//===--- AbstractionPattern.cpp - Abstraction patterns --------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file defines routines relating to abstraction patterns. // working in concert with the Clang importer. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "libsil" #include "swift/SIL/TypeLowering.h" #include "swift/AST/ASTContext.h" #include "swift/AST/Decl.h" #include "swift/AST/GenericSignature.h" #include "swift/AST/ForeignErrorConvention.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/PrettyPrinter.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" using namespace swift; using namespace swift::Lowering; AbstractionPattern TypeConverter::getAbstractionPattern(AbstractStorageDecl *decl, bool isNonObjC) { if (auto var = dyn_cast(decl)) { return getAbstractionPattern(var, isNonObjC); } else { return getAbstractionPattern(cast(decl), isNonObjC); } } AbstractionPattern TypeConverter::getAbstractionPattern(SubscriptDecl *decl, bool isNonObjC) { CanGenericSignature genericSig; if (auto sig = decl->getGenericSignatureOfContext()) genericSig = sig->getCanonicalSignature(); return AbstractionPattern(genericSig, decl->getElementInterfaceType() ->getCanonicalType()); } static const clang::Type *getClangType(const clang::Decl *decl) { if (auto valueDecl = dyn_cast(decl)) { return valueDecl->getType().getTypePtr(); } // This should *really* be a ValueDecl. return cast(decl)->getType().getTypePtr(); } AbstractionPattern TypeConverter::getAbstractionPattern(VarDecl *var, bool isNonObjC) { CanGenericSignature genericSig; if (auto sig = var->getDeclContext()->getGenericSignatureOfContext()) genericSig = sig->getCanonicalSignature(); CanType swiftType = var->getInterfaceType() ->getCanonicalType(); if (isNonObjC) return AbstractionPattern(genericSig, swiftType); if (auto clangDecl = var->getClangDecl()) { auto clangType = getClangType(clangDecl); auto contextType = var->getDeclContext()->mapTypeIntoContext(swiftType); swiftType = getLoweredBridgedType( AbstractionPattern(genericSig, swiftType, clangType), contextType, SILFunctionTypeRepresentation::CFunctionPointer, TypeConverter::ForMemory)->getCanonicalType(); return AbstractionPattern(genericSig, swiftType, clangType); } return AbstractionPattern(genericSig, swiftType); } AbstractionPattern TypeConverter::getAbstractionPattern(EnumElementDecl *decl) { assert(decl->hasAssociatedValues()); assert(!decl->hasClangNode()); // This cannot be implemented correctly for Optional.Some. assert(!decl->getParentEnum()->isOptionalDecl() && "Optional.Some does not have a unique abstraction pattern because " "optionals are re-abstracted"); CanGenericSignature genericSig; if (auto sig = decl->getParentEnum()->getGenericSignatureOfContext()) genericSig = sig->getCanonicalSignature(); return AbstractionPattern(genericSig, decl->getArgumentInterfaceType() ->getCanonicalType()); } AbstractionPattern::EncodedForeignErrorInfo AbstractionPattern::EncodedForeignErrorInfo::encode( const Optional &foreignError) { EncodedForeignErrorInfo errorInfo; if (foreignError.hasValue()) { errorInfo = EncodedForeignErrorInfo(foreignError->getErrorParameterIndex(), foreignError->isErrorParameterReplacedWithVoid(), foreignError->stripsResultOptionality()); } return errorInfo; } AbstractionPattern AbstractionPattern::getObjCMethod(CanType origType, const clang::ObjCMethodDecl *method, const Optional &foreignError) { auto errorInfo = EncodedForeignErrorInfo::encode(foreignError); return getObjCMethod(origType, method, errorInfo); } AbstractionPattern AbstractionPattern::getCurriedObjCMethod(CanType origType, const clang::ObjCMethodDecl *method, const Optional &foreignError) { auto errorInfo = EncodedForeignErrorInfo::encode(foreignError); return getCurriedObjCMethod(origType, method, errorInfo); } AbstractionPattern AbstractionPattern::getCurriedCFunctionAsMethod(CanType origType, const AbstractFunctionDecl *function) { auto clangFn = cast(function->getClangDecl()); return getCurriedCFunctionAsMethod(origType, clangFn->getType().getTypePtr(), function->getImportAsMemberStatus()); } AbstractionPattern