//===--- ParseDecl.cpp - Swift Language Parser for Declarations -----------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Declaration Parsing and AST Building // //===----------------------------------------------------------------------===// #include "swift/Parse/Parser.h" #include "swift/Parse/CodeCompletionCallbacks.h" #include "swift/Parse/DelayedParsingCallbacks.h" #include "swift/Parse/Lexer.h" #include "swift/Subsystems.h" #include "swift/AST/ASTWalker.h" #include "swift/AST/Attr.h" #include "swift/AST/Diagnostics.h" #include "swift/Basic/Fallthrough.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" using namespace swift; /// \brief Main entrypoint for the parser. /// /// \verbatim /// translation-unit: /// stmt-brace-item* /// decl-sil [[only in SIL mode] /// decl-sil-stage [[only in SIL mode] /// \endverbatim bool Parser::parseTranslationUnit(TranslationUnit *TU) { TU->ASTStage = TranslationUnit::Parsing; // Prime the lexer. if (Tok.is(tok::NUM_TOKENS)) consumeToken(); CurDeclContext = TU; // Parse the body of the file. SmallVector Items; if (Tok.is(tok::r_brace)) { diagnose(Tok, diag::extra_rbrace) .fixItRemove(SourceRange(Tok.getLoc())); consumeToken(); } // If we are in SIL mode, and if the first token is the start of a sil // declaration, parse that one SIL function and return to the top level. This // allows type declarations and other things to be parsed, name bound, and // type checked in batches, similar to immediate mode. This also enforces // that SIL bodies can only be at the top level. if (Tok.is(tok::kw_sil)) { assert(isInSILMode() && "'sil' should only be a keyword in SIL mode"); parseDeclSIL(); } else if (Tok.is(tok::kw_sil_stage)) { assert(isInSILMode() && "'sil' should only be a keyword in SIL mode"); parseDeclSILStage(); } else { parseBraceItems(Items, true, allowTopLevelCode() ? BraceItemListKind::TopLevelCode : BraceItemListKind::Brace); } // If this is a MainModule, determine if we found code that needs to be // executed (this is used by the repl to know whether to compile and run the // newly parsed stuff). bool FoundTopLevelCodeToExecute = false; if (allowTopLevelCode()) { for (auto V : Items) if (isa(V.get())) FoundTopLevelCodeToExecute = true; } // Add newly parsed decls to the translation unit. for (auto Item : Items) TU->Decls.push_back(Item.get()); // Note that the translation unit is fully parsed and verify it. TU->ASTStage = TranslationUnit::Parsed; verify(TU); State->markParserPosition(Tok.getLoc(), PreviousLoc); return FoundTopLevelCodeToExecute; } namespace { #define MAKE_ENUMERATOR(id) id, enum class AttrName { none, #define ATTR(X) X, #include "swift/AST/Attr.def" }; } static AttrName getAttrName(StringRef text) { return llvm::StringSwitch(text) #define ATTR(X) .Case(#X, AttrName::X) #include "swift/AST/Attr.def" .Default(AttrName::none); } static Resilience getResilience(AttrName attr) { switch (attr) { case AttrName::resilient: return Resilience::Resilient; case AttrName::fragile: return Resilience::Fragile; case AttrName::born_fragile: return Resilience::InherentlyFragile; default: llvm_unreachable("bad resilience"); } } /// \verbatim /// attribute: /// 'asmname' '=' identifier (FIXME: This is a temporary hack until we /// can import C modules.) /// 'infix' '=' numeric_constant /// 'infix_left' '=' numeric_constant /// 'infix_right' '=' numeric_constant /// 'unary' /// 'stdlib' /// 'weak' /// 'unowned' /// 'noreturn' /// \endverbatim bool Parser::parseAttribute(DeclAttributes &Attributes) { if (Tok.is(tok::kw_weak)) { if (Attributes.hasOwnership()) { diagnose(Tok, diag::duplicate_attribute, Tok.getText()); } else { Attributes.Weak = true; } consumeToken(tok::kw_weak); return false; } if (Tok.is(tok::kw_unowned)) { if (Attributes.hasOwnership()) { diagnose(Tok, diag::duplicate_attribute, Tok.getText()); } else { Attributes.Unowned = true; } consumeToken(tok::kw_unowned); return false; } if (!Tok.is(tok::identifier)) { diagnose(Tok, diag::expected_attribute_name); skipUntil(tok::r_square); return true; } switch (AttrName attr = getAttrName(Tok.getText())) { case AttrName::none: diagnose(Tok, diag::unknown_attribute, Tok.getText()); skipUntil(tok::r_square); return true; // Infix attributes. case AttrName::infix: { if (Attributes.isInfix()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.ExplicitInfix = true; return false; } // SIL's 'local_storage' type attribute. case AttrName::local_storage: { if (Attributes.isLocalStorage()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); else if (!isInSILMode()) diagnose(Tok, diag::only_allowed_in_sil, Tok.getText()); consumeToken(tok::identifier); Attributes.LocalStorage = true; return false; } // Resilience attributes. case AttrName::resilient: case AttrName::fragile: case AttrName::born_fragile: { if (Attributes.Resilience.isValid()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Resilience resil = getResilience(attr); // TODO: 'fragile' should allow deployment versioning. Attributes.Resilience = ResilienceData(resil); return false; } // 'byref' attribute. // FIXME: only permit this in specific contexts. case AttrName::byref: { SourceLoc TokLoc = Tok.getLoc(); if (Attributes.Byref) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.Byref = true; // Permit "qualifiers" on the byref. SourceLoc beginLoc = Tok.getLoc(); if (consumeIfNotAtStartOfLine(tok::l_paren)) { diagnose(Tok, diag::byref_attribute_unknown_qualifier); SourceLoc endLoc; parseMatchingToken(tok::r_paren, endLoc, diag::byref_attribute_expected_rparen, beginLoc); } // Verify that we're not combining this attribute incorrectly. Cannot be // both byref and auto_closure. if (Attributes.isAutoClosure()) { diagnose(TokLoc, diag::cannot_combine_attribute, "auto_closure"); Attributes.AutoClosure = false; } return false; } // 'cc' attribute. // FIXME: only permit this in type contexts. case AttrName::cc: { if (Attributes.hasCC()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); // Parse the cc name in parens. SourceLoc beginLoc = Tok.getLoc(), nameLoc, endLoc; StringRef name; if (consumeIfNotAtStartOfLine(tok::l_paren)) { if (Tok.is(tok::identifier)) { nameLoc = Tok.getLoc(); name = Tok.getText(); consumeToken(); } else { diagnose(Tok, diag::cc_attribute_expected_name); } if (parseMatchingToken(tok::r_paren, endLoc, diag::cc_attribute_expected_rparen, beginLoc)) { // If the name isn't immediately followed by a closing paren, recover // by trying to find some closing paren. skipUntil(tok::r_paren); consumeIf(tok::r_paren); } } else { diagnose(Tok, diag::cc_attribute_expected_lparen); } if (!name.empty()) { Attributes.cc = llvm::StringSwitch>(name) .Case("freestanding", AbstractCC::Freestanding) .Case("method", AbstractCC::Method) .Case("cdecl", AbstractCC::C) .Case("objc_method", AbstractCC::ObjCMethod) .Default(Nothing); if (!Attributes.cc) { diagnose(nameLoc, diag::cc_attribute_unknown_cc_name, name); Attributes.cc = AbstractCC::Freestanding; } } return false; } case AttrName::class_protocol: { if (Attributes.isClassProtocol()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.ClassProtocol = true; return false; } // 'objc_block' attribute. // FIXME: only permit this in type contexts. case AttrName::objc_block: { if (Attributes.Byref) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.ObjCBlock = true; return false; } // FIXME: Only valid on var and tuple elements, not on func's, typealias, etc. case AttrName::auto_closure: { SourceLoc TokLoc = Tok.getLoc(); if (Attributes.isAutoClosure()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); // Verify that we're not combining this attribute incorrectly. Cannot be // both byref and auto_closure. if (Attributes.isByref()) { diagnose(TokLoc, diag::cannot_combine_attribute, "byref"); return false; } Attributes.AutoClosure = true; return false; } case AttrName::thin: { if (Attributes.isThin()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.Thin = true; return false; } case AttrName::noreturn: { if (Attributes.isNoReturn()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.NoReturn = true; return false; } case AttrName::assignment: { if (Attributes.isAssignment()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.Assignment = true; return false; } case AttrName::prefix: { SourceLoc TokLoc = Tok.getLoc(); if (Attributes.isPrefix()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); if (Attributes.isPostfix()) { diagnose(TokLoc, diag::cannot_combine_attribute, "postfix"); return false; } Attributes.ExplicitPrefix = true; return false; } case AttrName::postfix: { SourceLoc TokLoc = Tok.getLoc(); if (Attributes.isPostfix()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); if (Attributes.isPrefix()) { diagnose(TokLoc, diag::cannot_combine_attribute, "prefix"); return