//===--- Casting.cpp - Swift Language Dynamic Casting Support -------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Implementations of the dynamic cast runtime functions. // //===----------------------------------------------------------------------===// #include "swift/Basic/LLVM.h" #include "swift/Basic/Demangle.h" #include "swift/Basic/Fallthrough.h" #include "swift/Runtime/Config.h" #include "swift/Runtime/Enum.h" #include "swift/Runtime/HeapObject.h" #include "swift/Runtime/Metadata.h" #include "llvm/ADT/DenseMap.h" #include "Debug.h" #include "ExistentialMetadataImpl.h" #include "Private.h" #include "../shims/RuntimeShims.h" #include "stddef.h" #ifdef __APPLE__ #include #include #include #endif #include #include #include #include #include #include // FIXME: Clang defines max_align_t in stddef.h since 3.6. // Remove this hack when we don't care about older Clangs on all platforms. #ifdef __APPLE__ typedef std::max_align_t swift_max_align_t; #else typedef long double swift_max_align_t; #endif using namespace swift; using namespace metadataimpl; #if SWIFT_OBJC_INTEROP // Objective-C runtime entry points. extern "C" const char* class_getName(const ClassMetadata*); // Aliases for Swift runtime entry points for Objective-C types. extern "C" const void *swift_dynamicCastObjCProtocolConditional( const void *object, size_t numProtocols, const ProtocolDescriptor * const *protocols); #endif // Return a user-comprehensible name for the given type. // FIXME: this only works well for Class/Struct/Enum types. rdar://16392852 static std::string nameForMetadata(const Metadata *type) { auto descriptor = type->getNominalTypeDescriptor(); if (descriptor && descriptor->Name) { auto mangled = std::string("_Tt") + descriptor->Name; return Demangle::demangleSymbolAsString(mangled); } switch (type->getKind()) { case MetadataKind::Class: return ""; case MetadataKind::ObjCClassWrapper: return ""; case MetadataKind::ForeignClass: return ""; case MetadataKind::Existential: return ""; case MetadataKind::ExistentialMetatype: return ""; case MetadataKind::Function: return ""; case MetadataKind::Block: return ""; case MetadataKind::HeapLocalVariable: return ""; case MetadataKind::Metatype: return ""; case MetadataKind::Enum: return ""; case MetadataKind::Opaque: return ""; case MetadataKind::PolyFunction: return ""; case MetadataKind::Struct: return ""; case MetadataKind::Tuple: return ""; } return ""; } /// Report a dynamic cast failure. // This is noinline with asm("") to preserve this frame in stack traces. // We want "dynamicCastFailure" to appear in crash logs even we crash // during the diagnostic because some Metadata is invalid. LLVM_ATTRIBUTE_NORETURN LLVM_ATTRIBUTE_NOINLINE static void swift_dynamicCastFailure(const Metadata *sourceType, const Metadata *targetType, const char *message = nullptr) { asm(""); std::string sourceName = nameForMetadata(sourceType); std::string targetName = nameForMetadata(targetType); swift::fatalError("Could not cast value of type '%s' (%p) to '%s' (%p)%s%s\n", sourceName.c_str(), (void *)sourceType, targetName.c_str(), (void *)targetType, message ? ": " : ".", message ?: ""); } /// Report a corrupted type object. LLVM_ATTRIBUTE_NORETURN LLVM_ATTRIBUTE_ALWAYS_INLINE // Minimize trashed registers static void _failCorruptType(const Metadata *type) { swift::crash("Corrupt Swift type object"); } #if SWIFT_OBJC_INTEROP // Objective-c bridging helpers. namespace { struct _ObjectiveCBridgeableWitnessTable; } static const _ObjectiveCBridgeableWitnessTable * findBridgeWitness(const Metadata *T); static bool _dynamicCastValueToClassViaObjCBridgeable( OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const Metadata *targetType, const _ObjectiveCBridgeableWitnessTable *srcBridgeWitness, DynamicCastFlags flags); static bool _dynamicCastValueToClassExistentialViaObjCBridgeable( OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const ExistentialTypeMetadata *targetType, const _ObjectiveCBridgeableWitnessTable *srcBridgeWitness, DynamicCastFlags flags); static bool _dynamicCastClassToValueViaObjCBridgeable( OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const Metadata *targetType, const _ObjectiveCBridgeableWitnessTable *targetBridgeWitness, DynamicCastFlags flags); #endif /// A convenient method for failing out of a dynamic cast. static bool _fail(OpaqueValue *srcValue, const Metadata *srcType, const Metadata *targetType, DynamicCastFlags flags) { if (flags & DynamicCastFlags::Unconditional) swift_dynamicCastFailure(srcType, targetType); if (flags & DynamicCastFlags::DestroyOnFailure) srcType->vw_destroy(srcValue); return false; } static size_t _setupClassMask() { void *handle = dlopen(nullptr, RTLD_LAZY); assert(handle); void *symbol = dlsym(handle, "objc_debug_isa_class_mask"); if (symbol) { return *(uintptr_t *)symbol; } return ~(size_t)0; } size_t swift::swift_classMask = _setupClassMask(); uint8_t swift::swift_classShift = 0; /// Dynamically cast a class object to a Swift class type. const void * swift::swift_dynamicCastClass(const void *object, const ClassMetadata *targetType) { #if SWIFT_OBJC_INTEROP assert(!targetType->isPureObjC()); // Swift native classes never have a tagged-pointer representation. if (isObjCTaggedPointerOrNull(object)) { return nullptr; } #endif auto isa = _swift_getClassOfAllocated(object); do { if (isa == targetType) { return object; } isa = _swift_getSuperclass(isa); } while (isa); return nullptr; } /// Dynamically cast a class object to a Swift class type. const void * swift::swift_dynamicCastClassUnconditional(const void *object, const ClassMetadata *targetType) { auto value = swift_dynamicCastClass(object, targetType); if (value) return value; swift_dynamicCastFailure(_swift_getClass(object), targetType); } #if SWIFT_OBJC_INTEROP static bool _unknownClassConformsToObjCProtocol(const OpaqueValue *value, const ProtocolDescriptor *protocol) { const void *object = *reinterpret_cast(value); return swift_dynamicCastObjCProtocolConditional(object, 1, &protocol); } #endif /// Check whether a type conforms to a protocol. /// /// \param value - can be null, in which case the question should /// be answered abstractly if possible /// \param conformance - if non-null, and the protocol requires a /// witness table, and the type implements the protocol, the witness /// table will be placed here static bool _conformsToProtocol(const OpaqueValue *value, const Metadata *type, const ProtocolDescriptor *protocol, const void **conformance) { // Handle AnyObject directly. // FIXME: strcmp here is horribly slow. if (strcmp(protocol->Name, "_TtPSs9AnyObject_") == 0) { switch (type->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: // Classes conform to AnyObject. return true; case MetadataKind::Existential: { auto sourceExistential = cast(type); // The existential conforms to AnyObject if it's class-constrained. return sourceExistential->isClassBounded(); } case MetadataKind::ExistentialMetatype: // FIXME case MetadataKind::Function: case MetadataKind::Block: // FIXME case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: return false; } _failCorruptType(type); } // FIXME: Can't handle protocols that require witness tables. if (protocol->Flags.needsWitnessTable()) return false; // For Objective-C protocols, check whether we have a class that // conforms to the given protocol. switch (type->getKind()) { case MetadataKind::Class: #if SWIFT_OBJC_INTEROP if (value) { return _unknownClassConformsToObjCProtocol(value, protocol); } else { return _swift_classConformsToObjCProtocol(type, protocol); } #endif return false; case MetadataKind::ObjCClassWrapper: { #if SWIFT_OBJC_INTEROP if (value) { return _unknownClassConformsToObjCProtocol(value, protocol); } else { auto wrapper = cast(type); return _swift_classConformsToObjCProtocol(wrapper->Class, protocol); } #endif return false; } case MetadataKind::ForeignClass: #if SWIFT_OBJC_INTEROP if (value) return _unknownClassConformsToObjCProtocol(value, protocol); return false; #else _failCorruptType(type); #endif case MetadataKind::Existential: // FIXME case MetadataKind::ExistentialMetatype: // FIXME case MetadataKind::Function: case MetadataKind::Block: // FIXME case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: return false; } return false; } /// Check whether a type conforms to the given protocols, filling in a /// list of conformances. static bool _conformsToProtocols(const OpaqueValue *value, const Metadata *type, const ProtocolDescriptorList &protocols, const void **conformances) { for (unsigned i = 0, n = protocols.NumProtocols; i != n; ++i) { const ProtocolDescriptor *protocol = protocols[i]; if (!