AbstractionPattern::getOptional(AbstractionPattern object) { switch (object.getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::Tuple: case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::CFunctionAsMethodType: case Kind::CFunctionAsMethodParamTupleType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::ObjCMethodParamTupleType: case Kind::ObjCMethodFormalParamTupleType: case Kind::CFunctionAsMethodFormalParamTupleType: case Kind::ClangFunctionParamTupleType: llvm_unreachable("cannot add optionality to non-type abstraction"); case Kind::Opaque: return AbstractionPattern::getOpaque(); case Kind::ClangType: return AbstractionPattern(object.getGenericSignature(), OptionalType::get(object.getType()) ->getCanonicalType(), object.getClangType()); case Kind::Type: return AbstractionPattern(object.getGenericSignature(), OptionalType::get(object.getType()) ->getCanonicalType()); case Kind::Discard: return AbstractionPattern::getDiscard(object.getGenericSignature(), OptionalType::get(object.getType()) ->getCanonicalType()); } llvm_unreachable("bad kind"); } bool AbstractionPattern::isConcreteType() const { assert(isTypeParameter()); return (getKind() != Kind::Opaque && GenericSig != nullptr && GenericSig->isConcreteType(getType())); } bool AbstractionPattern::requiresClass() { switch (getKind()) { case Kind::Opaque: return false; case Kind::Type: case Kind::Discard: { auto type = getType(); if (auto archetype = dyn_cast(type)) return archetype->requiresClass(); else if (isa(type) || isa(type)) { assert(GenericSig && "Dependent type in pattern without generic signature?"); return GenericSig->requiresClass(type); } return false; } default: return false; } } bool AbstractionPattern::matchesTuple(CanTupleType substType) { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: return false; case Kind::Opaque: return true; case Kind::Tuple: return getNumTupleElements_Stored() == substType->getNumElements(); case Kind::ObjCMethodParamTupleType: case Kind::ObjCMethodFormalParamTupleType: case Kind::CFunctionAsMethodParamTupleType: case Kind::CFunctionAsMethodFormalParamTupleType: case Kind::ClangFunctionParamTupleType: case Kind::ClangType: case Kind::Type: case Kind::Discard: if (isTypeParameter()) return true; auto tuple = dyn_cast(getType()); return (tuple && tuple->getNumElements() == substType->getNumElements()); } llvm_unreachable("bad kind"); } static const clang::FunctionType * getClangFunctionType(const clang::Type *clangType) { if (auto ptrTy = clangType->getAs()) { clangType = ptrTy->getPointeeType().getTypePtr(); } else if (auto blockTy = clangType->getAs()) { clangType = blockTy->getPointeeType().getTypePtr(); } return clangType->castAs(); } static const clang::Type *getClangFunctionParameterType(const clang::Type *ty, unsigned index) { // TODO: adjust for error type parameter. // If we're asking about parameters, we'd better have a FunctionProtoType. auto fnType = getClangFunctionType(ty)->castAs(); assert(index < fnType->getNumParams()); return fnType->getParamType(index).getTypePtr(); } static const clang::Type *getClangArrayElementType(const clang::Type *ty, unsigned index) { return ty->castAsArrayTypeUnsafe()->getElementType().getTypePtr(); } static bool isVoidLike(CanType type) { return (type->isVoid() || (isa(type) && cast(type)->getNumElements() == 1 && cast(type).getElementType(0)->isVoid())); } static CanType getCanTupleElementType(CanType type, unsigned index) { if (auto tupleTy = dyn_cast(type)) return tupleTy.getElementType(index); assert(index == 0); return type; } AbstractionPattern AbstractionPattern::getTupleElementType(unsigned index) const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: llvm_unreachable("function types are not tuples"); case Kind::Opaque: return *this; case Kind::Tuple: assert(index < getNumTupleElements_Stored()); return OrigTupleElements[index]; case Kind::ClangType: return AbstractionPattern(getGenericSignature(), getCanTupleElementType(getType(), index), getClangArrayElementType(getClangType(), index)); case Kind::Discard: llvm_unreachable("operation