { /// If there is an error with fixits it writes the fixits as edits in json /// format. class JSONFixitWriter : public DiagnosticConsumer, public migrator::FixitFilter { std::string FixitsOutputPath; std::unique_ptr OSPtr; bool FixitAll; std::vector AllEdits; public: JSONFixitWriter(std::string fixitsOutputPath, const DiagnosticOptions &DiagOpts) : FixitsOutputPath(fixitsOutputPath), FixitAll(DiagOpts.FixitCodeForAllDiagnostics) {} private: void handleDiagnostic(SourceManager &SM, const DiagnosticInfo &Info) override { if (!(FixitAll || shouldTakeFixit(Info))) return; for (const auto &Fix : Info.FixIts) { AllEdits.push_back({SM, Fix.getRange(), Fix.getText().str()}); } } bool finishProcessing() override { std::error_code EC; std::unique_ptr OS; OS.reset(new llvm::raw_fd_ostream(FixitsOutputPath, EC, llvm::sys::fs::F_None)); if (EC) { // Create a temporary diagnostics engine to print the error to stderr. SourceManager dummyMgr; DiagnosticEngine DE(dummyMgr); PrintingDiagnosticConsumer PDC; DE.addConsumer(PDC); DE.diagnose(SourceLoc(), diag::cannot_open_file, FixitsOutputPath, EC.message()); return true; } swift::writeEditsInJson(llvm::makeArrayRef(AllEdits), *OS); return false; } }; } // anonymous namespace // This is a separate function so that it shows up in stack traces. LLVM_ATTRIBUTE_NOINLINE static void debugFailWithAssertion() { // Per the user's request, this assertion should always fail in // builds with assertions enabled. // This should not be converted to llvm_unreachable, as those are // treated as optimization hints in builds where they turn into // __builtin_unreachable(). assert((0) && "This is an assertion!"); } // This is a separate function so that it shows up in stack traces. LLVM_ATTRIBUTE_NOINLINE static void debugFailWithCrash() { LLVM_BUILTIN_TRAP; } static void countStatsOfSourceFile(UnifiedStatsReporter &Stats, const CompilerInstance &Instance, SourceFile *SF) { auto &C = Stats.getFrontendCounters(); auto &SM = Instance.getSourceMgr(); C.NumDecls += SF->getTopLevelDecls().size(); C.NumLocalTypeDecls += SF->LocalTypeDecls.size(); C.NumObjCMethods += SF->ObjCMethods.size(); SmallVector operators; SF->getOperatorDecls(operators); C.NumOperators += operators.size(); SmallVector groups; SF->getPrecedenceGroups(groups); C.NumPrecedenceGroups += groups.size(); auto bufID = SF->getBufferID(); if (bufID.hasValue()) { C.NumSourceLines += SM.getEntireTextForBuffer(bufID.getValue()).count('\n'); } } static void countStatsPostSema(UnifiedStatsReporter &Stats, CompilerInstance& Instance) { auto &C = Stats.getFrontendCounters(); auto &SM = Instance.getSourceMgr(); C.NumSourceBuffers = SM.getLLVMSourceMgr().getNumBuffers(); C.NumLinkLibraries = Instance.getLinkLibraries().size(); auto const &AST = Instance.getASTContext(); C.NumLoadedModules = AST.LoadedModules.size(); if (auto *D = Instance.getDependencyTracker()) { C.NumDependencies = D->getDependencies().size(); } for (auto SF : Instance.getPrimarySourceFiles()) { auto &Ctx = SF->getASTContext(); Ctx.evaluator.enumerateReferencesInFile(SF, [&C](const auto &ref) { using NodeKind = evaluator::DependencyCollector::Reference::Kind; switch (ref.kind) { case NodeKind::Empty: case NodeKind::Tombstone: llvm_unreachable("Cannot enumerate dead dependency!"); case NodeKind::TopLevel: C.NumReferencedTopLevelNames += 1; return; case NodeKind::Dynamic: C.NumReferencedDynamicNames += 1; return; case NodeKind::PotentialMember: case NodeKind::UsedMember: C.NumReferencedMemberNames += 1; return; } }); } if (!Instance.getPrimarySourceFiles().empty()) { for (auto SF : Instance.getPrimarySourceFiles()) countStatsOfSourceFile(Stats, Instance, SF); } else if (auto *M = Instance.getMainModule()) { // No primary source file, but a main module; this is WMO-mode for (auto *F : M->getFiles()) { if (auto *SF = dyn_cast(F)) { countStatsOfSourceFile(Stats, Instance, SF); } } } } static void countStatsPostSILGen(UnifiedStatsReporter &Stats, const SILModule& Module) { auto &C = Stats.getFrontendCounters(); // FIXME: calculate these in constant time, via the dense maps. C.NumSILGenFunctions += Module.getFunctionList().size(); C.NumSILGenVtables += Module.getVTableList().size(); C.NumSILGenWitnessTables += Module.getWitnessTableList().size(); C.NumSILGenDefaultWitnessTables += Module.getDefaultWitnessTableList().size(); C.NumSILGenGlobalVariables += Module.getSILGlobalList().size(); } static bool precompileBridgingHeader(const CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); const auto &opts = Invocation.getFrontendOptions(); auto clangImporter = static_cast( Instance.getASTContext().getClangModuleLoader()); auto &ImporterOpts = Invocation.getClangImporterOptions(); auto &PCHOutDir = ImporterOpts.PrecompiledHeaderOutputDir; if (!PCHOutDir.empty()) { // Create or validate a persistent PCH. auto SwiftPCHHash = Invocation.getPCHHash(); auto PCH = clangImporter->getOrCreatePCH(ImporterOpts, SwiftPCHHash); return !PCH.hasValue(); } return clangImporter->emitBridgingPCH( opts.InputsAndOutputs.getFilenameOfFirstInput(), opts.InputsAndOutputs.getSingleOutputFilename()); } static bool precompileClangModule(const CompilerInstance &Instance) { const auto &opts = Instance.getInvocation().getFrontendOptions(); auto clangImporter = static_cast( Instance.getASTContext().getClangModuleLoader()); return clangImporter->emitPrecompiledModule( opts.InputsAndOutputs.getFilenameOfFirstInput(), opts.ModuleName, opts.InputsAndOutputs.getSingleOutputFilename()); } static bool dumpPrecompiledClangModule(const CompilerInstance &Instance) { const auto &opts = Instance.getInvocation().getFrontendOptions(); auto clangImporter = static_cast( Instance.getASTContext().getClangModuleLoader()); return clangImporter->dumpPrecompiledModule( opts.InputsAndOutputs.getFilenameOfFirstInput(), opts.InputsAndOutputs.getSingleOutputFilename()); } static bool buildModuleFromInterface(CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); const FrontendOptions &FEOpts = Invocation.getFrontendOptions(); assert(FEOpts.InputsAndOutputs.hasSingleInput()); StringRef InputPath = FEOpts.InputsAndOutputs.getFilenameOfFirstInput(); StringRef PrebuiltCachePath = FEOpts.PrebuiltModuleCachePath; return ModuleInterfaceLoader::buildSwiftModuleFromSwiftInterface( Instance.getSourceMgr(), Instance.getDiags(), Invocation.getSearchPathOptions(), Invocation.getLangOptions(), Invocation.getClangModuleCachePath(), PrebuiltCachePath, Invocation.getModuleName(), InputPath, Invocation.getOutputFilename(), FEOpts.SerializeModuleInterfaceDependencyHashes, FEOpts.TrackSystemDeps, FEOpts.RemarkOnRebuildFromModuleInterface, FEOpts.DisableInterfaceFileLock); } static bool compileLLVMIR(CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); const auto &inputsAndOutputs = Invocation.getFrontendOptions().InputsAndOutputs; // Load in bitcode