_conformsToProtocol(value, type, protocol, conformances)) return false; if (protocol->Flags.needsWitnessTable()) { assert(*conformances != nullptr); ++conformances; } } return true; } static const OpaqueValue * _dynamicCastToExistential(const OpaqueValue *value, const Metadata *sourceType, const ExistentialTypeMetadata *targetType) { for (unsigned i = 0, n = targetType->Protocols.NumProtocols; i != n; ++i) { auto *protocol = targetType->Protocols[i]; if (!_conformsToProtocol(value, sourceType, protocol, nullptr)) return nullptr; } return value; } static bool shouldDeallocateSource(bool castSucceeded, DynamicCastFlags flags) { return (castSucceeded && (flags & DynamicCastFlags::TakeOnSuccess)) || (!castSucceeded && (flags & DynamicCastFlags::DestroyOnFailure)); } /// Given that a cast operation is complete, maybe deallocate an /// opaque existential value. static void _maybeDeallocateOpaqueExistential(OpaqueValue *srcExistential, bool castSucceeded, DynamicCastFlags flags) { if (shouldDeallocateSource(castSucceeded, flags)) { auto container = reinterpret_cast(srcExistential); container->Type->vw_deallocateBuffer(&container->Buffer); } } /// Given a possibly-existential value, find its dynamic type and the /// address of its storage. static void findDynamicValueAndType(OpaqueValue *value, const Metadata *type, OpaqueValue *&outValue, const Metadata *&outType) { switch (type->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: { // TODO: avoid unnecessary repeat lookup of // ObjCClassWrapper/ForeignClass when the type matches. outValue = value; outType = swift_getObjectType(*reinterpret_cast(value)); return; } case MetadataKind::Existential: { auto existentialType = cast(type); if (existentialType->isClassBounded()) { auto existential = reinterpret_cast(value); outValue = (OpaqueValue*) &existential->Value; outType = swift_getObjectType((HeapObject*) existential->Value); return; } else { auto existential = reinterpret_cast(value); OpaqueValue *existentialValue = existential->Type->vw_projectBuffer(&existential->Buffer); findDynamicValueAndType(existentialValue, existential->Type, outValue, outType); return; } } case MetadataKind::Metatype: case MetadataKind::ExistentialMetatype: { auto storedType = *(const Metadata **) value; outValue = value; outType = swift_getMetatypeMetadata(storedType); return; } // Non-polymorphic types. case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: outValue = value; outType = type; return; } _failCorruptType(type); } extern "C" const Metadata * swift::swift_getDynamicType(OpaqueValue *value, const Metadata *self) { OpaqueValue *outValue; const Metadata *outType; findDynamicValueAndType(value, self, outValue, outType); return outType; } /// Given a possibly-existential value, deallocate any buffer in its storage. static void deallocateDynamicValue(OpaqueValue *value, const Metadata *type) { switch (type->getKind()) { case MetadataKind::Existential: { auto existentialType = cast(type); if (!existentialType->isClassBounded()) { auto existential = reinterpret_cast(value); // Handle the possibility of nested existentials. OpaqueValue *existentialValue = existential->Type->vw_projectBuffer(&existential->Buffer); deallocateDynamicValue(existentialValue, existential->Type); // Deallocate the buffer. existential->Type->vw_deallocateBuffer(&existential->Buffer); } return; } // None of the rest of these require deallocation. case MetadataKind::Class: case MetadataKind::ForeignClass: case MetadataKind::ObjCClassWrapper: case MetadataKind::Metatype: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: return; } _failCorruptType(type); } /// Perform a dynamic cast to an existential type. static bool _dynamicCastToExistential(OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const ExistentialTypeMetadata *targetType, DynamicCastFlags flags) { // Find the actual type of the source. OpaqueValue *srcDynamicValue; const Metadata *srcDynamicType; findDynamicValueAndType(src, srcType, srcDynamicValue, srcDynamicType); // The representation of an existential is different for // class-bounded protocols. if (targetType->isClassBounded()) { auto destExistential = reinterpret_cast(dest); // If the source type is a value type, it cannot possibly conform // to a class-bounded protocol. switch (srcDynamicType->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Metatype: // Handle these cases below. break; case MetadataKind::Struct: case MetadataKind::Enum: #if SWIFT_OBJC_INTEROP // If the source type is bridged to Objective-C, try to bridge. if (auto srcBridgeWitness = findBridgeWitness(srcDynamicType)) { DynamicCastFlags subFlags = flags - (DynamicCastFlags::TakeOnSuccess | DynamicCastFlags::DestroyOnFailure); bool success = _dynamicCastValueToClassExistentialViaObjCBridgeable( dest, srcDynamicValue, srcDynamicType, targetType, srcBridgeWitness, subFlags); if (src != srcDynamicValue && shouldDeallocateSource(success, flags)) { deallocateDynamicValue(src, srcType); } return success; } #endif break; case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Tuple: // Will never succeed. return _fail(src, srcType, targetType, flags); } // Check for protocol conformances and fill in the witness tables. if (!_conformsToProtocols(srcDynamicValue, srcDynamicType, targetType->Protocols, destExistential->getWitnessTables())) { return _fail(src, srcType, targetType, flags); } auto object = *(reinterpret_cast(srcDynamicValue)); destExistential->Value = object; if (!(flags & DynamicCastFlags::TakeOnSuccess)) { swift_retain_noresult(object); } if (src != srcDynamicValue && shouldDeallocateSource(true, flags)) { deallocateDynamicValue(src, srcType); } return true; } else { auto destExistential = reinterpret_cast(dest); // Check for protocol conformances and fill in the witness tables. if (!_conformsToProtocols(srcDynamicValue, srcDynamicType, targetType->Protocols, destExistential->getWitnessTables())) return _fail(src, srcType, targetType, flags); // Fill in the type and value. destExistential->Type = srcDynamicType; if (flags & DynamicCastFlags::TakeOnSuccess) { srcDynamicType->vw_initializeBufferWithTake(&destExistential->Buffer, srcDynamicValue); } else { srcDynamicType->vw_initializeBufferWithCopy(&destExistential->Buffer, srcDynamicValue); } if (src != srcDynamicValue && shouldDeallocateSource(true, flags)) { deallocateDynamicValue(src, srcType); } return true; } } /// Perform a dynamic class of some sort of class instance to some /// sort of class type. const void * swift::swift_dynamicCastUnknownClass(const void *object, const Metadata *targetType) { switch (targetType->getKind()) { case MetadataKind::Class: { auto targetClassType = static_cast(targetType); return swift_dynamicCastClass(object, targetClassType); } case MetadataKind::ObjCClassWrapper: { #if SWIFT_OBJC_INTEROP auto targetClassType = static_cast(targetType)->Class; return swift_dynamicCastObjCClass(object, targetClassType); #else _failCorruptType(targetType); #endif } case MetadataKind::ForeignClass: { #if SWIFT_OBJC_INTEROP auto targetClassType = static_cast(targetType); return swift_dynamicCastForeignClass(object, targetClassType); #else _failCorruptType(targetType); #endif } case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: swift_dynamicCastFailure(_swift_getClass(object), targetType); } _failCorruptType(targetType); } /// Perform a dynamic class of some sort of class instance to some /// sort of class type. const void * swift::swift_dynamicCastUnknownClassUnconditional(const void *object, const Metadata *targetType) { switch (targetType->getKind()) { case MetadataKind::Class: { auto targetClassType = static_cast(targetType); return swift_dynamicCastClassUnconditional(object, targetClassType); } case MetadataKind::ObjCClassWrapper: { #if SWIFT_OBJC_INTEROP auto targetClassType = static_cast(targetType)->Class; return swift_dynamicCastObjCClassUnconditional(object, targetClassType); #else _failCorruptType(targetType); #endif } case MetadataKind::ForeignClass: { #if SWIFT_OBJC_INTEROP auto targetClassType = static_cast(targetType); return swift_dynamicCastForeignClassUnconditional(object, targetClassType); #else _failCorruptType(targetType); #endif } case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: swift_dynamicCastFailure(_swift_getClass(object), targetType); } _failCorruptType(targetType); } #if SWIFT_OBJC_INTEROP const Metadata * swift::swift_dynamicCastMetatype(const Metadata *sourceType, const Metadata *targetType) { auto origSourceType = sourceType; switch (targetType->getKind()) { case MetadataKind::ObjCClassWrapper: // Get the actual class object. targetType = static_cast(targetType) ->Class; SWIFT_FALLTHROUGH; case MetadataKind::Class: // The source value must also be a class; otherwise the cast fails. switch (sourceType->getKind()) { case MetadataKind::ObjCClassWrapper: // Get the actual class object. sourceType = static_cast(sourceType) ->Class; SWIFT_FALLTHROUGH; case MetadataKind::Class: { // Check if the source is a subclass of the target. // We go through ObjC lookup to deal with potential runtime magic in ObjC // land. if (swift_dynamicCastObjCClassMetatype((const ClassMetadata*)sourceType, (const ClassMetadata*)targetType)) return origSourceType; return nullptr; } case MetadataKind::ForeignClass: { // Check if the source is a subclass of the target. if (swift_dynamicCastForeignClassMetatype( (const ClassMetadata*)sourceType, (const ClassMetadata*)targetType)) return origSourceType; return nullptr; } case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: return nullptr; } break; case MetadataKind::ForeignClass: switch (sourceType->getKind()) { case MetadataKind::ObjCClassWrapper: // Get the actual class object. sourceType = static_cast(sourceType) ->Class; SWIFT_FALLTHROUGH; case MetadataKind::Class: case MetadataKind::ForeignClass: // Check if the source is a subclass of the target. if (swift_dynamicCastForeignClassMetatype( (const ClassMetadata*)sourceType, (const ClassMetadata*)targetType)) return origSourceType; return nullptr; case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: return nullptr; } break; case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: // The cast succeeds only if the metadata pointers are statically // equivalent. if (sourceType != targetType) return nullptr; return origSourceType; } } const Metadata * swift::swift_dynamicCastMetatypeUnconditional(const Metadata *sourceType, const Metadata *targetType) { auto origSourceType = sourceType; switch (targetType->getKind()) { case MetadataKind::ObjCClassWrapper: // Get the actual class object. targetType = static_cast(targetType) ->Class; SWIFT_FALLTHROUGH; case MetadataKind::Class: // The source value must also be a class; otherwise the cast fails. switch (sourceType->getKind()) { case MetadataKind::ObjCClassWrapper: // Get the actual class object. sourceType = static_cast(sourceType) ->Class; SWIFT_FALLTHROUGH; case MetadataKind::Class: { // Check if the source is a subclass of the target. // We go through ObjC lookup to deal with potential runtime magic in ObjC // land. swift_dynamicCastObjCClassMetatypeUnconditional( (const ClassMetadata*)sourceType, (const ClassMetadata*)targetType); // If we returned, then the cast succeeded. return origSourceType; } case MetadataKind::ForeignClass: { // Check if the source is a subclass of the target. swift_dynamicCastForeignClassMetatypeUnconditional( (const ClassMetadata*)sourceType, (const ClassMetadata*)targetType); // If we returned, then the cast succeeded. return origSourceType; } case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: swift_dynamicCastFailure(sourceType, targetType); } break; case MetadataKind::ForeignClass: // The source value must also be a class; otherwise the cast fails. switch (sourceType->getKind()) { case MetadataKind::ObjCClassWrapper: // Get the actual class object. sourceType = static_cast(sourceType) ->Class; SWIFT_FALLTHROUGH; case MetadataKind::Class: case MetadataKind::ForeignClass: // Check if the source is a subclass of the target. swift_dynamicCastForeignClassMetatypeUnconditional( (const ClassMetadata*)sourceType, (const ClassMetadata*)targetType); // If we returned, then the cast succeeded. return origSourceType; case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: swift_dynamicCastFailure(sourceType, targetType); } break; case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: // The cast succeeds only if the metadata pointers are statically // equivalent. if (sourceType != targetType) swift_dynamicCastFailure(sourceType, targetType); return origSourceType; } } #endif /// Do a dynamic cast to the target class. static bool _dynamicCastUnknownClass(OpaqueValue *dest, void *object, const Metadata *targetType, DynamicCastFlags flags) { void **destSlot = reinterpret_cast(dest); // The unconditional path avoids some failure logic. if (flags & DynamicCastFlags::Unconditional) { void *result = const_cast( swift_dynamicCastUnknownClassUnconditional(object, targetType)); *destSlot = result; if (!(flags & DynamicCastFlags::TakeOnSuccess)) { swift_unknownRetain(result); } return true; } // Okay, we're doing a conditional cast. void *result = const_cast(swift_dynamicCastUnknownClass(object, targetType)); assert(result == nullptr || object == result); // If the cast failed, destroy the input and return false. if (!result) { if (flags & DynamicCastFlags::DestroyOnFailure) { swift_unknownRelease(object); } return false; } // Otherwise, store to the destination and return true. *destSlot = result; if (!(flags & DynamicCastFlags::TakeOnSuccess)) { swift_unknownRetain(result); } return true; } /// Perform a dynamic cast from an existential type to some kind of /// class type. static bool _dynamicCastToUnknownClassFromExistential(OpaqueValue *dest, OpaqueValue *src, const ExistentialTypeMetadata *srcType, const Metadata *targetType, DynamicCastFlags flags) { if (srcType->isClassBounded()) { auto classContainer = reinterpret_cast(src); void *obj = classContainer->Value; return _dynamicCastUnknownClass(dest, obj, targetType, flags); } else { auto opaqueContainer = reinterpret_cast(src); auto srcCapturedType = opaqueContainer->Type; OpaqueValue *srcValue = srcCapturedType->vw_projectBuffer(&opaqueContainer->Buffer); bool result = swift_dynamicCast(dest, srcValue, srcCapturedType, targetType, flags); if (src != srcValue) _maybeDeallocateOpaqueExistential(src, result, flags); return result; } } /// Perform a dynamic cast from an existential type to a /// non-existential type. static bool _dynamicCastFromExistential(OpaqueValue *dest, OpaqueValue *src, const ExistentialTypeMetadata *srcType, const Metadata *targetType, DynamicCastFlags flags) { OpaqueValue *srcValue; const Metadata *srcCapturedType; bool isOutOfLine; if (srcType->isClassBounded()) { auto classContainer = reinterpret_cast(src); srcValue = (OpaqueValue*) &classContainer->Value; void *obj = classContainer->Value; srcCapturedType = swift_getObjectType(reinterpret_cast(obj)); isOutOfLine = false; } else { auto opaqueContainer = reinterpret_cast(src); srcCapturedType = opaqueContainer->Type; srcValue = srcCapturedType->vw_projectBuffer(&opaqueContainer->Buffer); isOutOfLine = (src != srcValue); } bool result = swift_dynamicCast(dest, srcValue, srcCapturedType, targetType, flags); if (isOutOfLine) _maybeDeallocateOpaqueExistential(src, result, flags); return result; } #if SWIFT_OBJC_INTEROP /// Perform a dynamic cast of a metatype to a metatype. /// /// Note that the check is whether 'metatype' is an *instance of* /// 'targetType', not a *subtype of it*. static bool _dynamicCastMetatypeToMetatype(OpaqueValue *dest, const Metadata *metatype, const MetatypeMetadata *targetType, DynamicCastFlags flags) { const Metadata *result; if (flags & DynamicCastFlags::Unconditional) { result = swift_dynamicCastMetatypeUnconditional(metatype, targetType->InstanceType); } else { result = swift_dynamicCastMetatype(metatype, targetType->InstanceType); if (!result) return false; } *((const Metadata **) dest) = result; return true; } /// Check whether an unknown class instance is actually a class object. static const Metadata *_getUnknownClassAsMetatype(void *object) { // Class values are currently never metatypes (?). return nullptr; } /// Perform a dynamic cast of a class value to a metatype type. static bool _dynamicCastUnknownClassToMetatype(OpaqueValue *dest, void *object, const MetatypeMetadata *targetType, DynamicCastFlags flags) { if (auto metatype = _getUnknownClassAsMetatype(object)) return _dynamicCastMetatypeToMetatype(dest, metatype, targetType, flags); if (flags & DynamicCastFlags::Unconditional) swift_dynamicCastFailure(_swift_getClass(object), targetType); if (flags & DynamicCastFlags::DestroyOnFailure) swift_release((HeapObject*) object); return false; } /// Perform a dynamic cast to a metatype type. static bool _dynamicCastToMetatype(OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const MetatypeMetadata *targetType, DynamicCastFlags flags) { switch (srcType->getKind()) { case MetadataKind::Metatype: { const Metadata *srcMetatype = *(const Metadata * const *) src; return _dynamicCastMetatypeToMetatype(dest, srcMetatype, targetType, flags); } case MetadataKind::ExistentialMetatype: { const Metadata *srcMetatype = *(const Metadata * const *) src; return _dynamicCastMetatypeToMetatype(dest, srcMetatype, targetType, flags); } case MetadataKind::Existential: { auto srcExistentialType = cast(srcType); if (srcExistentialType->isClassBounded()) { auto srcExistential = (ClassExistentialContainer*) src; return _dynamicCastUnknownClassToMetatype(dest, srcExistential->Value, targetType, flags); } else { auto srcExistential = (OpaqueExistentialContainer*) src; auto srcValueType = srcExistential->Type; auto srcValue = srcValueType->vw_projectBuffer(&srcExistential->Buffer); bool result = _dynamicCastToMetatype(dest, srcValue, srcValueType, targetType, flags); if (src != srcValue) _maybeDeallocateOpaqueExistential(src, result, flags); return result; } } case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: { auto object = reinterpret_cast(src); return _dynamicCastUnknownClassToMetatype(dest, object, targetType, flags); } case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: return _fail(src, srcType, targetType, flags); } _failCorruptType(srcType); } /// Perform a dynamic cast of a metatype to an existential metatype type. static bool _dynamicCastMetatypeToExistentialMetatype(OpaqueValue *dest, const Metadata *srcMetatype, const ExistentialMetatypeMetadata *targetType, DynamicCastFlags flags, bool writeDestMetatype = true) { // The instance type of an existential metatype must be either an // existential or an existential metatype. // If it's an existential, we need to check for conformances. auto targetInstanceType = targetType->InstanceType; if (auto targetInstanceTypeAsExistential = dyn_cast(targetInstanceType)) { // Check for conformance to all the protocols. // TODO: collect the witness tables. auto &protocols = targetInstanceTypeAsExistential->Protocols; for (unsigned i = 0, n = protocols.NumProtocols; i != n; ++i) { const ProtocolDescriptor *protocol = protocols[i]; if (!_conformsToProtocol(nullptr, srcMetatype, protocol, nullptr)) { if (flags & DynamicCastFlags::Unconditional) swift_dynamicCastFailure(srcMetatype, targetType); return false; } } if (writeDestMetatype) *((const Metadata **) dest) = srcMetatype; return true; } // Otherwise, we're casting to SomeProtocol.Type.Type. auto targetInstanceTypeAsMetatype = cast(targetInstanceType); // If the source type isn't a metatype, the cast fails. auto srcMetatypeMetatype = dyn_cast(srcMetatype); if (!srcMetatypeMetatype) { if (flags & DynamicCastFlags::Unconditional) swift_dynamicCastFailure(srcMetatype, targetType); return false; } // The representation of an existential metatype remains consistent // arbitrarily deep: a metatype, followed by some protocols. The // protocols are the same at every level, so we can just set the // metatype correctly and then recurse, letting the recursive call // fill in the conformance information correctly. // Proactively set the destination metatype so that we can tail-recurse, // unless we've already done so. There's no harm in doing this even if // the cast fails. if (writeDestMetatype) *((const Metadata **) dest) = srcMetatype; // Recurse. auto srcInstanceType = srcMetatypeMetatype->InstanceType; return _dynamicCastMetatypeToExistentialMetatype(dest, srcInstanceType, targetInstanceTypeAsMetatype, flags, /*overwrite*/ false); } /// Perform a dynamic cast of a class value to an existential metatype type. static bool _dynamicCastUnknownClassToExistentialMetatype(OpaqueValue *dest, void *object, const ExistentialMetatypeMetadata *targetType, DynamicCastFlags flags) { if (auto metatype = _getUnknownClassAsMetatype(object)) return _dynamicCastMetatypeToExistentialMetatype(dest, metatype, targetType, flags); // Class values are currently never metatypes (?). if (flags & DynamicCastFlags::Unconditional) swift_dynamicCastFailure(_swift_getClass(object), targetType); if (flags & DynamicCastFlags::DestroyOnFailure) swift_release((HeapObject*) object); return false; } /// Perform a dynamic cast to an existential metatype type. static bool _dynamicCastToExistentialMetatype(OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const ExistentialMetatypeMetadata *targetType, DynamicCastFlags flags) { switch (srcType->getKind()) { case MetadataKind::Metatype: { const Metadata *srcMetatype = *(const Metadata * const *) src; return _dynamicCastMetatypeToExistentialMetatype(dest, srcMetatype, targetType, flags); } // TODO: take advantage of protocol conformances already known. case MetadataKind::ExistentialMetatype: { const Metadata *srcMetatype = *(const Metadata * const *) src; return _dynamicCastMetatypeToExistentialMetatype(dest, srcMetatype, targetType, flags); } case MetadataKind::Existential: { auto srcExistentialType = cast(srcType); if (srcExistentialType->isClassBounded()) { auto srcExistential = (ClassExistentialContainer*) src; return _dynamicCastUnknownClassToExistentialMetatype(dest, srcExistential->Value, targetType, flags); } else { auto srcExistential = (OpaqueExistentialContainer*) src; auto srcValueType = srcExistential->Type; auto srcValue = srcValueType->vw_projectBuffer(&srcExistential->Buffer); bool result = _dynamicCastToExistentialMetatype(dest, srcValue, srcValueType, targetType, flags); if (src != srcValue) _maybeDeallocateOpaqueExistential(src, result, flags); return result; } } case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: if (flags & DynamicCastFlags::Unconditional) { swift_dynamicCastFailure(srcType, targetType); } return false; } _failCorruptType(srcType); } #endif /// Perform a dynamic cast to an arbitrary type. bool swift::swift_dynamicCast(OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const Metadata *targetType, DynamicCastFlags flags) { switch (targetType->getKind()) { // Casts to class type. case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: switch (srcType->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: { // Do a dynamic cast on the instance pointer. void *object = *reinterpret_cast(src); return _dynamicCastUnknownClass(dest, object, targetType, flags); } case MetadataKind::Existential: { auto srcExistentialType = cast(srcType); return _dynamicCastToUnknownClassFromExistential(dest, src, srcExistentialType, targetType, flags); } case MetadataKind::Enum: case MetadataKind::Struct: { #if SWIFT_OBJC_INTEROP // If the source type is bridged to Objective-C, try to bridge. if (auto srcBridgeWitness = findBridgeWitness(srcType)) { return _dynamicCastValueToClassViaObjCBridgeable(dest, src, srcType, targetType, srcBridgeWitness, flags); } #endif return _fail(src, srcType, targetType, flags); } case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Tuple: return _fail(src, srcType, targetType, flags); } break; case MetadataKind::Existential: return _dynamicCastToExistential(dest, src, srcType, cast(targetType), flags); case MetadataKind::Metatype: #if SWIFT_OBJC_INTEROP return _dynamicCastToMetatype(dest, src, srcType, cast(targetType), flags); #else return _fail(src, srcType, targetType, flags); #endif case MetadataKind::ExistentialMetatype: #if SWIFT_OBJC_INTEROP return _dynamicCastToExistentialMetatype(dest, src, srcType, cast(targetType), flags); #else return _fail(src, srcType, targetType, flags); #endif case MetadataKind::Struct: case MetadataKind::Enum: switch (srcType->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: { #if SWIFT_OBJC_INTEROP // If the target type is bridged to Objective-C, try to bridge. if (auto targetBridgeWitness = findBridgeWitness(targetType)) { return _dynamicCastClassToValueViaObjCBridgeable(dest, src, srcType, targetType, targetBridgeWitness, flags); } #endif break; } case MetadataKind::Enum: case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: break; } SWIFT_FALLTHROUGH; // The non-polymorphic types. case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Tuple: // If there's an exact type match, we're done. if (srcType == targetType) { if (flags & DynamicCastFlags::TakeOnSuccess) { srcType->vw_initializeWithTake(dest, src); } else { srcType->vw_initializeWithCopy(dest, src); } return true; } // If we have an existential, look at its dynamic type. if (auto srcExistentialType = dyn_cast(srcType)) { return _dynamicCastFromExistential(dest, src, srcExistentialType, targetType, flags); } // Otherwise, we have a failure. return _fail(src, srcType, targetType, flags); } _failCorruptType(srcType); } const OpaqueValue * swift::swift_dynamicCastIndirect(const OpaqueValue *value, const Metadata *sourceType, const Metadata *targetType) { switch (targetType->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: // The source value must also be a class; otherwise the cast fails. switch (sourceType->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: { // Do a dynamic cast on the instance pointer. const void *object = *reinterpret_cast(value); if (!swift_dynamicCastUnknownClass(object, targetType)) return nullptr; break; } case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: return nullptr; } break; case MetadataKind::Existential: return _dynamicCastToExistential(value, sourceType, (const ExistentialTypeMetadata*)targetType); case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: // The cast succeeds only if the metadata pointers are statically // equivalent. if (sourceType != targetType) return nullptr; break; } return value; } const OpaqueValue * swift::swift_dynamicCastIndirectUnconditional(const OpaqueValue *value, const Metadata *sourceType, const Metadata *targetType) { switch (targetType->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: // The source value must also be a class; otherwise the cast fails. switch (sourceType->getKind()) { case MetadataKind::Class: case MetadataKind::ObjCClassWrapper: case MetadataKind::ForeignClass: { // Do a dynamic cast on the instance pointer. const void *object = *reinterpret_cast(value); swift_dynamicCastUnknownClassUnconditional(object, targetType); break; } case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: swift_dynamicCastFailure(sourceType, targetType); } break; case MetadataKind::Existential: { auto r = _dynamicCastToExistential(value, sourceType, (const ExistentialTypeMetadata*)targetType); if (!r) swift_dynamicCastFailure(sourceType, targetType); return r; } case MetadataKind::ExistentialMetatype: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::HeapLocalVariable: case MetadataKind::Metatype: case MetadataKind::Enum: case MetadataKind::Opaque: case MetadataKind::PolyFunction: case MetadataKind::Struct: case MetadataKind::Tuple: // The cast succeeds only if the metadata pointers are statically // equivalent. if (sourceType != targetType) swift_dynamicCastFailure(sourceType, targetType); break; } return value; } #if defined(NDEBUG) && SWIFT_OBJC_INTEROP void ProtocolConformanceRecord::dump() const { auto symbolName = [&](const void *addr) -> const char * { Dl_info info; int ok = dladdr(addr, &info); if (!ok) return ""; return info.dli_sname; }; switch (auto kind = getTypeKind()) { case ProtocolConformanceTypeKind::Universal: printf("universal"); break; case ProtocolConformanceTypeKind::UniqueDirectType: case ProtocolConformanceTypeKind::NonuniqueDirectType: printf("%s direct type ", kind == ProtocolConformanceTypeKind::UniqueDirectType ? "unique" : "nonunique"); if (auto ntd = getDirectType()->getNominalTypeDescriptor()) { printf("%s", ntd->Name); } else { printf(""); } break; case ProtocolConformanceTypeKind::UniqueDirectClass: printf("unique direct class %s", class_getName(getDirectClass())); break; case ProtocolConformanceTypeKind::UniqueIndirectClass: printf("unique indirect class %s", class_getName(*getIndirectClass())); break; case ProtocolConformanceTypeKind::UniqueGenericPattern: printf("unique generic type %s", symbolName(getGenericPattern())); break; } printf(" => "); switch (getConformanceKind()) { case ProtocolConformanceReferenceKind::WitnessTable: printf("witness table %s\n", symbolName(getStaticWitnessTable())); break; case ProtocolConformanceReferenceKind::WitnessTableAccessor: printf("witness table accessor %s\n", symbolName((const void *)(uintptr_t)getWitnessTableAccessor())); break; } } #endif /// Take the type reference inside a protocol conformance record and fetch the /// canonical metadata pointer for the type it refers to. /// Returns nil for universal or generic type references. const Metadata *ProtocolConformanceRecord::getCanonicalTypeMetadata() const { switch (getTypeKind()) { case ProtocolConformanceTypeKind::UniqueDirectType: // Already unique. return getDirectType(); case ProtocolConformanceTypeKind::NonuniqueDirectType: // Ask the runtime for the unique metadata record we've canonized. return swift_getForeignTypeMetadata((ForeignTypeMetadata*)getDirectType()); case ProtocolConformanceTypeKind::UniqueIndirectClass: // The class may be ObjC, in which case we need to instantiate its Swift // metadata. return swift_getObjCClassMetadata(*getIndirectClass()); case ProtocolConformanceTypeKind::UniqueDirectClass: // The class may be ObjC, in which case we need to instantiate its Swift // metadata. return swift_getObjCClassMetadata(getDirectClass()); case ProtocolConformanceTypeKind::UniqueGenericPattern: case ProtocolConformanceTypeKind::Universal: // The record does not apply to a single type. return nullptr; } } const void *ProtocolConformanceRecord::getWitnessTable(const Metadata *type) const { switch (getConformanceKind()) { case ProtocolConformanceReferenceKind::WitnessTable: return getStaticWitnessTable(); case ProtocolConformanceReferenceKind::WitnessTableAccessor: return getWitnessTableAccessor()(type); } } // TODO: Implement protocol conformance lookup for non-Apple environments #ifdef __APPLE__ #define SWIFT_PROTOCOL_CONFORMANCES_SECTION "__swift1_proto" // dispatch_once token to install the dyld callback to enqueue images for // protocol conformance lookup. static dispatch_once_t InstallProtocolConformanceAddImageCallbackOnce = 0; // Monotonic generation number that is increased when we load an image with // new protocol conformances. // // Although this is atomically readable, writes or cached stores of the value // must be guarded by the SectionsToScanLock in order to ensure the generation // number agrees with the state of the queue at the time of caching. static std::atomic ProtocolConformanceGeneration = ATOMIC_VAR_INIT(0); namespace { struct ConformanceSection { const ProtocolConformanceRecord *Begin, *End; const ProtocolConformanceRecord *begin() const { return Begin; } const ProtocolConformanceRecord *end() const { return End; } }; struct ConformanceCacheKey { private: // The type or generic pattern that the cached witness table applies to. const void *Type; // The protocol the witness table witnesses. const ProtocolDescriptor *Protocol; friend struct llvm::DenseMapInfo; public: ConformanceCacheKey() = default; // Create a conformance cache key for a witness table that applies to a // specific type. ConformanceCacheKey(const Metadata *type, const ProtocolDescriptor *proto) : Type(type), Protocol(proto) {} // Create a conformance cache key for a witness table that can apply to any // instance of a generic type. ConformanceCacheKey(const GenericMetadata *generic, const ProtocolDescriptor *proto) : Type(generic), Protocol(proto) {} bool operator==(ConformanceCacheKey other) { return Type == other.Type && Protocol == other.Protocol; } bool operator!=(ConformanceCacheKey other) { return Type != other.Type || Protocol != other.Protocol; } }; struct ConformanceCacheEntry { private: uintptr_t Data; // All Darwin 64-bit platforms reserve the low 2^32 of address space, which // is more than enough invalid pointer values for any realistic generation // number. It's a little easier to overflow on 32-bit, so we need an extra // bit there. #if !__LP64__ bool Success; #endif ConformanceCacheEntry(uintptr_t Data, bool Success) : Data(Data) #if !