false; } Attributes.ExplicitPostfix = true; return false; } case AttrName::conversion: { if (Attributes.isConversion()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.Conversion = true; return false; } case AttrName::exported: { if (Attributes.isExported()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.Exported = true; return false; } case AttrName::transparent: { if (Attributes.isTransparent()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.Transparent = true; return false; } case AttrName::iboutlet: { if (Attributes.isIBOutlet()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.IBOutlet = true; return false; } case AttrName::ibaction: { if (Attributes.isIBAction()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.IBAction = true; return false; } case AttrName::objc: { if (Attributes.isObjC()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); Attributes.ObjC = true; return false; } /// FIXME: This is a temporary hack until we can import C modules. case AttrName::asmname: { SourceLoc TokLoc = Tok.getLoc(); if (!Attributes.AsmName.empty()) diagnose(Tok, diag::duplicate_attribute, Tok.getText()); consumeToken(tok::identifier); if (!consumeIf(tok::equal)) { diagnose(TokLoc, diag::asmname_expected_equals); return false; } if (!Tok.is(tok::string_literal)) { diagnose(TokLoc, diag::asmname_expected_string_literal); return false; } SmallVector Segments; L->getStringLiteralSegments(Tok, Segments); if (Segments.size() != 1 || Segments.front().Kind == Lexer::StringSegment::Expr) { diagnose(TokLoc, diag::asmname_interpolated_string); } else { Attributes.AsmName = StringRef( SourceMgr->getMemoryBuffer(BufferID)->getBufferStart() + SourceMgr.getLocOffsetInBuffer(Segments.front().Loc, BufferID), Segments.front().Length); } consumeToken(tok::string_literal); return false; } } llvm_unreachable("bad attribute kind"); } /// \brief This is the internal implementation of \c parseAttributeList, which /// we expect to be inlined to handle the common case of an absent attribute /// list. /// /// \verbatim /// attribute-list: /// attribute-list-clause* /// attribute-list-clause /// '[' ']' /// '[' attribute (',' attribute)* ']' /// \endverbatim bool Parser::parseAttributeListPresent(DeclAttributes &Attributes) { SourceLoc leftLoc = consumeToken(tok::l_square); Attributes.LSquareLoc = leftLoc; do { if (parseList(tok::r_square, leftLoc, Attributes.RSquareLoc, tok::comma, /*OptionalSep=*/false, diag::expected_in_attribute_list, [&] () -> bool { return parseAttribute(Attributes); })) return true; leftLoc = Tok.getLoc(); // A square bracket here begins another attribute-list-clause; // consume it and continue. Note that we'll overwrite // Attributes.RSquareLoc so that it encompasses the entire range. } while (consumeIf(tok::l_square)); return false; } bool Parser::isStartOfOperatorDecl(const Token &Tok, const Token &Tok2) { return Tok.isContextualKeyword("operator") && (Tok2.isContextualKeyword("prefix") || Tok2.isContextualKeyword("postfix") || Tok2.isContextualKeyword("infix")); } void Parser::consumeDecl(ParserPosition BeginParserPosition, unsigned Flags) { backtrackToPosition(BeginParserPosition); SourceLoc BeginLoc = Tok.getLoc(); // Consume tokens up to code completion token. while (Tok.isNot(tok::code_complete)) { consumeToken(); } // Consume the code completion token, if there is one. consumeIf(tok::code_complete); SourceLoc EndLoc = Tok.getLoc(); State->delayDecl(PersistentParserState::DelayedDeclKind::Decl, Flags, CurDeclContext, { BeginLoc, EndLoc }, BeginParserPosition.PreviousLoc); } /// \brief Parse a single syntactic declaration and return a list of decl /// ASTs. This can return multiple results for var decls that bind to multiple /// values, structs that define a struct decl and a constructor, etc. /// /// \verbatim /// decl: /// decl-typealias /// decl-extension /// decl-var /// decl-func /// decl-enum /// decl-struct /// decl-import /// decl-operator /// \endverbatim ParserStatus Parser::parseDecl(SmallVectorImpl &Entries, unsigned Flags) { ParserPosition BeginParserPosition; if (isCodeCompletionFirstPass()) BeginParserPosition = getParserPosition(); // If we see the 'static' keyword, parse it now. SourceLoc StaticLoc; bool UnhandledStatic = false; if (Tok.is(tok::kw_static)) { StaticLoc = consumeToken(); UnhandledStatic = true; } ParserResult DeclResult; ParserStatus Status; switch (Tok.getKind()) { case tok::kw_import: DeclResult = parseDeclImport(Flags); Status = DeclResult; break; case tok::kw_extension: DeclResult = parseDeclExtension(Flags); Status = DeclResult; break; case tok::kw_var: if (StaticLoc.isValid()) { diagnose(Tok, diag::unimplemented_static_var) .highlight(SourceRange(StaticLoc)); UnhandledStatic = false; } Status = parseDeclVar(Flags, Entries); break; case tok::kw_typealias: DeclResult = parseDeclTypeAlias(!(Flags & PD_DisallowTypeAliasDef), Flags & PD_InProtocol); Status = DeclResult; break; case tok::kw_enum: DeclResult = parseDeclEnum(Flags); Status = DeclResult; break; case tok::kw_case: Status = parseDeclEnumCase(Flags, Entries); break; case tok::kw_struct: DeclResult = parseDeclStruct(Flags); Status = DeclResult; break; case tok::kw_class: DeclResult = parseDeclClass(Flags); Status = DeclResult; break; case tok::kw_constructor: case tok::kw_init: DeclResult = parseDeclConstructor(Flags); Status = DeclResult; break; case tok::kw_destructor: DeclResult = parseDeclDestructor(Flags); Status = DeclResult; break; case tok::kw_protocol: DeclResult = parseDeclProtocol(Flags); Status = DeclResult; break; case tok::kw_func: DeclResult = parseDeclFunc(StaticLoc, Flags); Status = DeclResult; UnhandledStatic = false; break; case tok::kw_subscript: if (StaticLoc.isValid()) { diagnose(Tok, diag::subscript_static) .fixItRemove(SourceRange(StaticLoc)); UnhandledStatic = false; } Status = parseDeclSubscript(Flags & PD_HasContainerType, !(Flags & PD_DisallowFuncDef), Entries); break; case tok::identifier: if (isStartOfOperatorDecl(Tok, peekToken())) { DeclResult = parseDeclOperator(Flags & PD_AllowTopLevel); break; } SWIFT_FALLTHROUGH; default: diagnose(Tok, diag::expected_decl); DeclResult = makeParserErrorResult(); Status = DeclResult; break; } if (Status.hasCodeCompletion() && isCodeCompletionFirstPass() && !CurDeclContext->isModuleContext()) { // Only consume non-toplevel decls. consumeDecl(BeginParserPosition, Flags); // Pretend that there was no error. return makeParserSuccess(); } if (DeclResult.isNonNull()) Entries.push_back(DeclResult.get()); if (Status.isSuccess() && Tok.is(tok::semi)) Entries.back()->TrailingSemiLoc = consumeToken(tok::semi); // If we parsed 'static' but didn't handle it above, complain about it. if (Status.isSuccess() && UnhandledStatic) { diagnose(Entries.back()->getLoc(), diag::decl_not_static) .fixItRemove(SourceRange(StaticLoc)); } return Status; } void Parser::parseDeclDelayed() { auto DelayedState = State->takeDelayedDeclState(); assert(DelayedState.get() && "should have delayed state"); auto BeginParserPosition = getParserPosition(DelayedState->BodyPos); auto EndLexerState = L->getStateForEndOfTokenLoc(DelayedState->BodyEnd); // ParserPositionRAII needs a primed parser to restore to. if (Tok.is(tok::NUM_TOKENS)) consumeToken(); // Ensure that we restore the parser state at exit. ParserPositionRAII PPR(*this); // Create a lexer that can not go past the end state. Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState); // Temporarily swap out the parser's current lexer with our new one. llvm::SaveAndRestore T(L, &LocalLex); // Rewind to the beginning of the decl. restoreParserPosition(BeginParserPosition); // Re-enter the lexical scope. Scope S(this, DelayedState->takeScope()); ContextChange CC(*this, DelayedState->ParentContext); SmallVector Entries; parseDecl(Entries, DelayedState->Flags); } /// \brief Parse an 'import' declaration, doing no token skipping on error. /// /// \verbatim /// decl-import: /// 'import' attribute-list import-kind? import-path /// import-kind: /// 'typealias' /// 'struct' /// 'class' /// 'enum' /// 'protocol' /// 'var' /// 'func' /// import-path: /// any-identifier ('.' any-identifier)* /// \endverbatim ParserResult Parser::parseDeclImport(unsigned Flags) { SourceLoc ImportLoc = consumeToken(tok::kw_import); bool Exported; { DeclAttributes Attributes; parseAttributeList(Attributes); Exported = Attributes.isExported(); Attributes.Exported = false; if (!Attributes.empty()) diagnose(Attributes.LSquareLoc, diag::import_attributes); } if (!