file. assert(inputsAndOutputs.hasSingleInput() && "We expect a single input for bitcode input!"); llvm::ErrorOr> FileBufOrErr = swift::vfs::getFileOrSTDIN(Instance.getFileSystem(), inputsAndOutputs.getFilenameOfFirstInput()); if (!FileBufOrErr) { Instance.getDiags().diagnose(SourceLoc(), diag::error_open_input_file, inputsAndOutputs.getFilenameOfFirstInput(), FileBufOrErr.getError().message()); return true; } llvm::MemoryBuffer *MainFile = FileBufOrErr.get().get(); llvm::SMDiagnostic Err; auto LLVMContext = std::make_unique(); std::unique_ptr Module = llvm::parseIR(MainFile->getMemBufferRef(), Err, *LLVMContext.get()); if (!Module) { // TODO: Translate from the diagnostic info to the SourceManager location // if available. Instance.getDiags().diagnose(SourceLoc(), diag::error_parse_input_file, inputsAndOutputs.getFilenameOfFirstInput(), Err.getMessage()); return true; } return performLLVM(Invocation.getIRGenOptions(), Instance.getASTContext(), Module.get(), inputsAndOutputs.getSingleOutputFilename()); } static void verifyGenericSignaturesIfNeeded(const CompilerInvocation &Invocation, ASTContext &Context) { auto verifyGenericSignaturesInModule = Invocation.getFrontendOptions().VerifyGenericSignaturesInModule; if (verifyGenericSignaturesInModule.empty()) return; if (auto module = Context.getModuleByName(verifyGenericSignaturesInModule)) GenericSignatureBuilder::verifyGenericSignaturesInModule(module); } static void dumpAndPrintScopeMap(const CompilerInstance &Instance, SourceFile *SF) { // Not const because may require reexpansion ASTScope &scope = SF->getScope(); const auto &opts = Instance.getInvocation().getFrontendOptions(); if (opts.DumpScopeMapLocations.empty()) { llvm::errs() << "***Complete scope map***\n"; scope.buildFullyExpandedTree(); scope.print(llvm::errs()); return; } // Probe each of the locations, and dump what we find. for (auto lineColumn : opts.DumpScopeMapLocations) { scope.buildFullyExpandedTree(); scope.dumpOneScopeMapLocation(lineColumn); } } static SourceFile * getPrimaryOrMainSourceFile(const CompilerInstance &Instance) { SourceFile *SF = Instance.getPrimarySourceFile(); if (!SF) { SourceFileKind Kind = Instance.getInvocation().getSourceFileKind(); SF = &Instance.getMainModule()->getMainSourceFile(Kind); } return SF; } /// Dumps the AST of all available primary source files. If corresponding output /// files were specified, use them; otherwise, dump the AST to stdout. static void dumpAST(CompilerInstance &Instance) { auto primaryFiles = Instance.getPrimarySourceFiles(); if (!primaryFiles.empty()) { for (SourceFile *sourceFile: primaryFiles) { auto PSPs = Instance.getPrimarySpecificPathsForSourceFile(*sourceFile); auto OutputFilename = PSPs.OutputFilename; auto OS = getFileOutputStream(OutputFilename, Instance.getASTContext()); sourceFile->dump(*OS); } } else { // Some invocations don't have primary files. In that case, we default to // looking for the main file and dumping it to `stdout`. getPrimaryOrMainSourceFile(Instance)->dump(llvm::outs()); } } /// We may have been told to dump the AST (either after parsing or /// type-checking, which is already differentiated in /// CompilerInstance::performSema()), so dump or print the main source file and /// return. static Optional dumpASTIfNeeded(CompilerInstance &Instance) { const auto &opts = Instance.getInvocation().getFrontendOptions(); const FrontendOptions::ActionType Action = opts.RequestedAction; ASTContext &Context = Instance.getASTContext(); switch (Action) { default: return None; case FrontendOptions::ActionType::PrintAST: getPrimaryOrMainSourceFile(Instance) ->print(llvm::outs(), PrintOptions::printEverything()); break; case FrontendOptions::ActionType::DumpScopeMaps: dumpAndPrintScopeMap(Instance, getPrimaryOrMainSourceFile(Instance)); break; case FrontendOptions::ActionType::DumpTypeRefinementContexts: getPrimaryOrMainSourceFile(Instance) ->getTypeRefinementContext() ->dump(llvm::errs(), Context.SourceMgr); break; case FrontendOptions::ActionType::DumpInterfaceHash: getPrimaryOrMainSourceFile(Instance)->dumpInterfaceHash(llvm::errs()); break; case FrontendOptions::ActionType::EmitSyntax: emitSyntax(getPrimaryOrMainSourceFile(Instance), opts.InputsAndOutputs.getSingleOutputFilename()); break; case FrontendOptions::ActionType::DumpParse: case FrontendOptions::ActionType::DumpAST: dumpAST(Instance); break; case FrontendOptions::ActionType::EmitImportedModules: emitImportedModules(Context, Instance.getMainModule(), opts); break; } return Context.hadError(); } static void emitReferenceDependenciesForAllPrimaryInputsIfNeeded( CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); if (Invocation.getFrontendOptions() .InputsAndOutputs.hasReferenceDependenciesPath() && Instance.getPrimarySourceFiles().empty()) { Instance.getDiags().diagnose( SourceLoc(), diag::emit_reference_dependencies_without_primary_file); return; } for (auto *SF : Instance.getPrimarySourceFiles()) { const std::string &referenceDependenciesFilePath = Invocation.getReferenceDependenciesFilePathForPrimary( SF->getFilename()); if (!referenceDependenciesFilePath.empty()) { const auto LangOpts = Invocation.getLangOptions(); (void)fine_grained_dependencies::emitReferenceDependencies( Instance.getDiags(), SF, *Instance.getDependencyTracker(), referenceDependenciesFilePath, LangOpts.EmitFineGrainedDependencySourcefileDotFiles); } } } static void emitSwiftRangesForAllPrimaryInputsIfNeeded(CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); if (Invocation.getFrontendOptions().InputsAndOutputs.hasSwiftRangesPath() && Instance.getPrimarySourceFiles().empty()) { Instance.getDiags().diagnose(SourceLoc(), diag::emit_swift_ranges_without_primary_file); return; } for (auto *SF : Instance.getPrimarySourceFiles()) { const std::string &swiftRangesFilePath = Invocation.getSwiftRangesFilePathForPrimary(SF->getFilename()); if (!swiftRangesFilePath.empty()) { (void)Instance.emitSwiftRanges(Instance.getDiags(), SF, swiftRangesFilePath); } } } static void emitCompiledSourceForAllPrimaryInputsIfNeeded( CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); if (Invocation.getFrontendOptions() .InputsAndOutputs.hasCompiledSourcePath() && Instance.getPrimarySourceFiles().empty()) { Instance.getDiags().diagnose( SourceLoc(), diag::emit_compiled_source_without_primary_file); return; } for (auto *SF : Instance.getPrimarySourceFiles()) { const std::string &compiledSourceFilePath = Invocation.getCompiledSourceFilePathForPrimary(SF->getFilename()); if (!compiledSourceFilePath.empty()) { (void)Instance.emitCompiledSource(Instance.getDiags(), SF, compiledSourceFilePath); } } } static bool writeTBDIfNeeded(CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); const auto &frontendOpts = Invocation.getFrontendOptions(); const auto &tbdOpts = Invocation.getTBDGenOptions(); if (!frontendOpts.InputsAndOutputs.hasTBDPath()) return