__LP64__ , Success(Success) #endif {} public: ConformanceCacheEntry() = default; /// Cache entry for a successful lookup. static ConformanceCacheEntry success(const void *value) { return ConformanceCacheEntry((uintptr_t)value, true); } /// Cache entry for a failed lookup. static ConformanceCacheEntry failure(unsigned generation) { return ConformanceCacheEntry((uintptr_t)generation, false); } bool isSuccessful() const { #if __LP64__ return Data > 0xFFFFFFFFU; #else return Success; #endif } /// Get the cached witness table, if successful. const void *getWitnessTable() const { assert(isSuccessful()); return (const void *)Data; } /// Get the generation number under which this lookup failed. unsigned getFailureGeneration() const { assert(!isSuccessful()); return Data; } }; } namespace llvm { template<> struct DenseMapInfo { static ConformanceCacheKey getEmptyKey() { return {(Metadata*)nullptr, nullptr}; } static ConformanceCacheKey getTombstoneKey() { return {(Metadata*)1, nullptr}; } static unsigned getHashValue(ConformanceCacheKey value) { return llvm::combineHashValue( DenseMapInfo::getHashValue(value.Type), DenseMapInfo::getHashValue(value.Protocol)); } static bool isEqual(ConformanceCacheKey a, ConformanceCacheKey b) { return a == b; } }; } // Found conformances. static pthread_rwlock_t ConformanceCacheLock = PTHREAD_RWLOCK_INITIALIZER; static llvm::DenseMap ConformanceCache; unsigned ConformanceCacheGeneration = 0; // Conformance sections pending a scan. // TODO: This could easily be a lock-free FIFO. static pthread_mutex_t SectionsToScanLock = PTHREAD_MUTEX_INITIALIZER; static std::deque SectionsToScan; void swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin, const ProtocolConformanceRecord *end){ pthread_mutex_lock(&SectionsToScanLock); // Increase the generation to invalidate cached negative lookups. ++ProtocolConformanceGeneration; SectionsToScan.push_back(ConformanceSection{begin, end}); pthread_mutex_unlock(&SectionsToScanLock); } static void _addImageProtocolConformances(const mach_header *mh, intptr_t vmaddr_slide) { #ifdef __LP64__ using mach_header_platform = mach_header_64; assert(mh->magic == MH_MAGIC_64 && "loaded non-64-bit image?!"); #else using mach_header_platform = mach_header; #endif // Look for a __swift1_proto section. unsigned long conformancesSize; const uint8_t *conformances = getsectiondata(reinterpret_cast(mh), SEG_DATA, SWIFT_PROTOCOL_CONFORMANCES_SECTION, &conformancesSize); if (!conformances) return; assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 && "weird-sized conformances section?!"); // If we have a section, enqueue the conformances for lookup. auto recordsBegin = reinterpret_cast(conformances); auto recordsEnd = reinterpret_cast (conformances + conformancesSize); swift_registerProtocolConformances(recordsBegin, recordsEnd); } const void *swift::swift_conformsToProtocol(const Metadata *type, const ProtocolDescriptor *protocol){ // TODO: Generic types, subclasses, foreign classes // Install our dyld callback if we haven't already. // Dyld will invoke this on our behalf for all images that have already been // loaded. dispatch_once(&InstallProtocolConformanceAddImageCallbackOnce, ^(void){ _dyld_register_func_for_add_image(_addImageProtocolConformances); }); auto origType = type; recur: // See if we have a cached conformance. // Try the specific type first. pthread_rwlock_rdlock(&ConformanceCacheLock); recur_inside_cache_lock: auto found = ConformanceCache.find({type, protocol}); if (found != ConformanceCache.end()) { auto entry = found->second; if (entry.isSuccessful()) { pthread_rwlock_unlock(&ConformanceCacheLock); return entry.getWitnessTable(); } // If we got a cached negative response, check the generation number. if (entry.getFailureGeneration() == ProtocolConformanceGeneration) { pthread_rwlock_unlock(&ConformanceCacheLock); return nullptr; } } // If the type is generic, see if there's a shared nondependent witness table // for its instances. if (auto generic = type->getGenericPattern()) { found = ConformanceCache.find({generic, protocol}); if (found != ConformanceCache.end()) { auto entry = found->second; if (entry.isSuccessful()) { pthread_rwlock_unlock(&ConformanceCacheLock); return entry.getWitnessTable(); } // We don't try to cache negative responses for generic // patterns. } } // If the type is a class, try its superclass. if (const ClassMetadata *classType = type->getClassObject()) { if (auto super = classType->SuperClass) { if (super != getRootSuperclass()) { type = swift_getObjCClassMetadata(super); goto recur_inside_cache_lock; } } } unsigned failedGeneration = ConformanceCacheGeneration; pthread_rwlock_unlock(&ConformanceCacheLock); // If we didn't have an up-to-date cache entry, scan the conformance records. pthread_mutex_lock(&SectionsToScanLock); pthread_rwlock_wrlock(&ConformanceCacheLock); // If we have no new information to pull in (and nobody else pulled in // new information while we waited on the lock), we're done. if (SectionsToScan.empty()) { if (failedGeneration != ConformanceCacheGeneration) { // Someone else pulled in new conformances while we were waiting. // Start over with our newly-populated cache. pthread_rwlock_unlock(&ConformanceCacheLock); pthread_mutex_unlock(&SectionsToScanLock); type = origType; goto recur; } // Cache the negative result. ConformanceCache[{type, protocol}] = ConformanceCacheEntry::failure(ProtocolConformanceGeneration); pthread_rwlock_unlock(&ConformanceCacheLock); pthread_mutex_unlock(&SectionsToScanLock); return nullptr; } while (!SectionsToScan.empty()) { auto section = SectionsToScan.front(); SectionsToScan.pop_front(); // Eagerly pull records for nondependent witnesses into our cache. for (const auto &record : section) { // If the record applies to a specific type, cache it. if (auto metadata = record.getCanonicalTypeMetadata()) { auto witness = record.getWitnessTable(metadata); ConformanceCacheEntry cacheEntry; if (witness) cacheEntry = ConformanceCacheEntry::success(witness); else cacheEntry = ConformanceCacheEntry::failure(ProtocolConformanceGeneration); ConformanceCache[{metadata, record.getProtocol()}] = cacheEntry; // If the record provides a nondependent witness table for all instances // of a generic type, cache it for the generic pattern. // TODO: "Nondependent witness table" probably deserves its own flag. // An accessor function might still be necessary even if the witness table // can be shared. } else if (record.getTypeKind() == ProtocolConformanceTypeKind::UniqueGenericPattern && record.getConformanceKind() == ProtocolConformanceReferenceKind::WitnessTable) { ConformanceCache[{record.getGenericPattern(), record.getProtocol()}] = ConformanceCacheEntry::success(record.getStaticWitnessTable()); } } } ++ConformanceCacheGeneration; pthread_rwlock_unlock(&ConformanceCacheLock); pthread_mutex_unlock(&SectionsToScanLock); // Start over with our newly-populated cache. type = origType; goto recur; } #else // if !__APPLE__ const void *swift::swift_conformsToProtocol(const Metadata *type, const ProtocolDescriptor *protocol){ // Not implemented for non-Apple platforms. return nullptr; } #endif // __APPLE__ // The return type is incorrect. It is only important that it is // passed using 'sret'. extern "C" OpaqueExistentialContainer _TFSs24_injectValueIntoOptionalU__FQ_GSqQ__(OpaqueValue *value, const Metadata *T); // The return type is incorrect. It is only important that it is // passed using 'sret'. extern "C" OpaqueExistentialContainer _TFSs26_injectNothingIntoOptionalU__FT_GSqQ__(const Metadata *T); // Test harness for using swift_conformsToProtocol2 from Swift source. // // func _stdlib_dynamicCastToExistential1_2( // value: SourceType, // _: DestType.Type // ) -> DestType? // // The return type is incorrect. It is only important that it is // passed using 'sret'. extern "C" OpaqueExistentialContainer swift_stdlib_dynamicCastToExistential1_2( OpaqueValue *sourceValue, const Metadata *_destType, const Metadata *sourceType, const Metadata *destType) { assert(destType->getKind() == MetadataKind::Existential); auto destExistential = static_cast(destType); assert(destExistential->Protocols.NumProtocols == 1); auto protocol = destExistential->Protocols[0]; auto witness = swift_conformsToProtocol(sourceType, protocol); if (!witness) return _TFSs26_injectNothingIntoOptionalU__FT_GSqQ__(destType); OpaqueExistentialBox<1>::Container outValue; outValue.Header.Type = sourceType; outValue.WitnessTables[0] = witness; sourceType->vw_initializeBufferWithTake(outValue.getBuffer(), sourceValue); return _TFSs24_injectValueIntoOptionalU__FQ_GSqQ__( reinterpret_cast(&outValue), destType); } /// Given a possibly-existential value, find its dynamic type and the /// address of its storage. static bool findDynamicValueAndType_NoMetatypes(OpaqueValue *value, const Metadata *type, OpaqueValue *&outValue, const Metadata *&outType) { // FIXME: workaround for . // // Filter out metatypes because 'findDynamicValueAndType' can crash. // Metatypes