not needed on discarded abstractions yet"); case Kind::Type: if (isTypeParameter()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSignature(), getCanTupleElementType(getType(), index)); case Kind::ClangFunctionParamTupleType: { // Handle the (label: ()) param used by functions imported as labeled // nullary initializers. if (isVoidLike(getType())) return AbstractionPattern(getType()->getASTContext().TheEmptyTupleType); return AbstractionPattern(getGenericSignature(), getCanTupleElementType(getType(), index), getClangFunctionParameterType(getClangType(), index)); } case Kind::ObjCMethodFormalParamTupleType: { auto swiftEltType = getCanTupleElementType(getType(), index); auto method = getObjCMethod(); auto errorInfo = getEncodedForeignErrorInfo(); // If we're asking for something after the error parameter, slide // the parameter index up by one. auto paramIndex = index; if (errorInfo.hasErrorParameter()) { auto errorParamIndex = errorInfo.getErrorParameterIndex(); if (errorInfo.isErrorParameterReplacedWithVoid()) { if (paramIndex == errorParamIndex) { assert(isVoidLike(swiftEltType)); (void)&isVoidLike; return AbstractionPattern(swiftEltType); } } else { if (paramIndex >= errorParamIndex) { paramIndex++; } } } return AbstractionPattern(getGenericSignature(), swiftEltType, method->parameters()[paramIndex]->getType().getTypePtr()); } case Kind::CFunctionAsMethodFormalParamTupleType: { // Jump over the self parameter in the Clang type. unsigned clangIndex = index; auto memberStatus = getImportAsMemberStatus(); if (memberStatus.isInstance() && clangIndex >= memberStatus.getSelfIndex()) ++clangIndex; return AbstractionPattern(getGenericSignature(), getCanTupleElementType(getType(), index), getClangFunctionParameterType(getClangType(), clangIndex)); } case Kind::CFunctionAsMethodParamTupleType: { auto tupleType = cast(getType()); assert(tupleType->getNumElements() == 2); assert(index < 2); auto swiftEltType = tupleType.getElementType(index); if (index != 0) { return getCFunctionAsMethodSelfPattern(swiftEltType); } return getCFunctionAsMethodFormalParamPattern(swiftEltType); } case Kind::ObjCMethodParamTupleType: { auto tupleType = cast(getType()); assert(tupleType->getNumElements() == 2); assert(index < 2); auto swiftEltType = tupleType.getElementType(index); if (index != 0) { return getObjCMethodSelfPattern(swiftEltType); } // Otherwise, we're talking about the formal parameter clause. return getObjCMethodFormalParamPattern(swiftEltType); } } llvm_unreachable("bad kind"); } /// Return a pattern corresponding to the 'self' parameter of the given /// Objective-C method. AbstractionPattern AbstractionPattern::getObjCMethodSelfPattern(CanType selfType) const { // Just use id for the receiver type. If this is ever // insufficient --- if we have interesting bridging to do to // 'self' --- we have the right information to be more exact. auto clangSelfType = getObjCMethod()->getASTContext().getObjCIdType().getTypePtr(); return AbstractionPattern(getGenericSignatureForFunctionComponent(), selfType, clangSelfType); } /// Return a pattern corresponding to the 'self' parameter of the given /// C function imported as a method. AbstractionPattern AbstractionPattern::getCFunctionAsMethodSelfPattern(CanType selfType) const { auto memberStatus = getImportAsMemberStatus(); if (memberStatus.isInstance()) { // Use the clang type for the receiver type. If this is ever // insufficient --- if we have interesting bridging to do to // 'self' --- we have the right information to be more exact. auto clangSelfType = getClangFunctionParameterType(getClangType(),memberStatus.getSelfIndex()); return AbstractionPattern(getGenericSignatureForFunctionComponent(), selfType, clangSelfType); } // The formal metatype parameter to a C function imported as a static method // is dropped on the floor. Leave it untransformed. return AbstractionPattern::getDiscard( getGenericSignatureForFunctionComponent(), selfType); } /// Return a pattern corresponding to the formal method parameters of /// the current C function imported as a method. AbstractionPattern