(Flags & PD_AllowTopLevel)) { diagnose(ImportLoc, diag::decl_inner_scope); return nullptr; } ImportKind Kind = ImportKind::Module; SourceLoc KindLoc; if (Tok.isKeyword()) { switch (Tok.getKind()) { case tok::kw_typealias: Kind = ImportKind::Type; break; case tok::kw_struct: Kind = ImportKind::Struct; break; case tok::kw_class: Kind = ImportKind::Class; break; case tok::kw_enum: Kind = ImportKind::Enum; break; case tok::kw_protocol: Kind = ImportKind::Protocol; break; case tok::kw_var: Kind = ImportKind::Var; break; case tok::kw_func: Kind = ImportKind::Func; break; default: diagnose(Tok, diag::expected_identifier_in_decl, "import"); return nullptr; } KindLoc = consumeToken(); } SmallVector, 8> ImportPath; do { ImportPath.push_back(std::make_pair(Identifier(), Tok.getLoc())); if (parseAnyIdentifier(ImportPath.back().first, diag::expected_identifier_in_decl, "import")) return nullptr; } while (consumeIf(tok::period)); if (Kind != ImportKind::Module && ImportPath.size() == 1) { diagnose(ImportPath.front().second, diag::decl_expected_module_name); return nullptr; } return makeParserResult(ImportDecl::create( Context, CurDeclContext, ImportLoc, Kind, KindLoc, Exported, ImportPath)); } /// \brief Parse an inheritance clause. /// /// \verbatim /// inheritance: /// ':' type-identifier (',' type-identifier)* /// \endverbatim ParserStatus Parser::parseInheritance(SmallVectorImpl &Inherited) { consumeToken(tok::colon); ParserStatus Status; do { // Parse the inherited type (which must be a protocol). ParserResult Ty = parseTypeIdentifier(); Status |= Ty; // Record the type. if (Ty.isNonNull()) Inherited.push_back(Ty.get()); // Check for a ',', which indicates that there are more protocols coming. } while (consumeIf(tok::comma)); return Status; } enum class TokenProperty { None, StartsWithLess, }; static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &Loc, tok ResyncT1, tok ResyncT2, tok ResyncT3, TokenProperty ResyncP1, const Diagnostic &D) { switch (P.Tok.getKind()) { case tok::identifier: Result = P.Context.getIdentifier(P.Tok.getText()); Loc = P.Tok.getLoc(); P.consumeToken(); return makeParserSuccess(); default: if (D.getID() != DiagID::invalid_diagnostic) P.diagnose(P.Tok, D); if (P.Tok.isKeyword() && (P.peekToken().is(ResyncT1) || P.peekToken().is(ResyncT2) || P.peekToken().is(ResyncT3) || (ResyncP1 != TokenProperty::None && P.startsWithLess(P.peekToken())))) { llvm::SmallString<32> Name(P.Tok.getText()); // Append an invalid character so that nothing can resolve to this name. Name += "#"; Result = P.Context.getIdentifier(Name.str()); Loc = P.Tok.getLoc(); P.consumeToken(); // Return success because we recovered. return makeParserSuccess(); } return makeParserError(); } } template static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L, tok ResyncT1, tok ResyncT2, Diag ID, ArgTypes... Args) { return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, tok::unknown, TokenProperty::None, Diagnostic(ID, Args...)); } template static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L, tok ResyncT1, tok ResyncT2, tok ResyncT3, Diag ID, ArgTypes... Args) { return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, ResyncT3, TokenProperty::None, Diagnostic(ID, Args...)); } template static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L, tok ResyncT1, tok ResyncT2, TokenProperty ResyncP1, Diag ID, ArgTypes... Args) { return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, tok::unknown, ResyncP1, Diagnostic(ID, Args...)); } /// \brief Parse an 'extension' declaration. /// /// \verbatim /// extension: /// 'extension' type-identifier inheritance? '{' decl* '}' /// \endverbatim ParserResult Parser::parseDeclExtension(unsigned Flags) { SourceLoc ExtensionLoc = consumeToken(tok::kw_extension); ParserResult Ty = parseTypeIdentifierWithRecovery( diag::expected_type, diag::expected_ident_type_in_extension); if (Ty.hasCodeCompletion()) return makeParserCodeCompletionResult(); if (Ty.isNull() && Tok.isKeyword()) { // We failed to parse the type, but we could try recovering by parsing a // keyword if the lookahead token looks promising. Identifier ExtensionName; SourceLoc NameLoc; if (parseIdentifierDeclName(*this, ExtensionName, NameLoc, tok::colon, tok::l_brace, diag::invalid_diagnostic).isError()) return nullptr; Ty = makeParserErrorResult( IdentTypeRepr::createSimple(Context, NameLoc, ExtensionName, CurDeclContext)); } if (Ty.isNull()) return nullptr; ParserStatus Status; // Parse optional inheritance clause. SmallVector Inherited; if (Tok.is(tok::colon)) Status |= parseInheritance(Inherited); ExtensionDecl *ED = new (Context) ExtensionDecl(ExtensionLoc, Ty.get(), Context.AllocateCopy(Inherited), CurDeclContext); SmallVector MemberDecls; SourceLoc LBLoc, RBLoc; if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_extension)) { LBLoc = Tok.getLoc(); RBLoc = LBLoc; Status.setIsParseError(); } else { // Parse the body. ContextChange CC(*this, ED); Scope S(this, ScopeKind::Extension); ParserStatus BodyStatus = parseList(tok::r_brace, LBLoc, RBLoc, tok::semi, /*OptionalSep=*/true, diag::expected_rbrace_extension, [&]()->ParserStatus{ return parseDecl(MemberDecls, PD_HasContainerType | PD_DisallowVar); }); // Don't propagate the code completion bit from members: we can not help // code completion inside a member decl, and our callers can not do // anything about it either. But propagate the error bit. if (BodyStatus.isError()) Status.setIsParseError(); } if (MemberDecls.empty()) ED->setMembers({}, { LBLoc, RBLoc }); else ED->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc }); if (!(Flags & PD_AllowTopLevel)) { diagnose(ExtensionLoc, diag::decl_inner_scope); Status.setIsParseError(); // Tell the type checker not to touch this extension. ED->setInvalid(); } return makeParserResult(Status, ED); } /// \brief Parse a typealias decl. /// /// \verbatim /// decl-typealias: /// 'typealias' identifier inheritance? '=' type /// \endverbatim ParserResult Parser::parseDeclTypeAlias(bool WantDefinition, bool isAssociatedType) { SourceLoc TypeAliasLoc = consumeToken(tok::kw_typealias); Identifier Id; SourceLoc IdLoc; ParserStatus Status; Status |= parseIdentifierDeclName(*this, Id, IdLoc, tok::colon, tok::equal, diag::expected_identifier_in_decl, "typealias"); if (Status.isError()) return nullptr; // Parse optional inheritance clause. SmallVector Inherited; if (Tok.is(tok::colon)) Status |= parseInheritance(Inherited); ParserResult UnderlyingTy; if (WantDefinition || Tok.is(tok::equal)) { if (parseToken(tok::equal, diag::expected_equal_in_typealias)) { Status.setIsParseError(); return Status; } UnderlyingTy = parseType(diag::expected_type_in_typealias); Status |= UnderlyingTy; if (UnderlyingTy.isNull()) return Status; if (!WantDefinition) { diagnose(IdLoc, diag::associated_type_def, Id); UnderlyingTy = nullptr; } } // If this is an associated type, build the AST for it. if (isAssociatedType) { auto assocType = new (Context) AssociatedTypeDecl(CurDeclContext, TypeAliasLoc, Id, IdLoc); if (!Inherited.empty()) assocType->setInherited(Context.AllocateCopy(Inherited)); addToScope(assocType); return makeParserResult(Status, assocType); } // Otherwise, build a typealias. TypeAliasDecl *TAD = new (Context) TypeAliasDecl(TypeAliasLoc, Id, IdLoc, UnderlyingTy.getPtrOrNull(), CurDeclContext, Context.AllocateCopy(Inherited)); addToScope(TAD); return makeParserResult(Status, TAD); } namespace { class AddVarsToScope : public ASTWalker { public: Parser &TheParser; ASTContext &Context; DeclContext *CurDeclContext; SmallVectorImpl &Decls; DeclAttributes &Attributes; AddVarsToScope(Parser &P, ASTContext &Context, DeclContext *CurDeclContext, SmallVectorImpl &Decls, DeclAttributes &Attributes) : TheParser(P), Context(Context), CurDeclContext(CurDeclContext), Decls(Decls), Attributes(Attributes) {} Pattern *walkToPatternPost(Pattern *P) override { // Handle vars. if (auto *Named = dyn_cast(P)) { VarDecl *VD = Named->getDecl(); VD->setDeclContext(CurDeclContext); if (Attributes.isValid()) VD->getMutableAttrs() = Attributes; if (VD->isProperty()) { // FIXME: Order of get/set not preserved. if (FuncDecl *Get = VD->getGetter()) { Get->setDeclContext(CurDeclContext); Decls.push_back(Get); } if (FuncDecl *Set = VD->getSetter()) { Set->setDeclContext(CurDeclContext); Decls.push_back(Set); } } Decls.push_back(VD); TheParser.addToScope(VD); } return P; } }; } void Parser::addVarsToScope(Pattern *Pat, SmallVectorImpl &Decls, DeclAttributes &Attributes) { Pat->walk(AddVarsToScope(*this, Context, CurDeclContext, Decls, Attributes)); } /// \brief Parse a get-set clause, containing a getter and (optionally) /// a setter. /// /// \verbatim /// get-set: /// get var-set? /// set var-get /// /// get: /// 'get:' stmt-brace-item* /// /// set: /// 'set' set-name? ':' stmt-brace-item* /// /// set-name: /// '(' identifier ')' /// \endverbatim bool Parser::parseGetSet(bool HasContainerType, Pattern *Indices, TypeLoc ElementTy, FuncDecl *&Get, FuncDecl *&Set, SourceLoc &LastValidLoc) { bool Invalid = false; Get = nullptr; Set = nullptr; while (Tok.isNot(tok::r_brace)) { if (Tok.is(tok::eof)) { Invalid = true; break; } if (Tok.isContextualKeyword("get") || !Tok.isContextualKeyword("set")) { // get ::= 'get' stmt-brace DeclAttributes GetAttributes; // Have we already parsed a get clause? if (Get) { diagnose(Tok, diag::duplicate_getset, false); diagnose(Get->getLoc(), diag::previous_getset, false); // Forget the previous version. Get = nullptr; } SourceLoc GetLoc = Tok.getLoc(), ColonLoc = Tok.getLoc(); if (Tok.isContextualKeyword("get")) { GetLoc = consumeToken(); // FIXME: Implicitly add immutable attribute. parseAttributeList(GetAttributes); if (Tok.isNot(tok::colon)) { diagnose(Tok, diag::expected_colon_get); Invalid = true; break; } ColonLoc = consumeToken(tok::colon); } // Set up a function declaration for the getter and parse its body. // Create the parameter list(s) for the getter. SmallVector Params; // Add the implicit 'self' to Params, if needed. if (HasContainerType) Params.push_back(buildImplicitSelfParameter()); // Add the index clause if necessary. if (Indices) { Params.push_back(Indices->clone(Context)); } // Add a no-parameters clause. Params.push_back(TuplePattern::create(Context, SourceLoc(), ArrayRef(), SourceLoc())); Scope S(this, ScopeKind::FunctionBody); // Start the function. Get = FuncDecl::create(Context, /*StaticLoc=*/SourceLoc(), GetLoc, Identifier(), GetLoc, /*GenericParams=*/nullptr, Type(), Params, Params, ElementTy, CurDeclContext); addFunctionParametersToScope(Get->getBodyParamPatterns(), Get); // Establish the new context. ContextChange CC(*this, Get); SmallVector Entries; parseBraceItems(Entries, false /*NotTopLevel*/, BraceItemListKind::Property); BraceStmt *Body = BraceStmt::create(Context, ColonLoc, Entries, Tok.getLoc()); Get->setBody(Body); if (GetAttributes.isValid()) Get->getMutableAttrs() = GetAttributes; LastValidLoc = Body->getRBraceLoc(); continue; } // var-set ::= 'set' var-set-name? stmt-brace // Have we already parsed a var-set clause? if (Set) { diagnose(Tok, diag::duplicate_getset, true); diagnose(Set->getLoc(), diag::previous_getset, true); // Forget the previous setter. Set = nullptr; } SourceLoc SetLoc = consumeToken(); DeclAttributes SetAttributes; // FIXME: Implicitly add immutable attribute. parseAttributeList(SetAttributes); // var-set-name ::= '(' identifier ')' Identifier SetName; SourceLoc SetNameLoc; SourceRange SetNameParens; if (Tok.is(tok::l_paren)) { SourceLoc StartLoc = consumeToken(); if (Tok.is(tok::identifier)) { // We have a name. SetName = Context.getIdentifier(Tok.getText()); SetNameLoc = consumeToken(); // Look for the closing ')'. SourceLoc EndLoc; if (parseMatchingToken(tok::r_paren, EndLoc, diag::expected_rparen_setname, StartLoc)) EndLoc = SetNameLoc; SetNameParens = SourceRange(StartLoc, EndLoc); } else { diagnose(Tok, diag::expected_setname); skipUntil(tok::r_paren, tok::l_brace); if (Tok.is(tok::r_paren)) consumeToken(); } } if (Tok.isNot(tok::colon)) { diagnose(Tok, diag::expected_colon_set); Invalid = true; break; } SourceLoc ColonLoc = consumeToken(tok::colon); // Set up a function declaration for the setter and parse its body. // Create the parameter list(s) for the setter. SmallVector Params; // Add the implicit 'self' to Params, if needed. if (HasContainerType) Params.push_back(buildImplicitSelfParameter()); // Add the index parameters, if necessary. if (Indices) { Params.push_back(Indices->clone(Context)); } bool IsNameImplicit = false; // Add the parameter. If no name was specified, the name defaults to // 'value'. if (SetName.empty()) { SetName = Context.getIdentifier("value"); IsNameImplicit = true; } { VarDecl *Value = new (Context) VarDecl(SetNameLoc, SetName, Type(), CurDeclContext); if (IsNameImplicit) Value->setImplicit(); Pattern *ValuePattern = new (Context) TypedPattern(new (Context) NamedPattern(Value), ElementTy); TuplePatternElt ValueElt(ValuePattern); Pattern *ValueParamsPattern = TuplePattern::create(Context, SetNameParens.Start, ValueElt, SetNameParens.End); if (IsNameImplicit) ValueParamsPattern->setImplicit(); Params.push_back(ValueParamsPattern); } Scope S(this, ScopeKind::FunctionBody); // Start the function. Type SetterRetTy = TupleType::getEmpty(Context); Set = FuncDecl::create(Context, /*StaticLoc=*/SourceLoc(), SetLoc, Identifier(), SetLoc, /*generic=*/nullptr, Type(), Params, Params, TypeLoc::withoutLoc(SetterRetTy), CurDeclContext); addFunctionParametersToScope(Set->getBodyParamPatterns(), Set); // Establish the new context. ContextChange CC(*this, Set); // Parse the body. SmallVector Entries; parseBraceItems(Entries, false /*NotTopLevel*/, BraceItemListKind::Property); BraceStmt *Body = BraceStmt::create(Context, ColonLoc, Entries, Tok.getLoc()); Set->setBody(Body); if (SetAttributes.isValid()) Set->getMutableAttrs() = SetAttributes; LastValidLoc = Body->getRBraceLoc(); } return Invalid; } /// \brief Parse the brace-enclosed getter and setter for a variable. /// /// \verbatim /// decl-var: /// 'var' attribute-list identifier : type-annotation { get-set } /// \endverbatim void Parser::parseDeclVarGetSet(Pattern &pattern, bool HasContainerType) { bool Invalid = false; // The grammar syntactically requires a simple identifier for the variable // name. Complain if that isn't what we got. VarDecl *PrimaryVar = nullptr; { Pattern *PrimaryPattern = &pattern; if (TypedPattern *Typed = dyn_cast(PrimaryPattern)) PrimaryPattern = Typed->getSubPattern(); if (NamedPattern *Named = dyn_cast(PrimaryPattern)) { PrimaryVar = Named->getDecl(); } } if (!PrimaryVar) diagnose(pattern.getLoc(), diag::getset_nontrivial_pattern); // The grammar syntactically requires a type annotation. Complain if // our pattern does not have one. TypeLoc TyLoc; if (TypedPattern *TP = dyn_cast(&pattern)) { TyLoc = TP->getTypeLoc(); } else { if (PrimaryVar) diagnose(pattern.getLoc(), diag::getset_missing_type); TyLoc = TypeLoc::withoutLoc(ErrorType::get(Context)); } SourceLoc LBLoc = consumeToken(tok::l_brace); // Parse getter and setter. FuncDecl *Get = nullptr; FuncDecl *Set = nullptr; SourceLoc LastValidLoc = LBLoc; if (parseGetSet(HasContainerType, /*Indices=*/0, TyLoc, Get, Set, LastValidLoc)) Invalid = true; // Parse the final '}'. SourceLoc RBLoc; if (Invalid) { skipUntilDeclRBrace(); RBLoc = LastValidLoc; } if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset, LBLoc)) { RBLoc = LastValidLoc; } if (Set && !Get) { if (!Invalid) diagnose(Set->getLoc(), diag::var_set_without_get); Set = nullptr; Invalid = true; } // If things went well, turn this variable into a property. if (!Invalid && PrimaryVar && (Set || Get)) PrimaryVar->setProperty(Context, LBLoc, Get, Set, RBLoc); } /// \brief Parse a 'var' declaration, doing no token skipping on error. /// /// \verbatim /// decl-var: /// 'var' attribute-list pattern initializer? (',' pattern initializer? )* /// 'var' attribute-list identifier : type-annotation { get-set } /// \endverbatim ParserStatus Parser::parseDeclVar(unsigned Flags, SmallVectorImpl &Decls) { SourceLoc VarLoc = consumeToken(tok::kw_var); SmallVector PBDs; bool HasGetSet = false; ParserStatus Status; unsigned FirstDecl = Decls.size(); do { DeclAttributes Attributes; parseAttributeList(Attributes); ParserResult pattern = parsePattern(); if (pattern.hasCodeCompletion()) return makeParserCodeCompletionStatus(); if (pattern.isNull()) return makeParserError(); // If we syntactically match the second decl-var production, with a // var-get-set clause, parse the var-get-set clause. if (Tok.is(tok::l_brace)) { parseDeclVarGetSet(*pattern.get(), Flags & PD_HasContainerType); HasGetSet = true; } ParserResult Init; if (Tok.is(tok::equal)) { // Record the variables that we're trying to initialize. SmallVector Vars; Vars.append(CurVars.second.begin(), CurVars.second.end()); pattern.get()->collectVariables(Vars); using RestoreVarsRAII = llvm::SaveAndRestore; RestoreVarsRAII RestoreCurVars(CurVars, {CurDeclContext, Vars}); SourceLoc EqualLoc = consumeToken(tok::equal); Init = parseExpr(diag::expected_init_value); if (Init.hasCodeCompletion()) return makeParserCodeCompletionStatus(); if (Init.isNull()) { Status.setIsParseError(); break; } if (HasGetSet) { diagnose(pattern.get()->getLoc(), diag::getset_init) .highlight(Init.get()->getSourceRange()); Init = nullptr; } if (Flags & PD_DisallowInit) { diagnose(EqualLoc, diag::disallowed_init); Status.setIsParseError(); } } addVarsToScope(pattern.get(), Decls, Attributes); // In the normal case, just add PatternBindingDecls to our DeclContext. PatternBindingDecl *PBD = new (Context) PatternBindingDecl(VarLoc, pattern.get(), Init.getPtrOrNull(), CurDeclContext); Decls.push_back(PBD); // Propagate back types for simple