false; if (!frontendOpts.InputsAndOutputs.isWholeModule()) { Instance.getDiags().diagnose(SourceLoc(), diag::tbd_only_supported_in_whole_module); return false; } const std::string &TBDPath = Invocation.getTBDPathForWholeModule(); return writeTBD(Instance.getMainModule(), TBDPath, tbdOpts); } static std::string changeToLdAdd(StringRef ldHide) { SmallString<64> SymbolBuffer; llvm::raw_svector_ostream OS(SymbolBuffer); auto Parts = ldHide.split("$hide$"); assert(!Parts.first.empty()); assert(!Parts.second.empty()); OS << Parts.first << "$add$" << Parts.second; return OS.str().str(); } static bool writeLdAddCFileIfNeeded(CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); const auto &frontendOpts = Invocation.getFrontendOptions(); if (!frontendOpts.InputsAndOutputs.isWholeModule()) return false; auto Path = Invocation.getLdAddCFileOutputPathForWholeModule(); if (Path.empty()) return false; if (!frontendOpts.InputsAndOutputs.isWholeModule()) { Instance.getDiags().diagnose(SourceLoc(), diag::tbd_only_supported_in_whole_module); return true; } if (!Invocation.getTBDGenOptions().ModuleInstallNameMapPath.empty()) { Instance.getDiags().diagnose(SourceLoc(), diag::linker_directives_choice_confusion); return true; } auto tbdOpts = Invocation.getTBDGenOptions(); tbdOpts.LinkerDirectivesOnly = true; llvm::StringSet<> ldSymbols; auto *module = Instance.getMainModule(); enumeratePublicSymbols(module, ldSymbols, tbdOpts); std::error_code EC; llvm::raw_fd_ostream OS(Path, EC, llvm::sys::fs::F_None); if (EC) { Instance.getDiags().diagnose(SourceLoc(), diag::error_opening_output, Path, EC.message()); return true; } OS << "// Automatically generated C source file from the Swift compiler \n" << "// to add removed symbols back to the high-level framework for deployment\n" << "// targets prior to the OS version when these symbols were moved to\n" << "// a low-level framework " << module->getName().str() << ".\n\n"; unsigned Idx = 0; for (auto &S: ldSymbols) { SmallString<32> NameBuffer; llvm::raw_svector_ostream NameOS(NameBuffer); NameOS << "ldAdd_" << Idx; OS << "extern const char " << NameOS.str() << " __asm(\"" << changeToLdAdd(S.getKey()) << "\");\n"; OS << "const char " << NameOS.str() << " = 0;\n"; ++ Idx; } return false; } static bool performCompileStepsPostSILGen(CompilerInstance &Instance, std::unique_ptr SM, ModuleOrSourceFile MSF, const PrimarySpecificPaths &PSPs, int &ReturnValue, FrontendObserver *observer); static bool performCompileStepsPostSema(CompilerInstance &Instance, int &ReturnValue, FrontendObserver *observer) { const auto &Invocation = Instance.getInvocation(); const SILOptions &SILOpts = Invocation.getSILOptions(); const FrontendOptions &opts = Invocation.getFrontendOptions(); auto *mod = Instance.getMainModule(); if (!opts.InputsAndOutputs.hasPrimaryInputs()) { // If there are no primary inputs the compiler is in WMO mode and builds one // SILModule for the entire module. auto SM = performASTLowering(mod, Instance.getSILTypes(), SILOpts); const PrimarySpecificPaths PSPs = Instance.getPrimarySpecificPathsForWholeModuleOptimizationMode(); return performCompileStepsPostSILGen(Instance, std::move(SM), mod, PSPs, ReturnValue, observer); } // If there are primary source files, build a separate SILModule for // each source file, and run the remaining SILOpt-Serialize-IRGen-LLVM // once for each such input. if (!Instance.getPrimarySourceFiles().empty()) { bool result = false; for (auto *PrimaryFile : Instance.getPrimarySourceFiles()) { auto SM = performASTLowering(*PrimaryFile, Instance.getSILTypes(), SILOpts); const PrimarySpecificPaths PSPs = Instance.getPrimarySpecificPathsForSourceFile(*PrimaryFile); result |= performCompileStepsPostSILGen(Instance, std::move(SM), PrimaryFile, PSPs, ReturnValue, observer); } return result; } // If there are primary inputs but no primary _source files_, there might be // a primary serialized input. bool result = false; for (FileUnit *fileUnit : mod->getFiles()) { if (auto SASTF = dyn_cast(fileUnit)) if (opts.InputsAndOutputs.isInputPrimary(SASTF->getFilename())) { auto SM = performASTLowering(*SASTF, Instance.getSILTypes(), SILOpts); const PrimarySpecificPaths &PSPs = Instance.getPrimarySpecificPathsForPrimary(SASTF->getFilename()); result |= performCompileStepsPostSILGen(Instance, std::move(SM), mod, PSPs, ReturnValue, observer); } } return result; } static void emitIndexDataForSourceFile(SourceFile *PrimarySourceFile, const CompilerInstance &Instance); /// Emits index data for all primary inputs, or the main module. static void emitIndexData(const CompilerInstance &Instance) { if (Instance.getPrimarySourceFiles().empty()) { emitIndexDataForSourceFile(nullptr, Instance); } else { for (SourceFile *SF : Instance.getPrimarySourceFiles()) emitIndexDataForSourceFile(SF, Instance); } } /// Emits all "one-per-module" supplementary outputs that don't depend on /// anything past type-checking. /// /// These are extracted out so that they can be invoked early when using /// `-typecheck`, but skipped for any mode that runs SIL diagnostics if there's /// an error found there (to get those diagnostics back to the user faster). static bool emitAnyWholeModulePostTypeCheckSupplementaryOutputs( CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); const FrontendOptions &opts = Invocation.getFrontendOptions(); // Record whether we failed to emit any of these outputs, but keep going; one // failure does not mean skipping the rest. bool hadAnyError = false; if (opts.InputsAndOutputs.hasObjCHeaderOutputPath()) { std::string BridgingHeaderPathForPrint; if (!opts.ImplicitObjCHeaderPath.empty()) { if (opts.BridgingHeaderDirForPrint.hasValue()) { // User specified preferred directory for including, use that dir. llvm::SmallString<32> Buffer(*opts.BridgingHeaderDirForPrint); llvm::sys::path::append(Buffer, llvm::sys::path::filename(opts.ImplicitObjCHeaderPath)); BridgingHeaderPathForPrint = Buffer.str(); } else { // By default, include the given bridging header path directly. BridgingHeaderPathForPrint = opts.ImplicitObjCHeaderPath; } } hadAnyError |= printAsObjCIfNeeded( Invocation.getObjCHeaderOutputPathForAtMostOnePrimary(), Instance.getMainModule(), BridgingHeaderPathForPrint, Invocation.isModuleExternallyConsumed(Instance.getMainModule())); } if (opts.InputsAndOutputs.hasModuleInterfaceOutputPath()) { hadAnyError |= printModuleInterfaceIfNeeded( Invocation.getModuleInterfaceOutputPathForWholeModule(), Invocation.getModuleInterfaceOptions(), Invocation.getLangOptions(), Instance.getMainModule()); } if (opts.InputsAndOutputs.hasPrivateModuleInterfaceOutputPath()) { // Copy the settings from the module interface ModuleInterfaceOptions privOpts = Invocation.getModuleInterfaceOptions(); privOpts.PrintSPIs = true; hadAnyError |= printModuleInterfaceIfNeeded( Invocation.getPrivateModuleInterfaceOutputPathForWholeModule(), privOpts, Invocation.getLangOptions(), Instance.getMainModule()); } { hadAnyError |= writeTBDIfNeeded(Instance); } { hadAnyError |= writeLdAddCFileIfNeeded(Instance); } return hadAnyError; } /// Perform any actions that must have access to the ASTContext, and need to be /// delayed until the Swift compile pipeline has finished. This may be called /// before or after LLVM depending on when the ASTContext gets freed. static void performEndOfPipelineActions(CompilerInstance &Instance) { assert(Instance.hasASTContext()); // Emit dependencies and index data. emitReferenceDependenciesForAllPrimaryInputsIfNeeded(Instance); emitIndexData(Instance); } /// Performs the compile requested by the user. /// \param Instance Will be reset after performIRGeneration when the verifier /// mode is NoVerify and there were no errors. /// \returns true on error static bool performCompile(CompilerInstance &Instance, ArrayRef Args, int &ReturnValue, FrontendObserver *observer) { const auto &Invocation = Instance.getInvocation(); const auto &opts = Invocation.getFrontendOptions(); const FrontendOptions::ActionType Action = opts.RequestedAction; // We've been asked to precompile a bridging header or module; we want to // avoid touching any other inputs and just parse, emit and exit. if (Action == FrontendOptions::ActionType::EmitPCH) return precompileBridgingHeader(Instance); if (Action == FrontendOptions::ActionType::EmitPCM) return precompileClangModule(Instance); if (Action == FrontendOptions::ActionType::DumpPCM) return dumpPrecompiledClangModule(Instance); if (Action == FrontendOptions::ActionType::CompileModuleFromInterface) return buildModuleFromInterface(Instance); if (Invocation.getInputKind() == InputFileKind::LLVM) return compileLLVMIR(Instance); if (FrontendOptions::shouldActionOnlyParse(Action)) { // Disable delayed parsing of type and function bodies when we've been // asked to dump the resulting AST. bool CanDelayBodies = Action != FrontendOptions::ActionType::DumpParse; bool EvaluateConditionals = Action == FrontendOptions::ActionType::EmitImportedModules || Action == FrontendOptions::ActionType::ScanDependencies; Instance.performParseOnly(EvaluateConditionals, CanDelayBodies); } else if (Action == FrontendOptions::ActionType::ResolveImports) { Instance.performParseAndResolveImportsOnly(); } else { Instance.performSema(); } ASTContext &Context = Instance.getASTContext(); if (Action == FrontendOptions::ActionType::Parse) return Context.hadError(); if (Action == FrontendOptions::ActionType::ScanDependencies) { scanDependencies(Instance); } (void)emitMakeDependenciesIfNeeded(Instance.getDiags(), Instance.getDependencyTracker(), opts); if (Action == FrontendOptions::ActionType::ResolveImports || Action == FrontendOptions::ActionType::ScanDependencies) return Context.hadError(); if (observer) observer->performedSemanticAnalysis(Instance); if (auto *Stats = Context.Stats) { countStatsPostSema(*Stats, Instance); } { FrontendOptions::DebugCrashMode CrashMode = opts.CrashMode; if (CrashMode == FrontendOptions::DebugCrashMode::AssertAfterParse) debugFailWithAssertion(); else if (CrashMode == FrontendOptions::DebugCrashMode::CrashAfterParse) debugFailWithCrash(); } verifyGenericSignaturesIfNeeded(Invocation, Context); (void)migrator::updateCodeAndEmitRemapIfNeeded(&Instance); if (Action == FrontendOptions::ActionType::REPL) { llvm::report_fatal_error("Compiler-internal integrated REPL has been " "removed; use the LLDB-enhanced REPL instead."); } if (auto r = dumpASTIfNeeded(Instance)) return *r; // If we were asked to print Clang stats, do so. if (opts.PrintClangStats && Context.getClangModuleLoader()) Context.getClangModuleLoader()->printStatistics(); emitSwiftRangesForAllPrimaryInputsIfNeeded(Instance); emitCompiledSourceForAllPrimaryInputsIfNeeded(Instance); SWIFT_DEFER { // We might have freed the ASTContext already, but in that case we would // have already performed these actions. if (Instance.hasASTContext()) performEndOfPipelineActions(Instance); }; if (Context.hadError()) return true; (void)emitLoadedModuleTraceForAllPrimariesIfNeeded( Instance.getMainModule(), Instance.getDependencyTracker(), opts); // We've just been told to perform a typecheck, so we can return now. if (Action == FrontendOptions::ActionType::Typecheck) { // FIXME: Whole-module outputs with a non-whole-module -typecheck ought to // be disallowed, but the driver implements -index-file mode by generating a // regular whole-module frontend command line and modifying it to index just // one file (by making it a primary) instead of all of them. If that // invocation also has flags to emit whole-module supplementary outputs, the // compiler can crash trying to access information for non-type-checked // declarations in the non-primary files. For now, prevent those crashes by // guarding the emission of whole-module supplementary outputs. if (opts.InputsAndOutputs.isWholeModule()) { if (emitAnyWholeModulePostTypeCheckSupplementaryOutputs(Instance)) { return true; } } return false; } assert(FrontendOptions::doesActionGenerateSIL(Action) && "All actions not requiring SILGen must have been handled!"); return performCompileStepsPostSema(Instance, ReturnValue, observer); } static bool serializeSIB(SILModule *SM, const PrimarySpecificPaths &PSPs, const ASTContext &Context, ModuleOrSourceFile MSF) { const std::string &moduleOutputPath = PSPs.SupplementaryOutputs.ModuleOutputPath; assert(!moduleOutputPath.empty() && "must have an output path"); SerializationOptions serializationOpts; serializationOpts.OutputPath = moduleOutputPath.c_str(); serializationOpts.SerializeAllSIL = true; serializationOpts.IsSIB = true; serialize(MSF, serializationOpts, SM); return Context.hadError(); } static GeneratedModule generateIR(const IRGenOptions &IRGenOpts, std::unique_ptr SM, const PrimarySpecificPaths &PSPs, StringRef OutputFilename, ModuleOrSourceFile MSF, llvm::GlobalVariable *&HashGlobal, ArrayRef parallelOutputFilenames, llvm::StringSet<> &LinkerDirectives) { if (auto *SF = MSF.dyn_cast()) { return performIRGeneration(IRGenOpts, *SF, std::move(SM), OutputFilename, PSPs, SF->getPrivateDiscriminator().str(), &HashGlobal, &LinkerDirectives); } else { return performIRGeneration(IRGenOpts, MSF.get(), std::move(SM), OutputFilename, PSPs, parallelOutputFilenames, &HashGlobal, &LinkerDirectives); } } static bool processCommandLineAndRunImmediately(CompilerInstance &Instance, std::unique_ptr &&SM, ModuleOrSourceFile MSF, FrontendObserver *observer, int &ReturnValue) { const auto &Invocation = Instance.getInvocation(); const auto &opts = Invocation.getFrontendOptions(); assert(!MSF.is() && "-i doesn't work in -primary-file mode"); const IRGenOptions &IRGenOpts = Invocation.getIRGenOptions(); const ProcessCmdLine &CmdLine = ProcessCmdLine(opts.ImmediateArgv.begin(), opts.ImmediateArgv.end()); PrettyStackTraceStringAction