sometimes contain garbage metadata pointers. // // When the bug is fixed, replace calls to this function with direct calls to // 'findDynamicValueAndType'. if (type->getKind() == MetadataKind::Metatype || type->getKind() == MetadataKind::ExistentialMetatype) return false; findDynamicValueAndType(value, type, outValue, outType); return true; } static const void * findWitnessTableForDynamicCastToExistential1(OpaqueValue *sourceValue, const Metadata *sourceType, const Metadata *destType) { if (destType->getKind() != MetadataKind::Existential) swift::crash("Swift protocol conformance check failed: " "destination type is not an existential"); auto destExistentialMetadata = static_cast(destType); if (destExistentialMetadata->Protocols.NumProtocols != 1) swift::crash("Swift protocol conformance check failed: " "destination type conforms more than to one protocol"); auto destProtocolDescriptor = destExistentialMetadata->Protocols[0]; if (sourceType->getKind() == MetadataKind::Existential) swift::crash("Swift protocol conformance check failed: " "source type is an existential"); return swift_conformsToProtocol(sourceType, destProtocolDescriptor); } // func _stdlib_conformsToProtocol( // value: SourceType, _: DestType.Type // ) -> Bool extern "C" bool swift_stdlib_conformsToProtocol( OpaqueValue *sourceValue, const Metadata *_destType, const Metadata *sourceType, const Metadata *destType) { // Find the actual type of the source. OpaqueValue *sourceDynamicValue; const Metadata *sourceDynamicType; if (!findDynamicValueAndType_NoMetatypes(sourceValue, sourceType, sourceDynamicValue, sourceDynamicType)) { sourceType->vw_destroy(sourceValue); return false; } auto vw = findWitnessTableForDynamicCastToExistential1( sourceDynamicValue, sourceDynamicType, destType); sourceType->vw_destroy(sourceValue); return vw != nullptr; } // Work around a really dumb clang bug where it doesn't instantiate // the return type first. #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wreturn-type-c-linkage" // func _stdlib_dynamicCastToExistential1Unconditional( // value: SourceType, // _: DestType.Type // ) -> DestType extern "C" FixedOpaqueExistentialContainer<1> swift_stdlib_dynamicCastToExistential1Unconditional( OpaqueValue *sourceValue, const Metadata *_destType, const Metadata *sourceType, const Metadata *destType) { // Find the actual type of the source. OpaqueValue *sourceDynamicValue; const Metadata *sourceDynamicType; if (!findDynamicValueAndType_NoMetatypes(sourceValue, sourceType, sourceDynamicValue, sourceDynamicType)) { swift::crash("Swift dynamic cast failed: " "type (metatype) does not conform to the protocol"); } auto vw = findWitnessTableForDynamicCastToExistential1( sourceDynamicValue, sourceDynamicType, destType); if (!vw) swift::crash("Swift dynamic cast failed: " "type does not conform to the protocol"); // Note: use the 'sourceDynamicType', which has been adjusted to the // dynamic type of the value. It is important so that we don't return a // value with Existential metadata. using box = OpaqueExistentialBox<1>; box::Container outValue; outValue.Header.Type = sourceDynamicType; outValue.WitnessTables[0] = vw; sourceDynamicType->vw_initializeBufferWithTake(outValue.getBuffer(), sourceDynamicValue); return outValue; } #pragma clang diagnostic pop // func _stdlib_dynamicCastToExistential1( // value: SourceType, // _: DestType.Type // ) -> DestType? // // The return type is incorrect. It is only important that it is // passed using 'sret'. extern "C" OpaqueExistentialContainer swift_stdlib_dynamicCastToExistential1( OpaqueValue *sourceValue, const Metadata *_destType, const Metadata *sourceType, const Metadata *destType) { // Find the actual type of the source. OpaqueValue *sourceDynamicValue; const Metadata *sourceDynamicType; if (!findDynamicValueAndType_NoMetatypes(sourceValue, sourceType, sourceDynamicValue, sourceDynamicType)) { sourceType->vw_destroy(sourceValue); return _TFSs26_injectNothingIntoOptionalU__FT_GSqQ__(destType); } auto vw = findWitnessTableForDynamicCastToExistential1( sourceDynamicValue, sourceDynamicType, destType); if (!vw) { sourceType->vw_destroy(sourceValue); return _TFSs26_injectNothingIntoOptionalU__FT_GSqQ__(destType); } // Note: use the 'sourceDynamicType', which has been adjusted to the // dynamic type of the value. It is important so that we don't return a // value with Existential metadata. using box = OpaqueExistentialBox<1>; box::Container outValue; outValue.Header.Type = sourceDynamicType; outValue.WitnessTables[0] = vw; sourceDynamicType->vw_initializeBufferWithTake(outValue.getBuffer(), sourceDynamicValue); return _TFSs24_injectValueIntoOptionalU__FQ_GSqQ__( reinterpret_cast(&outValue), destType); } static inline bool swift_isClassOrObjCExistentialImpl(const Metadata *T) { auto kind = T->getKind(); #if SWIFT_OBJC_INTEROP return Metadata::isAnyKindOfClass(kind) || (kind == MetadataKind::Existential && static_cast(T)->isObjC()); #else return Metadata::isAnyKindOfClass(kind); #endif } #if SWIFT_OBJC_INTEROP //===----------------------------------------------------------------------===// // Bridging to and from Objective-C //===----------------------------------------------------------------------===// namespace { // protocol _ObjectiveCBridgeableWitnessTable { struct _ObjectiveCBridgeableWitnessTable { // typealias _ObjectiveCType: class const Metadata *ObjectiveCType; // class func _isBridgedToObjectiveC() -> bool bool (*isBridgedToObjectiveC)(const Metadata *value, const Metadata *T); // class func _getObjectiveCType() -> Any.Type const Metadata *(*getObjectiveCType)(const Metadata *self, const Metadata *selfType); // func _bridgeToObjectiveC() -> _ObjectiveCType HeapObject *(*bridgeToObjectiveC)(OpaqueValue *self, const Metadata *Self); // class func _forceBridgeFromObjectiveC(x: _ObjectiveCType, // inout result: Self?) void (*forceBridgeFromObjectiveC)(HeapObject *sourceValue, OpaqueValue *result, const Metadata *self, const Metadata *selfType); // class func _conditionallyBridgeFromObjectiveC(x: _ObjectiveCType, // inout result: Self?) -> Bool bool (*conditionallyBridgeFromObjectiveC)(HeapObject *sourceValue, OpaqueValue *result, const Metadata *self, const Metadata *selfType); }; // } } // unnamed namespace extern "C" const ProtocolDescriptor _TMpSs21_ObjectiveCBridgeable; /// Dynamic cast from a value type that conforms to the _ObjectiveCBridgeable /// protocol to a class type, first by bridging the value to its Objective-C /// object representation and then by dynamic casting that object to the /// resulting target type. static bool _dynamicCastValueToClassViaObjCBridgeable( OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const Metadata *targetType, const _ObjectiveCBridgeableWitnessTable *srcBridgeWitness, DynamicCastFlags flags) { // Check whether the source is bridged to Objective-C. if (!srcBridgeWitness->isBridgedToObjectiveC(srcType, srcType)) { return _fail(src, srcType, targetType, flags); } // Bridge the source value to an object. auto srcBridgedObject = srcBridgeWitness->bridgeToObjectiveC(src, srcType); // Dynamic cast the object to the resulting class type. The // additional flags essneitally make this call act as taking the // source object at +1. DynamicCastFlags classCastFlags = flags | DynamicCastFlags::TakeOnSuccess | DynamicCastFlags::DestroyOnFailure; bool success = _dynamicCastUnknownClass(dest, srcBridgedObject, targetType, classCastFlags); // Clean up the source if we're supposed to. if (shouldDeallocateSource(success, flags)) { srcType->vw_destroy(src); } // We're done. return success; } /// Dynamic cast from a value type that conforms to the /// _ObjectiveCBridgeable protocol to a class-bounded existential, /// first by bridging the value to its Objective-C object /// representation and then by dynamic-casting that object to the /// resulting target type. static bool _dynamicCastValueToClassExistentialViaObjCBridgeable( OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const ExistentialTypeMetadata *targetType, const _ObjectiveCBridgeableWitnessTable *srcBridgeWitness, DynamicCastFlags flags) { // Check whether the source is bridged to Objective-C. if (!srcBridgeWitness->isBridgedToObjectiveC(srcType, srcType)) { return _fail(src, srcType, targetType, flags); } // Bridge the source value to an object. auto srcBridgedObject = srcBridgeWitness->bridgeToObjectiveC(src, srcType); // Try to cast the object to the destination