patterns, like "var A, B : T". if (TypedPattern *TP = dyn_cast(PBD->getPattern())) { if (isa(TP->getSubPattern()) && !PBD->hasInit()) { for (unsigned i = PBDs.size(); i != 0; --i) { PatternBindingDecl *PrevPBD = PBDs[i-1]; Pattern *PrevPat = PrevPBD->getPattern(); if (!isa(PrevPat) || PrevPBD->hasInit()) break; if (HasGetSet) { // FIXME -- offer a fixit to explicitly specify the type diagnose(PrevPat->getLoc(), diag::getset_cannot_be_implied); Status.setIsParseError(); } TypedPattern *NewTP = new (Context) TypedPattern(PrevPat, TP->getTypeLoc()); PrevPBD->setPattern(NewTP); } } } PBDs.push_back(PBD); } while (consumeIf(tok::comma)); if (HasGetSet) { if (PBDs.size() > 1) { diagnose(VarLoc, diag::disallowed_property_multiple_getset); Status.setIsParseError(); } if (Flags & PD_DisallowProperty) { diagnose(VarLoc, diag::disallowed_property_decl); Status.setIsParseError(); } } else if (Flags & PD_DisallowVar) { diagnose(VarLoc, diag::disallowed_var_decl); Status.setIsParseError(); return Status; } // If this is a var in the top-level of script/repl translation unit, then // wrap the PatternBindingDecls in TopLevelCodeDecls, since they represent // executable code. if (allowTopLevelCode() && isa(CurDeclContext)) { for (unsigned i = FirstDecl; i != Decls.size(); ++i) { auto *PBD = dyn_cast(Decls[i]); if (PBD == 0) continue; auto *Brace = BraceStmt::create(Context, PBD->getStartLoc(), ExprStmtOrDecl(PBD), PBD->getEndLoc()); auto *TLCD = new (Context) TopLevelCodeDecl(CurDeclContext, Brace); PBD->setDeclContext(TLCD); Decls[i] = TLCD; } } return Status; } /// \brief Build an implicit 'self' parameter for the current DeclContext. Pattern *Parser::buildImplicitSelfParameter() { VarDecl *D = new (Context) VarDecl(SourceLoc(), Context.getIdentifier("self"), Type(), CurDeclContext); Pattern *P = new (Context) NamedPattern(D); return new (Context) TypedPattern(P, TypeLoc()); } void Parser::consumeAbstractFunctionBody(AbstractFunctionDecl *AFD, const DeclAttributes &Attrs) { auto BeginParserPosition = getParserPosition(); SourceRange BodyRange; BodyRange.Start = Tok.getLoc(); // Consume the '{', and find the matching '}'. consumeToken(tok::l_brace); unsigned OpenBraces = 1; while (OpenBraces != 0 && Tok.isNot(tok::eof)) { if (consumeIf(tok::l_brace)) { OpenBraces++; continue; } if (consumeIf(tok::r_brace)) { OpenBraces--; continue; } consumeToken(); } if (OpenBraces != 0 && Tok.isNot(tok::code_complete)) { assert(Tok.is(tok::eof)); // We hit EOF, and not every brace has a pair. Recover by searching // for the next decl except variable decls and cutting off before // that point. backtrackToPosition(BeginParserPosition); consumeToken(tok::l_brace); while (Tok.is(tok::kw_var) || (Tok.isNot(tok::eof) && !isStartOfDecl(Tok, peekToken()))) { consumeToken(); } } BodyRange.End = PreviousLoc; if (DelayedParseCB->shouldDelayFunctionBodyParsing(*this, AFD, Attrs, BodyRange)) { State->delayFunctionBodyParsing(AFD, BodyRange, BeginParserPosition.PreviousLoc); AFD->setBodyDelayed(BodyRange.End); } else { AFD->setBodySkipped(BodyRange.End); } } /// \brief Parse a 'func' declaration, returning null on error. The caller /// handles this case and does recovery as appropriate. /// /// \verbatim /// decl-func: /// 'static'? 'func' attribute-list any-identifier generic-params? /// func-signature stmt-brace? /// \endverbatim /// /// \note The caller of this method must ensure that the next token is 'func'. ParserResult Parser::parseDeclFunc(SourceLoc StaticLoc, unsigned Flags) { bool HasContainerType = Flags & PD_HasContainerType; // Reject 'static' functions at global scope. if (StaticLoc.isValid() && !HasContainerType) { diagnose(Tok, diag::static_func_decl_global_scope) .fixItRemoveChars(StaticLoc, Tok.getLoc()); StaticLoc = SourceLoc(); } SourceLoc FuncLoc = consumeToken(tok::kw_func); DeclAttributes Attributes; // FIXME: Implicitly add immutable attribute. parseAttributeList(Attributes); Identifier Name; SourceLoc NameLoc = Tok.getLoc(); if (!(Flags & PD_AllowTopLevel) && !(Flags & PD_DisallowFuncDef) && Tok.isAnyOperator()) { diagnose(Tok, diag::func_decl_nonglobal_operator); return nullptr; } if (parseAnyIdentifier(Name, diag::expected_identifier_in_decl, "func")) { ParserStatus NameStatus = parseIdentifierDeclName(*this, Name, NameLoc, tok::l_paren, tok::arrow, tok::l_brace, diag::invalid_diagnostic); if (NameStatus.isError()) return nullptr; } // Parse the generic-params, if present. Optional GenericsScope; GenericsScope.emplace(this, ScopeKind::Generics); GenericParamList *GenericParams; // If the name is an operator token that ends in '<' and the following token // is an identifier, split the '<' off as a separate token. This allows things // like 'func ==(x:T, y:T) {}' to parse as '==' with generic type variable // '' as expected. if (Name.str().size() > 1 && Name.str().back() == '<' && Tok.is(tok::identifier)) { Name = Context.getIdentifier(Name.str().slice(0, Name.str().size() - 1)); SourceLoc LAngleLoc = NameLoc.getAdvancedLoc(Name.str().size()); GenericParams = parseGenericParameters(LAngleLoc); } else { GenericParams = maybeParseGenericParams(); } SmallVector ArgParams; SmallVector BodyParams; // If we're within a container, add an implicit first pattern to match the // container type as an element named 'self'. // // This turns an instance function "(int)->int" on FooTy into // "(this: [byref] FooTy)->(int)->int", and a static function // "(int)->int" on FooTy into "(this: [byref] FooTy.metatype)->(int)->int". // Note that we can't actually compute the type here until Sema. if (HasContainerType) { Pattern *SelfPattern = buildImplicitSelfParameter(); ArgParams.push_back(SelfPattern); BodyParams.push_back(SelfPattern); } TypeRepr *FuncRetTy = nullptr; ParserStatus SignatureStatus = parseFunctionSignature(ArgParams, BodyParams, FuncRetTy); if (SignatureStatus.hasCodeCompletion() && !CodeCompletion) { // Trigger delayed parsing, no need to continue. return SignatureStatus; } // Enter the arguments for the function into a new function-body scope. We // need this even if there is no function body to detect argument name // duplication. FuncDecl *FD; { Scope S(this, ScopeKind::FunctionBody); // Create the decl for the func and add it to the parent scope. FD = FuncDecl::create(Context, StaticLoc, FuncLoc, Name, NameLoc, GenericParams, Type(), ArgParams, BodyParams, FuncRetTy, CurDeclContext); // Pass the function signature to code completion. if (SignatureStatus.hasCodeCompletion()) CodeCompletion->setDelayedParsedDecl(FD); addFunctionParametersToScope(FD->getBodyParamPatterns(), FD); // Now that we have a context, update the generic parameters with that // context. if (GenericParams) { for (auto Param : *GenericParams) { Param.setDeclContext(FD); } } // Establish the new context. ContextChange CC(*this, FD); // Check to see if we have a "{" to start a brace statement. if (Tok.is(tok::l_brace)) { if (Flags & PD_DisallowFuncDef) { diagnose(Tok, diag::disallowed_func_def); consumeToken(); skipUntil(tok::r_brace); consumeToken(); // FIXME: don't just drop the body. } else if (!isDelayedParsingEnabled()) { ParserResult Body = parseBraceItemList(diag::func_decl_without_brace); if (Body.isNull()) { // FIXME: Should do some sort of error recovery here? } else if (SignatureStatus.hasCodeCompletion()) { // Code completion was inside the signature, don't attach the body. FD->setBodySkipped(Body.get()->getEndLoc()); } else { FD->setBody(Body.get()); } } else { consumeAbstractFunctionBody(FD, Attributes); } } else if (Attributes.AsmName.empty() && !(Flags & PD_DisallowFuncDef) && !SignatureStatus.isError()) { diagnose(Tok.getLoc(), diag::func_decl_without_brace); } } // Exit the scope introduced for the generic parameters. GenericsScope.reset(); if (Attributes.isValid()) FD->getMutableAttrs() = Attributes; addToScope(FD); return makeParserResult(FD); } bool Parser::parseAbstractFunctionBodyDelayed(AbstractFunctionDecl *AFD) { assert(!AFD->getBody() && "function should not have a parsed body"); assert(AFD->getBodyKind() == AbstractFunctionDecl::BodyKind::Unparsed && "function body should be delayed"); auto FunctionParserState = State->takeBodyState(AFD); assert(FunctionParserState.get() && "should have a valid state"); auto BeginParserPosition = getParserPosition(FunctionParserState->BodyPos); auto EndLexerState = L->getStateForEndOfTokenLoc(AFD->getEndLoc()); // ParserPositionRAII needs a primed parser to restore to. if (Tok.is(tok::NUM_TOKENS)) consumeToken(); // Ensure that we restore the parser state at exit. ParserPositionRAII PPR(*this); // Create a lexer that can not go past the end state. Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState); // Temporarily swap out the parser's current lexer with our new one. llvm::SaveAndRestore T(L, &LocalLex); // Rewind to '{' of the function body. restoreParserPosition(BeginParserPosition); // Re-enter the lexical scope. Scope S(this, FunctionParserState->takeScope()); ContextChange CC(*this, AFD); ParserResult Body = parseBraceItemList(diag::func_decl_without_brace); if (Body.isNull()) { // FIXME: Should do some sort of error recovery here? return true; } else { AFD->setBody(Body.get()); } return false; } /// \brief Parse a 'enum' declaration, returning true (and doing no token /// skipping) on error. /// /// \verbatim /// decl-enum: /// 'enum' attribute-list identifier generic-params? inheritance? /// '{' decl-enum-body '}' /// decl-enum-body: /// decl* /// \endverbatim ParserResult Parser::parseDeclEnum(unsigned Flags) { SourceLoc EnumLoc = consumeToken(tok::kw_enum); DeclAttributes Attributes; parseAttributeList(Attributes); Identifier EnumName; SourceLoc EnumNameLoc; ParserStatus Status; Status |= parseIdentifierDeclName(*this, EnumName, EnumNameLoc, tok::colon, tok::l_brace, TokenProperty::StartsWithLess, diag::expected_identifier_in_decl, "enum"); if (Status.isError()) return nullptr; // Parse the generic-params, if present. GenericParamList *GenericParams = nullptr; { Scope S(this, ScopeKind::Generics); GenericParams = maybeParseGenericParams(); } EnumDecl *UD = new (Context) EnumDecl(EnumLoc, /*isEnum*/ false, EnumName, EnumNameLoc, { }, GenericParams, CurDeclContext); if (Attributes.isValid()) UD->getMutableAttrs() = Attributes; // Now that we have a context, update the generic parameters with that // context. if (GenericParams) for (auto Param : *GenericParams) Param.setDeclContext(UD); // Parse optional inheritance clause within the context of the enum. if (Tok.is(tok::colon)) { ContextChange CC(*this, UD); SmallVector Inherited; Status |= parseInheritance(Inherited); UD->setInherited(Context.AllocateCopy(Inherited)); } SmallVector MemberDecls; SourceLoc LBLoc, RBLoc; if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_enum)) { LBLoc = Tok.getLoc(); RBLoc = LBLoc; Status.setIsParseError(); } else { ContextChange CC(*this, UD); Scope S(this, ScopeKind::ClassBody); if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc, diag::expected_rbrace_enum, PD_HasContainerType | PD_AllowEnumElement | PD_DisallowVar)) Status.setIsParseError(); } if (MemberDecls.empty()) UD->setMembers({}, { LBLoc, RBLoc }); else UD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc }); addToScope(UD); if (Flags & PD_DisallowNominalTypes) { diagnose(EnumLoc, diag::disallowed_type); Status.setIsParseError(); } return makeParserResult(Status, UD); } /// \brief Parse a 'case' of an enum. /// /// \verbatim /// enum-case: /// identifier type-tuple? ('->' type)? /// decl-enum-element: /// 'case' enum-case (',' enum-case)* /// \endverbatim ParserStatus Parser::parseDeclEnumCase(unsigned Flags, llvm::SmallVectorImpl &Decls) { SourceLoc CaseLoc = consumeToken(tok::kw_case); // TODO: Accept attributes here? // Parse comma-separated enum elements. SmallVector Elements; ParserStatus Status; SourceLoc CommaLoc; for (;;) { Identifier Name; SourceLoc NameLoc; const bool NameIsNotIdentifier = Tok.isNot(tok::identifier); if (parseIdentifierDeclName(*this, Name, NameLoc, tok::l_paren, tok::kw_case, tok::colon, diag::invalid_diagnostic).isError()) { // Handle the likely case someone typed 'case X, case Y'. if (Tok.is(tok::kw_case) && CommaLoc.isValid()) { diagnose(Tok, diag::expected_identifier_after_case_comma); return Status; } // For recovery, see if the user typed something resembling a switch // "case" label. parseMatchingPattern(); } if (NameIsNotIdentifier) { if (consumeIf(tok::colon)) { diagnose(CaseLoc, diag::case_outside_of_switch, "case"); Status.setIsParseError(); return Status; } if (CommaLoc.isValid()) { diagnose(Tok, diag::expected_identifier_after_case_comma); return Status; } diagnose(CaseLoc, diag::expected_identifier_in_decl, "enum case"); } // See if there's a following argument type. ParserResult ArgType; if (Tok.isFollowingLParen()) { ArgType = parseTypeTupleBody(); if (ArgType.hasCodeCompletion()) { Status.setHasCodeCompletion(); return Status; } if (ArgType.isNull()) { Status.setIsParseError(); return Status; } } // See if there's a result type. SourceLoc ArrowLoc; ParserResult ResultType; if (Tok.is(tok::arrow)) { ArrowLoc = consumeToken(); ResultType = parseType(diag::expected_type_enum_element_result); if (ResultType.hasCodeCompletion()) { Status.setHasCodeCompletion(); return Status; } if (ResultType.isNull()) { Status.setIsParseError(); return Status; } } // See if there's a raw value expression. SourceLoc EqualsLoc; ParserResult RawValueExpr; LiteralExpr *LiteralRawValueExpr = nullptr; if (Tok.is(tok::equal)) { EqualsLoc = consumeToken(); RawValueExpr = parseExpr(diag::expected_expr_enum_case_raw_value); if (RawValueExpr.hasCodeCompletion()) { Status.setHasCodeCompletion(); return Status; } if (RawValueExpr.isNull()) { Status.setIsParseError(); return Status; } // The raw value must be syntactically a simple literal. LiteralRawValueExpr = dyn_cast(RawValueExpr.getPtrOrNull()); if (!LiteralRawValueExpr || isa(LiteralRawValueExpr)) { diagnose(RawValueExpr.getPtrOrNull()->getLoc(), diag::nonliteral_enum_case_raw_value); LiteralRawValueExpr = nullptr; } } // For recovery, again make sure the the user didn't try to spell a switch // case label: // 'case Identifier:' or // 'case Identifier where ...:' if (Tok.is(tok::colon) || Tok.is(tok::kw_where)) { diagnose(CaseLoc, diag::case_outside_of_switch, "case"); skipUntilDeclRBrace(); Status.setIsParseError(); return Status; } // Create the element. auto *result = new (Context) EnumElementDecl(NameLoc, Name, ArgType.getPtrOrNull(), ArrowLoc, ResultType.getPtrOrNull(), EqualsLoc, LiteralRawValueExpr, CurDeclContext); Elements.push_back(result); // Continue through the comma-separated list. if (!Tok.is(tok::comma)) break; CommaLoc = consumeToken(tok::comma); } if (!(Flags & PD_AllowEnumElement)) { diagnose(CaseLoc, diag::disallowed_enum_element); // Don't add the EnumElementDecls unless the current context // is allowed to have EnumElementDecls. Status.setIsParseError(); return Status; } // Create and insert the EnumCaseDecl containing all the elements. auto TheCase = EnumCaseDecl::create(CaseLoc, Elements, CurDeclContext); Decls.push_back(TheCase); // Insert the element decls. std::copy(Elements.begin(), Elements.end(), std::back_inserter(Decls)); return Status; } /// \brief Parse the members in a struct/class/protocol definition. /// /// \verbatim /// decl* /// \endverbatim bool Parser::parseNominalDeclMembers(SmallVectorImpl &memberDecls, SourceLoc LBLoc, SourceLoc &RBLoc, Diag<> ErrorDiag, unsigned flags) { bool previousHadSemi = true; return parseList(tok::r_brace, LBLoc, RBLoc, tok::semi, /*OptionalSep=*/true, ErrorDiag, [&] () -> bool { // If the previous declaration didn't have a semicolon and this new // declaration doesn't start a line, complain. if (!previousHadSemi && !Tok.isAtStartOfLine()) { SourceLoc endOfPrevious = getEndOfPreviousLoc(); diagnose(endOfPrevious, diag::declaration_same_line_without_semi) .fixItInsert(endOfPrevious, ";"); // FIXME: Add semicolon to the AST? } previousHadSemi = false; if (parseDecl(memberDecls, flags).isError()) return true; // Check whether the previous declaration had a semicolon after it. if (!memberDecls.empty() && memberDecls.back()->TrailingSemiLoc.isValid()) previousHadSemi = true; return false; }); } /// \brief Parse a 'struct' declaration, returning true (and doing no token /// skipping) on error. /// /// \verbatim /// decl-struct: /// 'struct' attribute-list identifier generic-params? inheritance? /// '{' decl-struct-body '} /// decl-struct-body: /// decl* /// \endverbatim ParserResult Parser::parseDeclStruct(unsigned Flags) { SourceLoc StructLoc = consumeToken(tok::kw_struct); DeclAttributes Attributes; parseAttributeList(Attributes); Identifier StructName; SourceLoc StructNameLoc; ParserStatus Status; Status |= parseIdentifierDeclName(*this, StructName, StructNameLoc, tok::colon, tok::l_brace, TokenProperty::StartsWithLess, diag::expected_identifier_in_decl, "struct"); if (Status.isError()) return nullptr; // Parse the generic-params, if present. GenericParamList *GenericParams = nullptr; { Scope S(this, ScopeKind::Generics); GenericParams = maybeParseGenericParams(); } StructDecl *SD = new (Context) StructDecl(StructLoc, StructName, StructNameLoc, { }, GenericParams, CurDeclContext); if (Attributes.isValid()) SD->getMutableAttrs() = Attributes; // Now that we have a context, update the generic parameters with that // context. if (GenericParams) { for (auto Param : *GenericParams) { Param.setDeclContext(SD); } } // Parse optional inheritance clause