trace( "running user code", MSF.is() ? MSF.get()->getFilename() : MSF.get()->getModuleFilename()); ReturnValue = RunImmediately(Instance, CmdLine, IRGenOpts, Invocation.getSILOptions(), std::move(SM)); return Instance.getASTContext().hadError(); } static bool validateTBDIfNeeded(const CompilerInvocation &Invocation, ModuleOrSourceFile MSF, const llvm::Module &IRModule) { const auto mode = Invocation.getFrontendOptions().ValidateTBDAgainstIR; const bool canPerformTBDValidation = [&]() { // If the user has requested we skip validation, honor it. if (mode == FrontendOptions::TBDValidationMode::None) { return false; } // Cross-module optimization does not yet support TBD validation. if (Invocation.getSILOptions().CrossModuleOptimization) { return false; } // If we can't validate the given input file, bail early. This covers cases // like passing raw SIL as a primary file. if (!inputFileKindCanHaveTBDValidated(Invocation.getInputKind())) { return false; } // Modules with SIB files cannot be validated. This is because SIB files // may have serialized hand-crafted SIL definitions that are invisible to // TBDGen as it is an AST-only traversal. if (auto *mod = MSF.dyn_cast()) { return llvm::none_of(mod->getFiles(), [](const FileUnit *File) -> bool { auto SASTF = dyn_cast(File); return SASTF && SASTF->isSIB(); }); } // "Default" mode's behavior varies if using a debug compiler. if (mode == FrontendOptions::TBDValidationMode::Default) { #ifndef NDEBUG // With a debug compiler, we do some validation by default. return true; #else // Otherwise, the default is to do nothing. return false; #endif } return true; }(); if (!canPerformTBDValidation) { return false; } const bool diagnoseExtraSymbolsInTBD = [mode]() { switch (mode) { case FrontendOptions::TBDValidationMode::None: llvm_unreachable("Handled Above!"); case FrontendOptions::TBDValidationMode::Default: case FrontendOptions::TBDValidationMode::MissingFromTBD: return false; case FrontendOptions::TBDValidationMode::All: return true; } llvm_unreachable("invalid mode"); }(); TBDGenOptions Opts = Invocation.getTBDGenOptions(); // Ignore embedded symbols from external modules for validation to remove // noise from e.g. statically-linked libraries. Opts.embedSymbolsFromModules.clear(); if (auto *SF = MSF.dyn_cast()) { return validateTBD(SF, IRModule, Opts, diagnoseExtraSymbolsInTBD); } else { return validateTBD(MSF.get(), IRModule, Opts, diagnoseExtraSymbolsInTBD); } } static void freeASTContextIfPossible(CompilerInstance &Instance) { // If the stats reporter is installed, we need the ASTContext to live through // the entire compilation process. if (Instance.getASTContext().Stats) { return; } // If we're going to dump the API of the module, we cannot tear down // the ASTContext, as that would cause the module to be freed prematurely. const auto &opts = Instance.getInvocation().getFrontendOptions(); if (!opts.DumpAPIPath.empty()) { return; } // Verifying incremental dependencies relies on access to the Swift Module's // source files. if (opts.EnableIncrementalDependencyVerifier) { return; } // If there are multiple primary inputs it is too soon to free // the ASTContext, etc.. OTOH, if this compilation generates code for > 1 // primary input, then freeing it after processing the last primary is // unlikely to reduce the peak heap size. So, only optimize the // single-primary-case (or WMO). if (opts.InputsAndOutputs.hasMultiplePrimaryInputs()) { return; } // Make sure to perform the end of pipeline actions now, because they need // access to the ASTContext. performEndOfPipelineActions(Instance); Instance.freeASTContext(); } static bool generateCode(CompilerInstance &Instance, StringRef OutputFilename, llvm::Module *IRModule, llvm::GlobalVariable *HashGlobal) { const auto &opts = Instance.getInvocation().getIRGenOptions(); std::unique_ptr TargetMachine = createTargetMachine(opts, Instance.getASTContext()); version::Version EffectiveLanguageVersion = Instance.getASTContext().LangOpts.EffectiveLanguageVersion; // Free up some compiler resources now that we have an IRModule. freeASTContextIfPossible(Instance); // Now that we have a single IR Module, hand it over to performLLVM. return performLLVM(opts, Instance.getDiags(), nullptr, HashGlobal, IRModule, TargetMachine.get(), EffectiveLanguageVersion, OutputFilename, Instance.getStatsReporter()); } static void collectLinkerDirectives(const CompilerInvocation &Invocation, ModuleOrSourceFile MSF, llvm::StringSet<> &Symbols) { auto tbdOpts = Invocation.getTBDGenOptions(); tbdOpts.LinkerDirectivesOnly = true; if (MSF.is()) enumeratePublicSymbols(MSF.get(), Symbols, tbdOpts); else enumeratePublicSymbols(MSF.get(), Symbols, tbdOpts); } static bool performCompileStepsPostSILGen(CompilerInstance &Instance, std::unique_ptr SM, ModuleOrSourceFile MSF, const PrimarySpecificPaths &PSPs, int &ReturnValue, FrontendObserver *observer) { const auto &Invocation = Instance.getInvocation(); const auto &opts = Invocation.getFrontendOptions(); FrontendOptions::ActionType Action = opts.RequestedAction; const ASTContext &Context = Instance.getASTContext(); const IRGenOptions &IRGenOpts = Invocation.getIRGenOptions(); Optional ricd; if (auto *SF = MSF.dyn_cast()) ricd.emplace(*SF); if (observer) observer->performedSILGeneration(*SM); auto *Stats = Instance.getASTContext().Stats; if (Stats) countStatsPostSILGen(*Stats, *SM); // We've been told to emit SIL after SILGen, so write it now. if (Action == FrontendOptions::ActionType::EmitSILGen) { return writeSIL(*SM, PSPs, Instance, Invocation.getSILOptions()); } if (Action == FrontendOptions::ActionType::EmitSIBGen) { serializeSIB(SM.get(), PSPs, Context, MSF); return Context.hadError(); } SM->installSILRemarkStreamer(); // This is the action to be used to serialize SILModule. // It may be invoked multiple times, but it will perform // serialization only once. The serialization may either happen // after high-level optimizations or after all optimizations are // done, depending on the compiler setting. auto SerializeSILModuleAction = [&]() { const SupplementaryOutputPaths &outs = PSPs.SupplementaryOutputs; if (outs.ModuleOutputPath.empty()) return; SerializationOptions serializationOpts = Invocation.computeSerializationOptions(outs, Instance.getMainModule()); serialize(MSF, serializationOpts, SM.get()); }; // Set the serialization action, so that the SIL module // can be serialized at any moment, e.g. during the optimization pipeline. SM->setSerializeSILAction(SerializeSILModuleAction); // Perform optimizations and mandatory/diagnostic passes. if (Instance.performSILProcessing(SM.get())) return true; if (observer) observer->performedSILProcessing(*SM); emitAnyWholeModulePostTypeCheckSupplementaryOutputs(Instance); if (Action == FrontendOptions::ActionType::EmitSIB) return