//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2021 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #include "SwiftShims/UnicodeData.h" #include // Every 4 byte chunks of data that we need to hash (in this case only ever // scalars and levels who are all uint32), we need to calculate K. At the end // of this scramble sequence to get K, directly apply this to the current hash. static inline __swift_uint32_t scramble(__swift_uint32_t scalar) { scalar *= 0xCC9E2D51; scalar = (scalar << 15) | (scalar >> 17); scalar *= 0x1B873593; return scalar; } // This is a reimplementation of MurMur3 hash with a modulo at the end. static __swift_uint32_t hash(__swift_uint32_t scalar, __swift_uint32_t level, __swift_uint32_t seed) { __swift_uint32_t hash = seed; hash ^= scramble(scalar); hash = (hash << 13) | (hash >> 19); hash = hash * 5 + 0xE6546B64; hash ^= scramble(level); hash = (hash << 13) | (hash >> 19); hash = hash * 5 + 0xE6546B64; hash ^= 8; hash ^= hash >> 16; hash *= 0x85EBCA6B; hash ^= hash >> 13; hash *= 0xC2B2AE35; hash ^= hash >> 16; return hash % level; } // This implementation is based on the minimal perfect hashing strategy found // here: https://arxiv.org/pdf/1702.03154.pdf __swift_intptr_t _swift_stdlib_getMphIdx(__swift_uint32_t scalar, __swift_intptr_t levels, const __swift_uint64_t * const *keys, const __swift_uint16_t * const *ranks, const __swift_uint16_t * const sizes) { __swift_intptr_t resultIdx = 0; // Here, levels represent the numbers of bit arrays used for this hash table. for (int i = 0; i != levels; i += 1) { auto bitArray = keys[i]; // Get the specific bit that this scalar hashes to in the bit array. auto idx = (__swift_uint64_t) hash(scalar, sizes[i], i); auto word = bitArray[idx / 64]; auto mask = (__swift_uint64_t) 1 << (idx % 64); // If our scalar's bit is turned on in the bit array, it means we no longer // need to iterate the bit arrays to find where our scalar is located... // its in this one. if (word & mask) { // Our initial rank corresponds to our current level and there are ranks // within each bit array every 512 bits. Say our level (bit array) // contains 16 uint64 integers to represent all of the required bits. // There would be a total of 1024 bits, so our rankings for this level // would contain two values for precomputed counted bits for both halfs // of this bit array (1024 / 512 = 2). auto rank = ranks[i][idx / 512]; // Because ranks are provided every 512 bits (8 uint64s), we still need to // count the bits of the uints64s before us in our 8 uint64 sequence. So // for example, if we are bit 576, we are larger than 512, so there is a // provided rank for the first 8 uint64s, however we're in the second // 8 uint64 sequence and within said sequence we are the #2 uint64. This // loop will count the bits set for the first uint64 and terminate. for (int j = (idx / 64) & ~7; j != idx / 64; j += 1) { rank += __builtin_popcountll(bitArray[j]); } // After counting the other bits set in the uint64s before, its time to // count our word itself and the bits before us. if (idx % 64 > 0) { rank += __builtin_popcountll(word << (64 - (idx % 64))); } // Our result is the built up rank value from all of the provided ranks // and the ones we've manually counted ourselves. resultIdx = rank; break; } } return resultIdx; } __swift_intptr_t _swift_stdlib_getScalarBitArrayIdx(__swift_uint32_t scalar, const __swift_uint64_t *bitArrays, const __swift_uint16_t *ranks) { auto chunkSize = 0x110000 / 64 / 64; auto base = scalar / chunkSize; auto idx = base / 64; auto chunkBit = base % 64; auto quickLookSize = bitArrays[0]; // If our chunk index is larger than the quick look indices, then it means // our scalar appears in chunks who are all 0 and trailing. if ((__swift_uint64_t) idx > quickLookSize) { return std::numeric_limits<__swift_intptr_t>::max(); } auto quickLook = bitArrays[idx + 1]; if ((quickLook & ((__swift_uint64_t) 1 << chunkBit)) == 0) { return std::numeric_limits<__swift_intptr_t>::max(); } // Ok, our scalar failed the quick look check. Go lookup our scalar in the // chunk specific bit array. auto chunkRank = ranks[idx]; if (chunkBit != 0) { chunkRank += __builtin_popcountll(quickLook << (64 - chunkBit)); } auto chunkBA = bitArrays + 1 + quickLookSize + (chunkRank * 5); auto scalarOverallBit = scalar - (base * chunkSize); auto scalarSpecificBit = scalarOverallBit % 64; auto scalarWord = scalarOverallBit / 64; auto chunkWord = chunkBA[scalarWord]; // If our scalar specifically is not turned on, then we're done. if ((chunkWord & ((__swift_uint64_t) 1 << scalarSpecificBit)) == 0) { return std::numeric_limits<__swift_intptr_t>::max(); } auto scalarRank = ranks[quickLookSize + (chunkRank * 5) + scalarWord]; if (scalarSpecificBit != 0) { scalarRank += __builtin_popcountll(chunkWord << (64 - scalarSpecificBit)); } auto chunkDataIdx = chunkBA[4] >> 16; return chunkDataIdx + scalarRank; }