within the context of the struct. if (Tok.is(tok::colon)) { ContextChange CC(*this, SD); SmallVector Inherited; Status |= parseInheritance(Inherited); SD->setInherited(Context.AllocateCopy(Inherited)); } SmallVector MemberDecls; SourceLoc LBLoc, RBLoc; if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_struct)) { LBLoc = Tok.getLoc(); RBLoc = LBLoc; Status.setIsParseError(); } else { // Parse the body. ContextChange CC(*this, SD); Scope S(this, ScopeKind::StructBody); if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc, diag::expected_rbrace_struct, PD_HasContainerType)) Status.setIsParseError(); } if (MemberDecls.empty()) SD->setMembers({}, { LBLoc, RBLoc }); else SD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc }); addToScope(SD); if (Flags & PD_DisallowNominalTypes) { diagnose(StructLoc, diag::disallowed_type); Status.setIsParseError(); } return makeParserResult(Status, SD); } /// \brief Parse a 'class' declaration, doing no token skipping on error. /// /// \verbatim /// decl-class: /// 'class' attribute-list identifier generic-params? inheritance? /// '{' decl-class-body '} /// decl-class-body: /// decl* /// \endverbatim ParserResult Parser::parseDeclClass(unsigned Flags) { SourceLoc ClassLoc = consumeToken(tok::kw_class); DeclAttributes Attributes; parseAttributeList(Attributes); Identifier ClassName; SourceLoc ClassNameLoc; ParserStatus Status; Status |= parseIdentifierDeclName(*this, ClassName, ClassNameLoc, tok::colon, tok::l_brace, TokenProperty::StartsWithLess, diag::expected_identifier_in_decl, "class"); if (Status.isError()) return nullptr; // Parse the generic-params, if present. GenericParamList *GenericParams = nullptr; { Scope S(this, ScopeKind::Generics); GenericParams = maybeParseGenericParams(); } // Create the class. ClassDecl *CD = new (Context) ClassDecl(ClassLoc, ClassName, ClassNameLoc, { }, GenericParams, CurDeclContext); // Attach attributes. if (Attributes.isValid()) CD->getMutableAttrs() = Attributes; // Now that we have a context, update the generic parameters with that // context. if (GenericParams) { for (auto Param : *GenericParams) { Param.setDeclContext(CD); } } // Parse optional inheritance clause within the context of the class. if (Tok.is(tok::colon)) { ContextChange CC(*this, CD); SmallVector Inherited; Status |= parseInheritance(Inherited); CD->setInherited(Context.AllocateCopy(Inherited)); } SmallVector MemberDecls; SourceLoc LBLoc, RBLoc; if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_class)) { LBLoc = Tok.getLoc(); RBLoc = LBLoc; Status.setIsParseError(); } else { // Parse the body. ContextChange CC(*this, CD); Scope S(this, ScopeKind::ClassBody); if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc, diag::expected_rbrace_class, PD_HasContainerType | PD_AllowDestructor)) Status.setIsParseError(); } CD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc }); addToScope(CD); if (Flags & PD_DisallowNominalTypes) { diagnose(ClassLoc, diag::disallowed_type); Status.setIsParseError(); } return makeParserResult(Status, CD); } /// \brief Parse a 'protocol' declaration, doing no token skipping on error. /// /// \verbatim /// decl-protocol: /// protocol-head '{' protocol-member* '}' /// /// protocol-head: /// 'protocol' attribute-list identifier inheritance? /// /// protocol-member: /// decl-func /// decl-var-simple /// decl-typealias /// \endverbatim ParserResult Parser::parseDeclProtocol(unsigned Flags) { SourceLoc ProtocolLoc = consumeToken(tok::kw_protocol); DeclAttributes Attributes; parseAttributeList(Attributes); SourceLoc NameLoc; Identifier ProtocolName; ParserStatus Status; Status |= parseIdentifierDeclName(*this, ProtocolName, NameLoc, tok::colon, tok::l_brace, diag::expected_identifier_in_decl, "protocol"); if (Status.isError()) return nullptr; // Parse optional inheritance clause. SmallVector InheritedProtocols; if (Tok.is(tok::colon)) Status |= parseInheritance(InheritedProtocols); ProtocolDecl *Proto = new (Context) ProtocolDecl(CurDeclContext, ProtocolLoc, NameLoc, ProtocolName, Context.AllocateCopy(InheritedProtocols)); if (Attributes.isValid()) Proto->getMutableAttrs() = Attributes; ContextChange CC(*this, Proto); Scope ProtocolBodyScope(this, ScopeKind::ProtocolBody); // Parse the body. { // The list of protocol elements. SmallVector Members; // Add the implicit 'Self' associated type. Members.push_back(new (Context) AssociatedTypeDecl( CurDeclContext, Proto->getLoc(), Context.getIdentifier("Self"), Proto->getLoc())); Members.back()->setImplicit(); SourceLoc LBraceLoc; SourceLoc RBraceLoc; if (parseToken(tok::l_brace, LBraceLoc, diag::expected_lbrace_protocol)) { LBraceLoc = Tok.getLoc(); RBraceLoc = LBraceLoc; Status.setIsParseError(); } else { // Parse the members. if (parseNominalDeclMembers(Members, LBraceLoc, RBraceLoc, diag::expected_rbrace_protocol, PD_HasContainerType | PD_DisallowProperty | PD_DisallowFuncDef | PD_DisallowNominalTypes | PD_DisallowInit | PD_DisallowTypeAliasDef | PD_InProtocol)) Status.setIsParseError(); } // Install the protocol elements. Proto->setMembers(Context.AllocateCopy(Members), { LBraceLoc, RBraceLoc }); } if (Flags & PD_DisallowNominalTypes) { diagnose(ProtocolLoc, diag::disallowed_type); Status.setIsParseError(); } else if (!(Flags & PD_AllowTopLevel)) { diagnose(ProtocolLoc, diag::decl_inner_scope); Status.setIsParseError(); } return makeParserResult(Status, Proto); } namespace { /// Recursively walks a pattern and sets all variables' decl contexts to the /// given context. class SetVarContext : public ASTWalker { DeclContext *CurDeclContext; public: SetVarContext(DeclContext *Context) : CurDeclContext(Context) {} Pattern *walkToPatternPost(Pattern *P) override { // Handle vars. if (auto *Named = dyn_cast(P)) Named->getDecl()->setDeclContext(CurDeclContext); return P; } }; } /// \brief Parse a 'subscript' declaration. /// /// \verbatim /// decl-subscript: /// subscript-head get-set /// subscript-head /// 'subscript' attribute-list pattern-tuple '->' type /// \endverbatim ParserStatus Parser::parseDeclSubscript(bool HasContainerType, bool NeedDefinition, SmallVectorImpl &Decls) { ParserStatus Status; SourceLoc SubscriptLoc = consumeToken(tok::kw_subscript); // attribute-list DeclAttributes Attributes; parseAttributeList(Attributes); // pattern-tuple if (Tok.isNot(tok::l_paren)) { diagnose(Tok, diag::expected_lparen_subscript); return makeParserError(); } ParserResult Indices = parsePatternTuple(/*AllowInitExpr=*/false); if (Indices.isNull() || Indices.hasCodeCompletion()) return Indices; Indices.get()->walk(SetVarContext(CurDeclContext)); // '->' if (!Tok.is(tok::arrow)) { diagnose(Tok, diag::expected_arrow_subscript); return makeParserError(); } SourceLoc ArrowLoc = consumeToken(); // type ParserResult ElementTy = parseTypeAnnotation(diag::expected_type_subscript); if (ElementTy.isNull() || ElementTy.hasCodeCompletion()) return ElementTy; if (!NeedDefinition) { SubscriptDecl *Subscript = new (Context) SubscriptDecl(Context.getIdentifier("__subscript"), SubscriptLoc, Indices.get(), ArrowLoc, ElementTy.get(), SourceRange(), 0, 0, CurDeclContext); Decls.push_back(Subscript); return makeParserSuccess(); } // '{' if (!Tok.is(tok::l_brace)) { diagnose(Tok, diag::expected_lbrace_subscript); return makeParserError(); } SourceLoc LBLoc = consumeToken(); // Parse getter and setter. FuncDecl *Get = nullptr; FuncDecl *Set = nullptr; SourceLoc LastValidLoc = LBLoc; if (parseGetSet(HasContainerType, Indices.get(), ElementTy.get(), Get, Set, LastValidLoc)) Status.setIsParseError(); // Parse the final '}'. SourceLoc RBLoc; if (Status.isError()) { skipUntilDeclRBrace(); RBLoc = LastValidLoc; } if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset, LBLoc)) { RBLoc = LastValidLoc; } if (!Get) { if (Status.isSuccess()) diagnose(SubscriptLoc, diag::subscript_without_get); Status.setIsParseError(); } // Reject 'subscript' functions outside of type decls if (!HasContainerType) { diagnose(SubscriptLoc, diag::subscript_decl_wrong_scope); Status.setIsParseError(); } if (Status.isSuccess()) { // FIXME: We should build the declarations even if they are invalid. // Build an AST for the subscript declaration. SubscriptDecl *Subscript = new (Context) SubscriptDecl(Context.getIdentifier("__subscript"), SubscriptLoc, Indices.get(), ArrowLoc, ElementTy.get(), SourceRange(LBLoc, RBLoc), Get, Set, CurDeclContext); // FIXME: Order of get/set not preserved. if (Set) { Set->setDeclContext(CurDeclContext); Set->makeSetter(Subscript); Decls.push_back(Set); } if (Get) { Get->setDeclContext(CurDeclContext); Get->makeGetter(Subscript); Decls.push_back(Get); } Decls.push_back(Subscript); } return Status; } ParserResult Parser::parseDeclConstructor(unsigned Flags) { assert(Tok.is(tok::kw_constructor) || Tok.is(tok::kw_init)); SourceLoc ConstructorLoc = consumeToken(); const bool ConstructorsNotAllowed = !