serializeSIB(SM.get(), PSPs, Context, MSF); if (PSPs.haveModuleOrModuleDocOutputPaths()) { if (Action == FrontendOptions::ActionType::MergeModules || Action == FrontendOptions::ActionType::EmitModuleOnly) { return Context.hadError(); } } assert(Action >= FrontendOptions::ActionType::EmitSIL && "All actions not requiring SILPasses must have been handled!"); // We've been told to write canonical SIL, so write it now. if (Action == FrontendOptions::ActionType::EmitSIL) return writeSIL(*SM, PSPs, Instance, Invocation.getSILOptions()); assert(Action >= FrontendOptions::ActionType::Immediate && "All actions not requiring IRGen must have been handled!"); assert(Action != FrontendOptions::ActionType::REPL && "REPL mode must be handled immediately after Instance->performSema()"); // Check if we had any errors; if we did, don't proceed to IRGen. if (Context.hadError()) return true; runSILLoweringPasses(*SM); // TODO: at this point we need to flush any the _tracing and profiling_ // in the UnifiedStatsReporter, because the those subsystems of the USR // retain _pointers into_ the SILModule, and the SILModule's lifecycle is // not presently such that it will outlive the USR (indeed, as it's // destroyed on a separate thread, this fact isn't even _deterministic_ // after this point). If future plans require the USR tracing or // profiling entities after this point, more rearranging will be required. if (Stats) Stats->flushTracesAndProfiles(); if (Action == FrontendOptions::ActionType::DumpTypeInfo) return performDumpTypeInfo(IRGenOpts, *SM); if (Action == FrontendOptions::ActionType::Immediate) return processCommandLineAndRunImmediately( Instance, std::move(SM), MSF, observer, ReturnValue); llvm::StringSet<> LinkerDirectives; collectLinkerDirectives(Invocation, MSF, LinkerDirectives); // Don't proceed to IRGen if collecting linker directives failed. if (Context.hadError()) return true; StringRef OutputFilename = PSPs.OutputFilename; std::vector ParallelOutputFilenames = opts.InputsAndOutputs.copyOutputFilenames(); llvm::GlobalVariable *HashGlobal; auto IRModule = generateIR( IRGenOpts, std::move(SM), PSPs, OutputFilename, MSF, HashGlobal, ParallelOutputFilenames, LinkerDirectives); // Just because we had an AST error it doesn't mean we can't performLLVM. bool HadError = Instance.getASTContext().hadError(); // If the AST Context has no errors but no IRModule is available, // parallelIRGen happened correctly, since parallel IRGen produces multiple // modules. if (!IRModule) return HadError; if (validateTBDIfNeeded(Invocation, MSF, *IRModule.getModule())) return true; return generateCode(Instance, OutputFilename, IRModule.getModule(), HashGlobal) || HadError; } static void emitIndexDataForSourceFile(SourceFile *PrimarySourceFile, const CompilerInstance &Instance) { const auto &Invocation = Instance.getInvocation(); const auto &opts = Invocation.getFrontendOptions(); if (opts.IndexStorePath.empty()) return; // FIXME: provide index unit token(s) explicitly and only use output file // paths as a fallback. bool isDebugCompilation; switch (Invocation.getSILOptions().OptMode) { case OptimizationMode::NotSet: case OptimizationMode::NoOptimization: isDebugCompilation = true; break; case OptimizationMode::ForSpeed: case OptimizationMode::ForSize: isDebugCompilation = false; break; } if (PrimarySourceFile) { const PrimarySpecificPaths &PSPs = opts.InputsAndOutputs.getPrimarySpecificPathsForPrimary( PrimarySourceFile->getFilename()); (void) index::indexAndRecord(PrimarySourceFile, PSPs.OutputFilename, opts.IndexStorePath, opts.IndexSystemModules, opts.IndexIgnoreStdlib, isDebugCompilation, Invocation.getTargetTriple(), *Instance.getDependencyTracker()); } else { std::string moduleToken = Invocation.getModuleOutputPathForAtMostOnePrimary(); if (moduleToken.empty()) moduleToken = opts.InputsAndOutputs.getSingleOutputFilename(); (void) index::indexAndRecord(Instance.getMainModule(), opts.InputsAndOutputs.copyOutputFilenames(), moduleToken, opts.IndexStorePath, opts.IndexSystemModules, opts.IndexIgnoreStdlib, isDebugCompilation, Invocation.getTargetTriple(), *Instance.getDependencyTracker()); } } /// Returns true if an error occurred. static bool dumpAPI(ModuleDecl *Mod, StringRef OutDir) { using namespace llvm::sys; auto getOutPath = [&](SourceFile *SF) -> std::string { SmallString<256> Path = OutDir; StringRef Filename = SF->getFilename(); path::append(Path, path::filename(Filename)); return std::string(Path.str()); }; std::unordered_set Filenames; auto dumpFile = [&](SourceFile *SF) -> bool { SmallString<512> TempBuf; llvm::raw_svector_ostream TempOS(TempBuf); PrintOptions PO = PrintOptions::printInterface(); PO.PrintOriginalSourceText = true; PO.Indent = 2; PO.PrintAccess = false; PO.SkipUnderscoredStdlibProtocols = true; SF->print(TempOS, PO); if (TempOS.str().trim().empty()) return false; // nothing to show. std::string OutPath = getOutPath(SF); bool WasInserted = Filenames.insert(OutPath).second; if (!WasInserted) { llvm::errs() << "multiple source files ended up with the same dump API " "filename to write to: " << OutPath << '\n'; return true; } std::error_code EC; llvm::raw_fd_ostream OS(OutPath, EC, fs::FA_Read | fs::FA_Write); if (EC) { llvm::errs() << "error opening file '" << OutPath << "': " << EC.message() << '\n'; return true; } OS << TempOS.str(); return false; }; std::error_code EC = fs::create_directories(OutDir); if (EC) { llvm::errs() << "error creating directory '" << OutDir << "': " << EC.message() << '\n'; return true; } for (auto *FU : Mod->getFiles()) { if (auto *SF = dyn_cast(FU)) if (dumpFile(SF)) return true; } return false; } /// Creates a diagnostic consumer that handles dispatching diagnostics to /// multiple output files, based on the supplementary output paths specified by /// \p inputsAndOutputs. /// /// If no output files are needed, returns null. static std::unique_ptr createDispatchingDiagnosticConsumerIfNeeded( const FrontendInputsAndOutputs &inputsAndOutputs, llvm::function_ref(const InputFile &)> maybeCreateConsumerForDiagnosticsFrom) { // The "4" here is somewhat arbitrary. In practice we're going to have one // sub-consumer for each diagnostic file we're trying to output, which (again // in practice) is going to be 1 in WMO mode and equal to the number of // primary inputs in batch mode. That in turn is going to be "the number of // files we need to recompile in this build, divided by the number of jobs". // So a value of "4" here means that there would be no heap allocation on a // clean build of a module with up to 32 files on an 8-core machine, if the // user doesn't customize anything. SmallVector subconsumers; inputsAndOutputs.forEachInputProducingSupplementaryOutput( [&](const InputFile &input) -> bool { if (auto consumer = maybeCreateConsumerForDiagnosticsFrom(input)) subconsumers.emplace_back(input.file(), std::move(consumer)); return