existential. DynamicCastFlags subFlags = DynamicCastFlags::TakeOnSuccess | DynamicCastFlags::DestroyOnFailure; if (flags & DynamicCastFlags::Unconditional) subFlags |= DynamicCastFlags::Unconditional; bool success = _dynamicCastToExistential( dest, (OpaqueValue *)&srcBridgedObject, swift_getObjectType(srcBridgedObject), targetType, subFlags); // Clean up the source if we're supposed to. if (shouldDeallocateSource(success, flags)) { srcType->vw_destroy(src); } // We're done. return success; } /// Dynamic cast from a class type to a value type that conforms to the /// _ObjectiveCBridgeable, first by dynamic casting the object to the /// Objective-C class to which the value type is bridged, and then bridging /// from that object to the value type via the witness table. static bool _dynamicCastClassToValueViaObjCBridgeable( OpaqueValue *dest, OpaqueValue *src, const Metadata *srcType, const Metadata *targetType, const _ObjectiveCBridgeableWitnessTable *targetBridgeWitness, DynamicCastFlags flags) { // Check whether the target is bridged to Objective-C. if (!targetBridgeWitness->isBridgedToObjectiveC(targetType, targetType)) { return _fail(src, srcType, targetType, flags); } // Determine the class type to which the target value type is bridged. auto targetBridgedClass = targetBridgeWitness->getObjectiveCType(targetType, targetType); // Dynamic cast the source object to the class type to which the target value // type is bridged. If we succeed, we can bridge from there; if we fail, // there's nothing more to do. void *srcObject = *reinterpret_cast(src); DynamicCastFlags classCastFlags = flags; void *srcBridgedObject = nullptr; if (!_dynamicCastUnknownClass( reinterpret_cast(&srcBridgedObject), srcObject, targetBridgedClass, classCastFlags)) { return false; } // Unless we're always supposed to consume the input, retain the // object because the witness takes it at +1. bool alwaysConsumeSrc = (flags & DynamicCastFlags::TakeOnSuccess) && (flags & DynamicCastFlags::DestroyOnFailure); if (!alwaysConsumeSrc) { swift_unknownRetain(srcBridgedObject); } // Object that frees a buffer when it goes out of scope. struct FreeBuffer { void *Buffer = nullptr; ~FreeBuffer() { free(Buffer); } } freeBuffer; // Allocate a buffer to store the T? returned by bridging. // The extra byte is for the tag. const std::size_t inlineValueSize = 3 * sizeof(void*); alignas(swift_max_align_t) char inlineBuffer[inlineValueSize + 1]; void *optDestBuffer; if (targetType->getValueWitnesses()->getStride() <= inlineValueSize) { // Use the inline buffer. optDestBuffer = inlineBuffer; } else { // Allocate a buffer. optDestBuffer = malloc(targetType->getValueWitnesses()->size); freeBuffer.Buffer = optDestBuffer; } // Initialize the buffer as an empty optional. swift_storeEnumTagSinglePayload((OpaqueValue *)optDestBuffer, targetType, 0, 1); // Perform the bridging operation. bool success; if (flags & DynamicCastFlags::Unconditional) { // For an unconditional dynamic cast, use forceBridgeFromObjectiveC. targetBridgeWitness->forceBridgeFromObjectiveC( (HeapObject *)srcBridgedObject, (OpaqueValue *)optDestBuffer, targetType, targetType); success = true; } else { // For a conditional dynamic cast, use conditionallyBridgeFromObjectiveC. success = targetBridgeWitness->conditionallyBridgeFromObjectiveC( (HeapObject *)srcBridgedObject, (OpaqueValue *)optDestBuffer, targetType, targetType); } // If we succeeded, take from the optional buffer into the // destination buffer. if (success) { targetType->vw_initializeWithTake(dest, (OpaqueValue *)optDestBuffer); } // Unless we're always supposed to consume the input, release the // input if we need to now. if (!alwaysConsumeSrc && shouldDeallocateSource(success, flags)) { swift_unknownRelease(srcBridgedObject); } return success; } //===--- Bridging helpers for the Swift stdlib ----------------------------===// // Functions that must discover and possibly use an arbitrary type's // conformance to a given protocol. See ../core/BridgeObjectiveC.swift for // documentation. //===----------------------------------------------------------------------===// static const _ObjectiveCBridgeableWitnessTable * findBridgeWitness(const Metadata *T) { auto w = swift_conformsToProtocol(T, &_TMpSs21_ObjectiveCBridgeable); return reinterpret_cast(w); } /// \param value passed at +1, consumed. extern "C" HeapObject *swift_bridgeNonVerbatimToObjectiveC( OpaqueValue *value, const Metadata *T ) { assert(!swift_isClassOrObjCExistentialImpl(T)); if (const auto *bridgeWitness = findBridgeWitness(T)) { if (!bridgeWitness->isBridgedToObjectiveC(T, T)) { // Witnesses take 'self' at +0, so we still need to consume the +1 argument. T->vw_destroy(value); return nullptr; } auto result = bridgeWitness->bridgeToObjectiveC(value, T); // Witnesses take 'self' at +0, so we still need to consume the +1 argument. T->vw_destroy(value); return result; } // Consume the +1 argument. T->vw_destroy(value); return nullptr; } extern "C" const Metadata *swift_getBridgedNonVerbatimObjectiveCType( const Metadata *value, const Metadata *T ) { // Classes and Objective-C existentials bridge verbatim. assert(!swift_isClassOrObjCExistentialImpl(T)); // Check if the type conforms to _BridgedToObjectiveC, in which case // we'll extract its associated type. if (const auto *bridgeWitness = findBridgeWitness(T)) { return bridgeWitness->getObjectiveCType(T, T); } return nullptr; } // @asmname("swift_bridgeNonVerbatimFromObjectiveC") // func _bridgeNonVerbatimFromObjectiveC( // x: AnyObject, // nativeType: NativeType.Type // inout result: T? // ) extern "C" void swift_bridgeNonVerbatimFromObjectiveC( HeapObject *sourceValue, const Metadata *nativeType, OpaqueValue *destValue, const Metadata *nativeType_ ) { // Check if the type conforms to _BridgedToObjectiveC. if (const auto *bridgeWitness = findBridgeWitness(nativeType)) { // if the type also conforms to _ConditionallyBridgedToObjectiveC, // make sure it bridges at runtime if (bridgeWitness->isBridgedToObjectiveC(nativeType, nativeType)) { // Check if sourceValue has the _ObjectiveCType type required by the // protocol. const Metadata *objectiveCType = bridgeWitness->getObjectiveCType(nativeType, nativeType); auto sourceValueAsObjectiveCType = const_cast(swift_dynamicCastUnknownClass(sourceValue, objectiveCType)); if (sourceValueAsObjectiveCType) { // The type matches. _forceBridgeFromObjectiveC returns `Self`, so // we can just return it directly. bridgeWitness->forceBridgeFromObjectiveC( static_cast(sourceValueAsObjectiveCType), destValue, nativeType, nativeType); return; } } } // Fail. swift::crash("value type is not bridged to Objective-C"); } // @asmname("swift_bridgeNonVerbatimFromObjectiveCConditional") // func _bridgeNonVerbatimFromObjectiveCConditional( // x: AnyObject, // nativeType: T.Type, // inout result: T? // ) -> Bool extern "C" bool swift_bridgeNonVerbatimFromObjectiveCConditional( HeapObject *sourceValue, const Metadata *nativeType, OpaqueValue *destValue, const Metadata *nativeType_ ) { // Local function that releases the source and returns false. auto fail = [&] () -> bool { swift_unknownRelease(sourceValue); return false; }; // Check if the type conforms to _BridgedToObjectiveC. const auto *bridgeWitness = findBridgeWitness(nativeType); if (!bridgeWitness) return fail(); // Dig out the Objective-C class type through which the native type // is bridged. const Metadata *objectiveCType = bridgeWitness->getObjectiveCType(nativeType, nativeType); // Check whether we can downcast the source value to the Objective-C // type. auto sourceValueAsObjectiveCType = const_cast(swift_dynamicCastUnknownClass(sourceValue, objectiveCType)); if (!sourceValueAsObjectiveCType) return fail(); // If the type also conforms to _ConditionallyBridgedToObjectiveC, // use conditional bridging. return bridgeWitness->conditionallyBridgeFromObjectiveC( static_cast(sourceValueAsObjectiveCType), destValue, nativeType, nativeType); } // func isBridgedNonVerbatimToObjectiveC(x: T.Type) -> Bool extern "C" bool swift_isBridgedNonVerbatimToObjectiveC( const Metadata *value, const Metadata *T ) { assert(!swift_isClassOrObjCExistentialImpl(T)); auto bridgeWitness = findBridgeWitness(T); return bridgeWitness && bridgeWitness->isBridgedToObjectiveC(value, T); } #endif // func isClassOrObjCExistential(x: T.Type) -> Bool extern "C" bool swift_isClassOrObjCExistential(const Metadata *value, const Metadata *T) { return swift_isClassOrObjCExistentialImpl(T); }