(Flags & PD_HasContainerType) || (Flags & PD_InProtocol); // Reject 'constructor' functions outside of types if (ConstructorsNotAllowed) { diagnose(Tok, diag::initializer_decl_wrong_scope); } // attribute-list DeclAttributes Attributes; parseAttributeList(Attributes); // Parse the generic-params, if present. Scope S(this, ScopeKind::Generics); GenericParamList *GenericParams = maybeParseGenericParams(); // Parse the parameters. // FIXME: handle code completion in Arguments. Pattern *ArgPattern; Pattern *BodyPattern; ParserStatus SignatureStatus = parseConstructorArguments(ArgPattern, BodyPattern); if (SignatureStatus.hasCodeCompletion() && !CodeCompletion) { // Trigger delayed parsing, no need to continue. return SignatureStatus; } VarDecl *SelfDecl = new (Context) VarDecl(SourceLoc(), Context.getIdentifier("self"), Type(), CurDeclContext); Scope S2(this, ScopeKind::ConstructorBody); ConstructorDecl *CD = new (Context) ConstructorDecl(Context.getIdentifier("init"), ConstructorLoc, ArgPattern, BodyPattern, SelfDecl, GenericParams, CurDeclContext); // Pass the function signature to code completion. if (SignatureStatus.hasCodeCompletion()) CodeCompletion->setDelayedParsedDecl(CD); SelfDecl->setDeclContext(CD); if (ConstructorsNotAllowed) { // Tell the type checker not to touch this constructor. CD->setInvalid(); } if (GenericParams) { for (auto Param : *GenericParams) Param.setDeclContext(CD); } addFunctionParametersToScope(BodyPattern, CD); ArgPattern->walk(SetVarContext(CD)); addToScope(SelfDecl); // '{' if (!Tok.is(tok::l_brace)) { if (!SignatureStatus.isError()) { // Don't emit this diagnostic if we already complained about this // constructor decl. diagnose(Tok, diag::expected_lbrace_initializer); } // FIXME: This is brutal. Can't we at least return the declaration? return nullptr; } ContextChange CC(*this, CD); if (!isDelayedParsingEnabled()) { ParserResult Body = parseBraceItemList(diag::invalid_diagnostic); if (!Body.isNull()) CD->setBody(Body.get()); } else { consumeAbstractFunctionBody(CD, Attributes); } if (Attributes.isValid()) CD->getMutableAttrs() = Attributes; return makeParserResult(CD); } ParserResult Parser::parseDeclDestructor(unsigned Flags) { SourceLoc DestructorLoc = consumeToken(tok::kw_destructor); // attribute-list DeclAttributes Attributes; parseAttributeList(Attributes); // '{' if (!Tok.is(tok::l_brace)) { if (Tok.is(tok::l_paren)) { // Parse the parameter tuple for recovery. SourceLoc LParenLoc = Tok.getLoc(); ParserResult Params = parsePatternTuple(/*AllowInitExpr=*/true); if (Params.isParseError()) { diagnose(LParenLoc, diag::destructor_parameter_tuple); } else { diagnose(LParenLoc, diag::destructor_parameter_tuple) .fixItRemove(Params.get()->getSourceRange()); } } if (!Tok.is(tok::l_brace)) { diagnose(Tok, diag::expected_lbrace_destructor); return nullptr; } } VarDecl *SelfDecl = new (Context) VarDecl(SourceLoc(), Context.getIdentifier("self"), Type(), CurDeclContext); Scope S(this, ScopeKind::DestructorBody); DestructorDecl *DD = new (Context) DestructorDecl(Context.getIdentifier("destructor"), DestructorLoc, SelfDecl, CurDeclContext); SelfDecl->setDeclContext(DD); addToScope(SelfDecl); ContextChange CC(*this, DD); if (!isDelayedParsingEnabled()) { ParserResult Body = parseBraceItemList(diag::invalid_diagnostic); if (!Body.isNull()) DD->setBody(Body.get()); } else { consumeAbstractFunctionBody(DD, Attributes); } if (Attributes.isValid()) DD->getMutableAttrs() = Attributes; // Reject 'destructor' functions outside of classes if (!(Flags & PD_AllowDestructor)) { diagnose(DestructorLoc, diag::destructor_decl_outside_class); // Tell the type checker not to touch this destructor. DD->setInvalid(); } return makeParserResult(DD); } ParserResult Parser::parseDeclOperator(bool AllowTopLevel) { assert(Tok.isContextualKeyword("operator") && "no 'operator' at start of operator decl?!"); SourceLoc OperatorLoc = consumeToken(tok::identifier); auto kind = llvm::StringSwitch>(Tok.getText()) .Case("prefix", DeclKind::PrefixOperator) .Case("postfix", DeclKind::PostfixOperator) .Case("infix", DeclKind::InfixOperator) .Default(Nothing); assert(kind && "no fixity after 'operator'?!"); SourceLoc KindLoc = consumeToken(tok::identifier); if (!Tok.isAnyOperator()) { diagnose(Tok, diag::expected_operator_name_after_operator); return nullptr; } Identifier Name = Context.getIdentifier(Tok.getText()); SourceLoc NameLoc = consumeToken(); if (!Tok.is(tok::l_brace)) { diagnose(Tok, diag::expected_lbrace_after_operator); return nullptr; } ParserResult Result; switch (*kind) { case DeclKind::PrefixOperator: Result = parseDeclPrefixOperator(OperatorLoc, KindLoc, Name, NameLoc); break; case DeclKind::PostfixOperator: Result = parseDeclPostfixOperator(OperatorLoc, KindLoc, Name, NameLoc); break; case DeclKind::InfixOperator: Result = parseDeclInfixOperator(OperatorLoc, KindLoc, Name, NameLoc); break; default: llvm_unreachable("impossible"); } if (Tok.is(tok::r_brace)) consumeToken(); if (!AllowTopLevel) { diagnose(OperatorLoc, diag::operator_decl_inner_scope); return nullptr; } return Result; } ParserResult Parser::parseDeclPrefixOperator(SourceLoc OperatorLoc, SourceLoc PrefixLoc, Identifier Name, SourceLoc NameLoc) { SourceLoc LBraceLoc = consumeToken(tok::l_brace); while (!Tok.is(tok::r_brace)) { // Currently there are no operator attributes for prefix operators. if (Tok.is(tok::identifier)) diagnose(Tok, diag::unknown_prefix_operator_attribute, Tok.getText()); else diagnose(Tok, diag::expected_operator_attribute); skipUntilDeclRBrace(); return nullptr; } SourceLoc RBraceLoc = Tok.getLoc(); return makeParserResult( new (Context) PrefixOperatorDecl(CurDeclContext, OperatorLoc, PrefixLoc, Name, NameLoc, LBraceLoc, RBraceLoc)); } ParserResult Parser::parseDeclPostfixOperator(SourceLoc OperatorLoc, SourceLoc PostfixLoc, Identifier Name, SourceLoc NameLoc) { SourceLoc LBraceLoc = consumeToken(tok::l_brace); while (!Tok.is(tok::r_brace)) { // Currently there are no operator attributes for postfix operators. if (Tok.is(tok::identifier)) diagnose(Tok, diag::unknown_postfix_operator_attribute, Tok.getText()); else diagnose(Tok, diag::expected_operator_attribute); skipUntilDeclRBrace(); return nullptr; } SourceLoc RBraceLoc = Tok.getLoc(); return makeParserResult( new (Context) PostfixOperatorDecl(CurDeclContext, OperatorLoc, PostfixLoc, Name, NameLoc, LBraceLoc, RBraceLoc)); } ParserResult Parser::parseDeclInfixOperator(SourceLoc OperatorLoc, SourceLoc InfixLoc, Identifier Name, SourceLoc NameLoc) { SourceLoc LBraceLoc = consumeToken(tok::l_brace); // Initialize InfixData with default attributes: // precedence 100, associativity none unsigned char precedence = 100; Associativity associativity = Associativity::None; SourceLoc AssociativityLoc, AssociativityValueLoc, PrecedenceLoc, PrecedenceValueLoc; while (!Tok.is(tok::r_brace)) { if (!Tok.is(tok::identifier)) { diagnose(Tok, diag::expected_operator_attribute); skipUntilDeclRBrace(); return nullptr; } if (Tok.getText().equals("associativity")) { if (AssociativityLoc.isValid()) { diagnose(Tok, diag::operator_associativity_redeclared); skipUntilDeclRBrace(); return nullptr; } AssociativityLoc = consumeToken(); if (!Tok.is(tok::identifier)) { diagnose(Tok, diag::expected_infix_operator_associativity); skipUntilDeclRBrace(); return nullptr; } auto parsedAssociativity = llvm::StringSwitch>(Tok.getText()) .Case("none", Associativity::None) .Case("left", Associativity::Left) .Case("right", Associativity::Right) .Default(Nothing); if (!parsedAssociativity) { diagnose(Tok, diag::unknown_infix_operator_associativity, Tok.getText()); skipUntilDeclRBrace(); return nullptr; } associativity = *parsedAssociativity; AssociativityValueLoc = consumeToken(); continue; } if (Tok.getText().equals("precedence")) { if (PrecedenceLoc.isValid()) { diagnose(Tok, diag::operator_precedence_redeclared); skipUntilDeclRBrace(); return nullptr; } PrecedenceLoc = consumeToken(); if (!Tok.is(tok::integer_literal)) { diagnose(Tok, diag::expected_infix_operator_precedence); skipUntilDeclRBrace(); return nullptr; } if (Tok.getText().getAsInteger(0, precedence)) { diagnose(Tok, diag::invalid_infix_operator_precedence); precedence = 255; } PrecedenceValueLoc = consumeToken(); continue; } diagnose(Tok, diag::unknown_infix_operator_attribute, Tok.getText()); skipUntilDeclRBrace(); return nullptr; } SourceLoc RBraceLoc = Tok.getLoc(); return makeParserResult(new (Context) InfixOperatorDecl( CurDeclContext, OperatorLoc, InfixLoc, Name, NameLoc, LBraceLoc, AssociativityLoc, AssociativityValueLoc, PrecedenceLoc, PrecedenceValueLoc, RBraceLoc, InfixData(precedence, associativity))); }