false; }); // For batch mode, the compiler must sometimes swallow diagnostics pertaining // to non-primary files in order to avoid Xcode showing the same diagnostic // multiple times. So, create a diagnostic "eater" for those non-primary // files. // // This routine gets called in cases where no primary subconsumers are created. // Don't bother to create non-primary subconsumers if there aren't any primary // ones. // // To avoid introducing bugs into WMO or single-file modes, test for multiple // primaries. if (!subconsumers.empty() && inputsAndOutputs.hasMultiplePrimaryInputs()) { inputsAndOutputs.forEachNonPrimaryInput( [&](const InputFile &input) -> bool { subconsumers.emplace_back(input.file(), nullptr); return false; }); } return FileSpecificDiagnosticConsumer::consolidateSubconsumers(subconsumers); } /// Creates a diagnostic consumer that handles serializing diagnostics, based on /// the supplementary output paths specified by \p inputsAndOutputs. /// /// The returned consumer will handle producing multiple serialized diagnostics /// files if necessary, by using sub-consumers for each file and dispatching to /// the right one. /// /// If no serialized diagnostics are being produced, returns null. static std::unique_ptr createSerializedDiagnosticConsumerIfNeeded( const FrontendInputsAndOutputs &inputsAndOutputs) { return createDispatchingDiagnosticConsumerIfNeeded( inputsAndOutputs, [](const InputFile &input) -> std::unique_ptr { std::string serializedDiagnosticsPath = input.serializedDiagnosticsPath(); if (serializedDiagnosticsPath.empty()) return nullptr; return serialized_diagnostics::createConsumer(serializedDiagnosticsPath); }); } /// Creates a diagnostic consumer that handles serializing diagnostics, based on /// the supplementary output paths specified in \p options. /// /// The returned consumer will handle producing multiple serialized diagnostics /// files if necessary, by using sub-consumers for each file and dispatching to /// the right one. /// /// If no serialized diagnostics are being produced, returns null. static std::unique_ptr createJSONFixItDiagnosticConsumerIfNeeded( const CompilerInvocation &invocation) { return createDispatchingDiagnosticConsumerIfNeeded( invocation.getFrontendOptions().InputsAndOutputs, [&](const InputFile &input) -> std::unique_ptr { std::string fixItsOutputPath = input.fixItsOutputPath(); if (fixItsOutputPath.empty()) return nullptr; return std::make_unique( fixItsOutputPath, invocation.getDiagnosticOptions()); }); } /// Print information about the target triple in JSON. static void printTripleInfo(const llvm::Triple &triple, llvm::raw_ostream &out) { out << "{\n"; out << " \"triple\": \""; out.write_escaped(triple.getTriple()); out << "\",\n"; out << " \"unversionedTriple\": \""; out.write_escaped(getUnversionedTriple(triple).getTriple()); out << "\",\n"; out << " \"moduleTriple\": \""; out.write_escaped(getTargetSpecificModuleTriple(triple).getTriple()); out << "\",\n"; if (auto runtimeVersion = getSwiftRuntimeCompatibilityVersionForTarget( triple)) { out << " \"swiftRuntimeCompatibilityVersion\": \""; out.write_escaped(runtimeVersion->getAsString()); out << "\",\n"; } out << " \"librariesRequireRPath\": " << (tripleRequiresRPathForSwiftInOS(triple) ? "true" : "false") << "\n"; out << " }"; } /// Print information about the selected target in JSON. static void printTargetInfo(const CompilerInvocation &invocation, llvm::raw_ostream &out) { out << "{\n"; // Target triple and target variant triple. auto &langOpts = invocation.getLangOptions(); out << " \"target\": "; printTripleInfo(langOpts.Target, out); out << ",\n"; if (auto &variant = langOpts.TargetVariant) { out << " \"targetVariant\": "; printTripleInfo(*variant, out); out << ",\n"; } // Various paths. auto &searchOpts = invocation.getSearchPathOptions(); out << " \"paths\": {\n"; if (!searchOpts.SDKPath.empty()) { out << " \"sdkPath\": \""; out.write_escaped(searchOpts.SDKPath); out << "\",\n"; } auto outputPaths = [&](StringRef name, const std::vector &paths){ out << " \"" << name << "\": [\n"; llvm::interleave(paths, [&out](const std::string &path) { out << " \""; out.write_escaped(path); out << "\""; }, [&out] { out << ",\n"; }); out << "\n ],\n"; }; outputPaths("runtimeLibraryPaths", searchOpts.RuntimeLibraryPaths); outputPaths("runtimeLibraryImportPaths", searchOpts.RuntimeLibraryImportPaths); out << " \"runtimeResourcePath\": \""; out.write_escaped(searchOpts.RuntimeResourcePath); out << "\"\n"; out << " }\n"; out << "}\n"; } int swift::performFrontend(ArrayRef Args, const char *Argv0, void *MainAddr, FrontendObserver *observer) { INITIALIZE_LLVM(); llvm::EnablePrettyStackTraceOnSigInfoForThisThread(); PrintingDiagnosticConsumer PDC; // Hopefully we won't trigger any LLVM-level fatal errors, but if we do try // to route them through our usual textual diagnostics before crashing. // // Unfortunately it's not really safe to do anything else, since very // low-level operations in LLVM can trigger fatal errors. auto diagnoseFatalError = [&PDC](const std::string &reason, bool shouldCrash){ static const std::string *recursiveFatalError = nullptr; if (recursiveFatalError) { // Report the /original/ error through LLVM's default handler, not // whatever we encountered. llvm::remove_fatal_error_handler(); llvm::report_fatal_error(*recursiveFatalError, shouldCrash); } recursiveFatalError = &reason; SourceManager dummyMgr; DiagnosticInfo errorInfo( DiagID(0), SourceLoc(), DiagnosticKind::Error, "fatal error encountered during compilation; please file a bug report " "with your project and the crash log", {}, SourceLoc(), {}, {}, {}, false); DiagnosticInfo noteInfo(DiagID(0), SourceLoc(), DiagnosticKind::Note, reason, {}, SourceLoc(), {}, {}, {}, false); PDC.handleDiagnostic(dummyMgr, errorInfo); PDC.handleDiagnostic(dummyMgr, noteInfo); if (shouldCrash) abort(); }; llvm::ScopedFatalErrorHandler handler([](void *rawCallback, const std::string &reason, bool shouldCrash) { auto *callback = static_cast(rawCallback); (*callback)(reason, shouldCrash); }, &diagnoseFatalError); std::unique_ptr Instance = std::make_unique(); Instance->addDiagnosticConsumer(&PDC); struct FinishDiagProcessingCheckRAII { bool CalledFinishDiagProcessing = false; ~FinishDiagProcessingCheckRAII() { assert(CalledFinishDiagProcessing && "returned from the function " "without calling finishDiagProcessing"); } } FinishDiagProcessingCheckRAII; auto finishDiagProcessing = [&](int retValue, bool verifierEnabled) -> int { FinishDiagProcessingCheckRAII.CalledFinishDiagProcessing = true; PDC.setSuppressOutput(false); bool diagnosticsError = Instance->getDiags().finishProcessing(); // If the verifier is enabled and did not encounter any verification errors, // return 0 even if the compile failed. This behavior isn't ideal, but large // parts