AbstractionPattern:: getCFunctionAsMethodFormalParamPattern(CanType paramType) const { auto sig = getGenericSignatureForFunctionComponent(); auto clangType = getClangType(); // Nullary methods still take a formal () parameter clause. // There's no corresponding Clang type for that. if (isVoidLike(paramType)) return AbstractionPattern(paramType); // If we imported as a tuple type, construct the special // method-formal-parameters abstraction pattern. if (isa(paramType)) { return getCFunctionAsMethodFormalParamTuple(sig, paramType, clangType, getImportAsMemberStatus()); } // Otherwise, we imported a single parameter. // Get the non-self parameter from the Clang type. unsigned paramIndex = 0; auto selfIndex = getImportAsMemberStatus(); if (selfIndex.isInstance() && selfIndex.getSelfIndex() == 0) paramIndex = 1; return AbstractionPattern(sig, paramType, getClangFunctionParameterType(clangType, paramIndex)); } /// Return a pattern corresponding to the formal parameters of the /// current Objective-C method. AbstractionPattern AbstractionPattern::getObjCMethodFormalParamPattern(CanType inputType) const { auto signature = getGenericSignatureForFunctionComponent(); auto method = getObjCMethod(); auto errorInfo = getEncodedForeignErrorInfo(); // Nullary methods still take a formal () parameter clause. // There's no corresponding Clang type for that. if (method->parameters().empty() || (method->parameters().size() == 1 && errorInfo.hasErrorParameter())) { // Imported initializers also sometimes get "withFooBar: ()" clauses. assert(isVoidLike(inputType)); return AbstractionPattern(inputType); } // If we imported as a tuple type, construct the special // method-formal-parameters abstraction pattern. if (isa(inputType)) { // This assertion gets messed up by variadic methods that we've // imported as non-variadic. assert(method->isVariadic() || method->parameters().size() == cast(inputType)->getNumElements() + unsigned(errorInfo.hasUnreplacedErrorParameter())); return getObjCMethodFormalParamTuple(signature, inputType, method, errorInfo); } // Otherwise, we must have imported a single parameter. // But we might also have a foreign error. // If we don't, we must have a single source parameter. if (!errorInfo.hasErrorParameter()) { assert(method->parameters().size() == 1); return AbstractionPattern(signature, inputType, method->parameters()[0]->getType().getTypePtr()); } // Otherwise, we must have two; pick the one that isn't the foreign error. assert(method->parameters().size() == 2); unsigned errorIndex = errorInfo.getErrorParameterIndex(); assert(errorIndex < 2); unsigned paramIndex = (errorIndex == 0 ? 1 : 0); return AbstractionPattern(signature, inputType, method->parameters()[paramIndex]->getType().getTypePtr()); } static CanType getResultType(CanType type) { return cast(type).getResult(); } AbstractionPattern AbstractionPattern::getFunctionResultType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::ClangFunctionParamTupleType: case Kind::ObjCMethodParamTupleType: case Kind::ObjCMethodFormalParamTupleType: case Kind::CFunctionAsMethodParamTupleType: case Kind::CFunctionAsMethodFormalParamTupleType: case Kind::Tuple: llvm_unreachable("abstraction pattern for tuple cannot be function"); case Kind::Opaque: return *this; case Kind::Type: if (isTypeParameter()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSignatureForFunctionComponent(), getResultType(getType())); case Kind::Discard: llvm_unreachable("don't need to discard function abstractions yet"); case Kind::ClangType: case Kind::CFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: { auto clangFunctionType = getClangFunctionType(getClangType()); return AbstractionPattern(getGenericSignatureForFunctionComponent(), getResultType(getType()), clangFunctionType->getReturnType().getTypePtr()); } case Kind::CurriedObjCMethodType: return getPartialCurriedObjCMethod( getGenericSignatureForFunctionComponent(), getResultType(getType()), getObjCMethod(), getEncodedForeignErrorInfo()); case Kind::CurriedCFunctionAsMethodType: return getPartialCurriedCFunctionAsMethod( getGenericSignatureForFunctionComponent(), getResultType(getType()), getClangType(), getImportAsMemberStatus()); case Kind::PartialCurriedObjCMethodType: case Kind::ObjCMethodType: return AbstractionPattern(getGenericSignatureForFunctionComponent(), getResultType(getType()), getObjCMethod()->getReturnType().getTypePtr()); } llvm_unreachable("bad kind"); } AbstractionPattern AbstractionPattern::getFunctionInputType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::ClangFunctionParamTupleType: case Kind::ObjCMethodParamTupleType: case Kind::ObjCMethodFormalParamTupleType: case Kind::CFunctionAsMethodParamTupleType: case Kind::CFunctionAsMethodFormalParamTupleType: case Kind::Tuple: llvm_unreachable("abstraction pattern for tuple cannot be function"); case Kind::Opaque: return *this; case Kind::Type: if (isTypeParameter()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSignatureForFunctionComponent(), cast(getType()).getInput()); case Kind::Discard: llvm_unreachable("don't need to discard function abstractions yet"); case Kind::ClangType: { // Preserve the Clang type in the resulting abstraction pattern. auto inputType = cast(getType()).getInput(); if (isa(inputType)) { return getClangFunctionParamTuple( getGenericSignatureForFunctionComponent(), inputType, getClangType()); } else { return AbstractionPattern(getGenericSignatureForFunctionComponent(), inputType, getClangFunctionParameterType(getClangType(), 0)); } } case Kind::CurriedCFunctionAsMethodType: return getCFunctionAsMethodSelfPattern( cast(getType()).getInput()); case Kind::PartialCurriedCFunctionAsMethodType: return getCFunctionAsMethodFormalParamPattern( cast(getType()).getInput()); case Kind::CurriedObjCMethodType: return getObjCMethodSelfPattern( cast(getType()).getInput()); case Kind::PartialCurriedObjCMethodType: return getObjCMethodFormalParamPattern( cast(getType()).getInput()); case Kind::CFunctionAsMethodType: { // Preserve the Clang type in the resulting abstraction pattern. auto inputType = cast(getType()).getInput(); assert(isa(inputType)); // always at least ((), SelfType) return getCFunctionAsMethodParamTuple( getGenericSignatureForFunctionComponent(), inputType, getClangType(), getImportAsMemberStatus()); } case Kind::ObjCMethodType: { // Preserve the Clang type in the resulting abstraction pattern. auto inputType = cast(getType()).getInput(); assert(isa(inputType)); // always at least ((), SelfType) return getObjCMethodParamTuple(getGenericSignatureForFunctionComponent(), inputType, getObjCMethod(), getEncodedForeignErrorInfo()); } } llvm_unreachable("bad kind"); } AbstractionPattern AbstractionPattern::getFunctionParamType(unsigned index) const { switch (getKind()) { case Kind::Opaque: return *this; case Kind::Type: { if (isTypeParameter()) return AbstractionPattern::getOpaque(); auto params = cast(getType()).getParams(); return AbstractionPattern(getGenericSignatureForFunctionComponent(), params[index].getParameterType()); } case Kind::CurriedCFunctionAsMethodType: { auto params = cast(getType()).getParams(); assert(params.size() == 1); return getCFunctionAsMethodSelfPattern(params[0].getParameterType()); } case Kind::CFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: { auto params = cast(getType()).getParams(); // Only the full method type has a 'self' parameter. if (getKind() == Kind::CFunctionAsMethodType) { assert(params.size() > 0); // The last parameter is 'self'. if (index == params.size() - 1) { return getCFunctionAsMethodSelfPattern(params.back().getParameterType()); } } // A parameter of type () does not correspond to a Clang parameter. auto paramType = params[index].getParameterType(); if (paramType->isVoid()) return AbstractionPattern(paramType); // Otherwise, we're talking about the formal parameter clause. // Jump over the self parameter in the Clang type. unsigned clangIndex = index; auto memberStatus = getImportAsMemberStatus(); if (memberStatus.isInstance() && clangIndex >= memberStatus.getSelfIndex()) ++clangIndex; return