of the test suite are reliant on it. if (verifierEnabled && !diagnosticsError) { return 0; } return retValue ? retValue : diagnosticsError; }; if (Args.empty()) { Instance->getDiags().diagnose(SourceLoc(), diag::error_no_frontend_args); return finishDiagProcessing(1, /*verifierEnabled*/ false); } CompilerInvocation Invocation; std::string MainExecutablePath = llvm::sys::fs::getMainExecutable(Argv0, MainAddr); Invocation.setMainExecutablePath(MainExecutablePath); SmallString<128> workingDirectory; llvm::sys::fs::current_path(workingDirectory); // Parse arguments. SmallVector, 4> configurationFileBuffers; if (Invocation.parseArgs(Args, Instance->getDiags(), &configurationFileBuffers, workingDirectory)) { return finishDiagProcessing(1, /*verifierEnabled*/ false); } // Make an array of PrettyStackTrace objects to dump the configuration files // we used to parse the arguments. These are RAII objects, so they and the // buffers they refer to must be kept alive in order to be useful. (That is, // we want them to be alive for the entire rest of performFrontend.) // // This can't be a SmallVector or similar because PrettyStackTraces can't be // moved (or copied)...and it can't be an array of non-optionals because // PrettyStackTraces can't be default-constructed. So we end up with a // dynamically-sized array of optional PrettyStackTraces, which get // initialized by iterating over the buffers we collected above. auto configurationFileStackTraces = std::make_unique[]>( configurationFileBuffers.size()); for_each(configurationFileBuffers.begin(), configurationFileBuffers.end(), &configurationFileStackTraces[0], [](const std::unique_ptr &buffer, Optional &trace) { trace.emplace(*buffer); }); // Setting DWARF Version depend on platform IRGenOptions &IRGenOpts = Invocation.getIRGenOptions(); IRGenOpts.DWARFVersion = swift::DWARFVersion; // The compiler invocation is now fully configured; notify our observer. if (observer) { observer->parsedArgs(Invocation); } if (Invocation.getFrontendOptions().PrintHelp || Invocation.getFrontendOptions().PrintHelpHidden) { unsigned IncludedFlagsBitmask = options::FrontendOption; unsigned ExcludedFlagsBitmask = Invocation.getFrontendOptions().PrintHelpHidden ? 0 : llvm::opt::HelpHidden; std::unique_ptr Options(createSwiftOptTable()); Options->PrintHelp(llvm::outs(), displayName(MainExecutablePath).c_str(), "Swift frontend", IncludedFlagsBitmask, ExcludedFlagsBitmask, /*ShowAllAliases*/false); return finishDiagProcessing(0, /*verifierEnabled*/ false); } if (Invocation.getFrontendOptions().PrintTargetInfo) { printTargetInfo(Invocation, llvm::outs()); return finishDiagProcessing(0, /*verifierEnabled*/ false); } if (Invocation.getFrontendOptions().RequestedAction == FrontendOptions::ActionType::NoneAction) { Instance->getDiags().diagnose(SourceLoc(), diag::error_missing_frontend_action); return finishDiagProcessing(1, /*verifierEnabled*/ false); } // Because the serialized diagnostics consumer is initialized here, // diagnostics emitted above, within CompilerInvocation::parseArgs, are never // serialized. This is a non-issue because, in nearly all cases, frontend // arguments are generated by the driver, not directly by a user. The driver // is responsible for emitting diagnostics for its own errors. See SR-2683 // for details. std::unique_ptr SerializedConsumerDispatcher = createSerializedDiagnosticConsumerIfNeeded( Invocation.getFrontendOptions().InputsAndOutputs); if (SerializedConsumerDispatcher) Instance->addDiagnosticConsumer(SerializedConsumerDispatcher.get()); std::unique_ptr FixItsConsumer = createJSONFixItDiagnosticConsumerIfNeeded(Invocation); if (FixItsConsumer) Instance->addDiagnosticConsumer(FixItsConsumer.get()); if (Invocation.getDiagnosticOptions().UseColor) PDC.forceColors(); PDC.setPrintEducationalNotes( Invocation.getDiagnosticOptions().PrintEducationalNotes); PDC.setFormattingStyle( Invocation.getDiagnosticOptions().PrintedFormattingStyle); if (Invocation.getFrontendOptions().DebugTimeCompilation) SharedTimer::enableCompilationTimers(); if (Invocation.getFrontendOptions().PrintStats) { llvm::EnableStatistics(); } const DiagnosticOptions &diagOpts = Invocation.getDiagnosticOptions(); bool verifierEnabled = diagOpts.VerifyMode != DiagnosticOptions::NoVerify; if (Invocation.getFrontendOptions() .InputsAndOutputs.hasDependencyTrackerPath() || !Invocation.getFrontendOptions().IndexStorePath.empty() || Invocation.getFrontendOptions().TrackSystemDeps) { // Note that we're tracking dependencies even when we don't need to write // them directly; in particular, -track-system-dependencies affects how // module interfaces get loaded, and so we need to be consistently tracking // system dependencies throughout the compiler. Instance->createDependencyTracker( Invocation.getFrontendOptions().TrackSystemDeps); } if (Instance->setup(Invocation)) { return finishDiagProcessing(1, /*verifierEnabled*/ false); } // The compiler instance has been configured; notify our observer. if (observer) { observer->configuredCompiler(*Instance); } if (verifierEnabled) { // Suppress printed diagnostic output during the compile if the verifier is // enabled. PDC.setSuppressOutput(true); } int ReturnValue = 0; bool HadError = performCompile(*Instance, Args, ReturnValue, observer); if (!HadError) { Mangle::printManglingStats(); } if (!HadError && !Invocation.getFrontendOptions().DumpAPIPath.empty()) { HadError = dumpAPI(Instance->getMainModule(), Invocation.getFrontendOptions().DumpAPIPath); } // Verify reference dependencies of the current compilation job *before* // verifying diagnostics so that the former can be tested via the latter. if (Invocation.getFrontendOptions().EnableIncrementalDependencyVerifier) { if (!Instance->getPrimarySourceFiles().empty()) { HadError |= swift::verifyDependencies(Instance->getSourceMgr(), Instance->getPrimarySourceFiles()); } else { HadError |= swift::verifyDependencies( Instance->getSourceMgr(), Instance->getMainModule()->getFiles()); } } if (verifierEnabled) { DiagnosticEngine &diags = Instance->getDiags(); if (diags.hasFatalErrorOccurred() && !Invocation.getDiagnosticOptions().ShowDiagnosticsAfterFatalError) { diags.resetHadAnyError(); PDC.setSuppressOutput(false); diags.diagnose(SourceLoc(), diag::verify_encountered_fatal); HadError = true; } } auto r = finishDiagProcessing(HadError ? 1 : ReturnValue, verifierEnabled); if (auto *StatsReporter = Instance->getStatsReporter()) StatsReporter->noteCurrentProcessExitStatus(r); return r; } void FrontendObserver::parsedArgs(CompilerInvocation &invocation) {} void FrontendObserver::configuredCompiler(CompilerInstance &instance) {} void FrontendObserver::performedSemanticAnalysis(CompilerInstance &instance) {} void FrontendObserver::performedSILGeneration(SILModule &module) {} void FrontendObserver::performedSILProcessing(SILModule &module) {}