AbstractionPattern(getGenericSignatureForFunctionComponent(), paramType, getClangFunctionParameterType(getClangType(), clangIndex)); } case Kind::CurriedObjCMethodType: { auto params = cast(getType()).getParams(); assert(params.size() == 1); return getObjCMethodSelfPattern(params[0].getParameterType()); } case Kind::ObjCMethodType: case Kind::PartialCurriedObjCMethodType: { auto params = cast(getType()).getParams(); // Only the full method type has a 'self' parameter. if (getKind() == Kind::ObjCMethodType) { assert(params.size() > 0); // The last parameter is 'self'. if (index == params.size() - 1) { return getObjCMethodSelfPattern(params.back().getParameterType()); } } // A parameter of type () does not correspond to a Clang parameter. auto paramType = params[index].getParameterType(); if (paramType->isVoid()) return AbstractionPattern(paramType); // Otherwise, we're talking about the formal parameter clause. auto method = getObjCMethod(); auto errorInfo = getEncodedForeignErrorInfo(); unsigned paramIndex = index; if (errorInfo.hasErrorParameter()) { auto errorParamIndex = errorInfo.getErrorParameterIndex(); if (!errorInfo.isErrorParameterReplacedWithVoid()) { if (paramIndex >= errorParamIndex) { paramIndex++; } } } return AbstractionPattern(getGenericSignatureForFunctionComponent(), paramType, method->parameters()[paramIndex]->getType().getTypePtr()); } case Kind::ClangType: { auto params = cast(getType()).getParams(); return AbstractionPattern(getGenericSignatureForFunctionComponent(), params[index].getParameterType(), getClangFunctionParameterType(getClangType(), index)); } default: llvm_unreachable("does not have function parameters"); } } unsigned AbstractionPattern::getNumFunctionParams() const { return cast(getType()).getParams().size(); } static CanType getOptionalObjectType(CanType type) { auto objectType = type.getOptionalObjectType(); assert(objectType && "type was not optional"); return objectType; } AbstractionPattern AbstractionPattern::getOptionalObjectType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::ClangFunctionParamTupleType: case Kind::ObjCMethodParamTupleType: case Kind::ObjCMethodFormalParamTupleType: case Kind::ObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: case Kind::CFunctionAsMethodType: case Kind::CFunctionAsMethodParamTupleType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::Tuple: case Kind::CFunctionAsMethodFormalParamTupleType: llvm_unreachable("pattern for function or tuple cannot be for optional"); case Kind::Opaque: return *this; case Kind::Type: if (isTypeParameter()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSignature(), ::getOptionalObjectType(getType())); case Kind::Discard: return AbstractionPattern::getDiscard(getGenericSignature(), ::getOptionalObjectType(getType())); case Kind::ClangType: // This is not reflected in clang types. return AbstractionPattern(getGenericSignature(), ::getOptionalObjectType(getType()), getClangType()); } llvm_unreachable("bad kind"); } AbstractionPattern AbstractionPattern::getReferenceStorageReferentType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::Opaque: case Kind::ClangFunctionParamTupleType: case Kind::ObjCMethodParamTupleType: case Kind::ObjCMethodFormalParamTupleType: case Kind::ObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::CFunctionAsMethodParamTupleType: case Kind::Tuple: case Kind::CFunctionAsMethodFormalParamTupleType: return *this; case Kind::Type: return AbstractionPattern(getGenericSignature(), getType().getReferenceStorageReferent()); case Kind::Discard: return AbstractionPattern::getDiscard(getGenericSignature(), getType().getReferenceStorageReferent()); case Kind::ClangType: // This is not reflected in clang types. return AbstractionPattern(getGenericSignature(), getType().getReferenceStorageReferent(), getClangType()); } llvm_unreachable("bad kind"); } void AbstractionPattern::dump() const { print(llvm::errs()); llvm::errs() << "\n"; } void AbstractionPattern::print(raw_ostream &out) const { switch (getKind()) { case Kind::Invalid: out << "AP::Invalid"; return; case Kind::Opaque: out << "AP::Opaque"; return; case Kind::Type: case Kind::Discard: out << (getKind() == Kind::Type ? "AP::Type" : getKind() == Kind::Discard ? "AP::Discard" : "<>"); if (auto sig = getGenericSignature()) { sig->print(out); } out << '('; getType().dump(out); out << ')'; return; case Kind::Tuple: out << "AP::Tuple("; for (unsigned i = 0, e = getNumTupleElements(); i != e; ++i) { if (i != 0) out << ", "; getTupleElementType(i).print(out); } out << ")"; return; case Kind::ClangType: case Kind::ClangFunctionParamTupleType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::CFunctionAsMethodParamTupleType: case Kind::CFunctionAsMethodFormalParamTupleType: out << (getKind() == Kind::ClangType ? "AP::ClangType(" : getKind() == Kind::ClangFunctionParamTupleType ? "AP::ClangFunctionParamTupleType(" : getKind() == Kind::CurriedCFunctionAsMethodType ? "AP::CurriedCFunctionAsMethodType(" : getKind() == Kind::CFunctionAsMethodType ? "AP::CFunctionAsMethodType(" : getKind() == Kind::CFunctionAsMethodParamTupleType ? "AP::CFunctionAsMethodParamTupleType(" : getKind() == Kind::PartialCurriedCFunctionAsMethodType ? "AP::PartialCurriedCFunctionAsMethodType(" : getKind() == Kind::CFunctionAsMethodFormalParamTupleType ? "AP::CFunctionAsMethodFormalParamTupleType(" : "<>("); getType().dump(out); out << ", "; // It would be better to use print, but we need a PrintingPolicy // for that, for which we need a clang LangOptions, and... ugh. clang::QualType(getClangType(), 0).dump(); if (hasImportAsMemberStatus()) { out << ", member="; auto status = getImportAsMemberStatus(); if (status.isInstance()) { out << "instance, self=" << status.getSelfIndex(); } else if (status.isStatic()) { out << "static"; } } out << ")"; return; case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: case Kind::ObjCMethodFormalParamTupleType: case Kind::ObjCMethodParamTupleType: case Kind::ObjCMethodType: out << (getKind() == Kind::ObjCMethodType ? "AP::ObjCMethodType(" : getKind() == Kind::CurriedObjCMethodType ? "AP::CurriedObjCMethodType(" : getKind() == Kind::PartialCurriedObjCMethodType ? "AP::PartialCurriedObjCMethodType(" : getKind() == Kind::ObjCMethodParamTupleType ? "AP::ObjCMethodParamTupleType(" : "AP::ObjCMethodFormalParamTupleType("); getType().dump(out); auto errorInfo = getEncodedForeignErrorInfo(); if (errorInfo.hasValue()) { if (errorInfo.hasErrorParameter()) out << ", errorParameter=" << errorInfo.getErrorParameterIndex(); if (errorInfo.isErrorParameterReplacedWithVoid()) out << ", replacedWithVoid"; if (errorInfo.stripsResultOptionality()) out << ", stripsResultOptionality"; } out << ", "; getObjCMethod()->dump(out); out << ")"; return; } llvm_unreachable("bad kind"); } bool AbstractionPattern::hasSameBasicTypeStructure(CanType l, CanType r) { if (l == r) return true; // Tuples must match. auto lTuple = dyn_cast(l); auto rTuple = dyn_cast(r); if (lTuple && rTuple) { auto lElts = lTuple.getElementTypes(); auto rElts = rTuple.getElementTypes(); if (lElts.size() != rElts.size()) return false; for (auto i : indices(lElts)) { if (!hasSameBasicTypeStructure(lElts[i], rElts[i])) return false; } return true; } else if (lTuple || rTuple) { return false; } // Functions must match. auto lFunction = dyn_cast(l); auto rFunction = dyn_cast(r); if (lFunction && rFunction) { auto lParam = lFunction.getParams(); auto rParam = rFunction.getParams(); if (lParam.size() != rParam.size()) return false; for (unsigned i : indices(lParam)) { if (!hasSameBasicTypeStructure(lParam[i].getPlainType(), rParam[i].getPlainType())) return false; } return hasSameBasicTypeStructure(lFunction.getResult(), rFunction.getResult()); } else if (lFunction || rFunction) { return false; } // Optionals must match, sortof. auto lObject = l.getOptionalObjectType(); auto rObject = r.getOptionalObjectType(); if (lObject && rObject) { return hasSameBasicTypeStructure(lObject, rObject); } else if (lObject || rObject) { // Allow optionality mis-matches, but require the underlying types to match. return hasSameBasicTypeStructure(lObject ? lObject : l, rObject ? rObject : r); } // Otherwise, the structure is similar enough. return true; }