//===----------------------------------------------------------*- swift -*-===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // simd.h overlays for Swift //===----------------------------------------------------------------------===// import Swift import Darwin @_exported import simd %{ component = ['x','y','z','w'] scalar_types = ['Float','Double','Int32','UInt32'] ctype = { 'Float':'float', 'Double':'double', 'Int32':'int', 'UInt32':'uint'} llvm_type = { 'Float':'FPIEEE32', 'Double':'FPIEEE64', 'Int32':'Int32', 'UInt32':'Int32' } floating_types = ['Float','Double'] cardinal = { 2:'two', 3:'three', 4:'four'} }% %for scalar in scalar_types: % for count in [2, 3, 4]: % vectype = ctype[scalar] + str(count) % llvm_vectype = "Vec" + str(count) + "x" + llvm_type[scalar] % vecsize = (8 if scalar == 'Double' else 4) * (4 if count == 3 else count) % extractelement = "extractelement_" + llvm_vectype + "_Int32" % insertelement = "insertelement_" + llvm_vectype + "_" + llvm_type[scalar] + "_Int32" % is_floating = scalar in floating_types % is_signed = scalar[0] != 'U' % wrap = "" if is_floating else "&" /// A vector of ${cardinal[count]} `${scalar}`. This corresponds to the C and /// Obj-C type `vector_${vectype}` and the C++ type `simd::${vectype}`. @_fixed_layout @_alignment(${vecsize}) public struct ${vectype} { public var _value: Builtin.${llvm_vectype} % for i in xrange(count): public var ${component[i]} : ${scalar} { @_transparent get { let elt = Builtin.${extractelement}(_value, (${i} as Int32)._value) return ${scalar}(elt) } @_transparent set { _value = Builtin.${insertelement}(_value, newValue._value, (${i} as Int32)._value) } } % end /// Initialize to the zero vector. @_transparent public init() { self.init(0) } @_transparent public init(_ _value: Builtin.${llvm_vectype}) { self._value = _value } /// Initialize a vector with the specified elements. @_transparent public init(${', '.join(['_ ' + c + ': ' + scalar for c in component[:count]])}) { var v: Builtin.${llvm_vectype} = Builtin.zeroInitializer() % for i in xrange(count): v = Builtin.${insertelement}(v, ${component[i]}._value, (${i} as Int32)._value) % end _value = v } /// Initialize a vector with the specified elements. @_transparent public init(${', '.join([c + ': ' + scalar for c in component[:count]])}) { self.init(${', '.join(component[:count])}) } /// Initialize to a vector with all elements equal to `scalar`. @_transparent public init(_ scalar: ${scalar}) { self.init(${', '.join(['scalar']*count)}) } /// Initialize to a vector with elements taken from `array`. /// /// - Precondition: `array` must have exactly ${cardinal[count]} elements. public init(_ array: [${scalar}]) { _precondition(array.count == ${count}, "${vectype} requires a ${cardinal[count]}-element array") self.init(${', '.join(map(lambda i: 'array[' + str(i) + ']', range(count)))}) } /// Access individual elements of the vector via subscript. public subscript(index: Int) -> ${scalar} { @_transparent get { _precondition(index >= 0, "Vector index out of range") _precondition(index < ${count}, "Vector index out of range") let elt = Builtin.${extractelement}(_value, Int32(index)._value) return ${scalar}(elt) } @_transparent set(value) { _precondition(index >= 0, "Vector index out of range") _precondition(index < ${count}, "Vector index out of range") _value = Builtin.${insertelement}(_value, value._value, Int32(index)._value) } } } extension ${vectype} : Equatable { /// True iff every element of lhs is equal to the corresponding element of /// rhs. @_transparent public static func ==(_ lhs: ${vectype}, _ rhs: ${vectype}) -> Bool { return simd_equal(lhs, rhs) } } extension ${vectype} : CustomDebugStringConvertible { /// Debug string representation public var debugDescription: String { return "${vectype}(${', '.join(map(lambda c: '\\(self['+ str(c) + '])', xrange(count)))})" } % if count <= 4: /// Helper for matrix debug representations internal var _descriptionAsArray: String { get { return "[${', '.join(map(lambda c: '\\(self['+ str(c) + '])', xrange(count)))})]" } } % end } extension ${vectype} : ExpressibleByArrayLiteral { /// Initialize using `arrayLiteral`. /// /// - Precondition: the array literal must exactly ${cardinal[count]} /// elements. public init(arrayLiteral elements: ${scalar}...) { self.init(elements) } } extension ${vectype} : Collection { @_transparent public var startIndex: Int { return 0 } @_transparent public var endIndex: Int { return ${count} } @_transparent public func index(after i: Int) -> Int { return i + 1 } } extension ${vectype} { % wrap = "" if is_floating else "&" % prefix = "f" if is_floating else "" % divide = ("f" if is_floating else ("s" if is_signed else "u")) + "div" /// Vector (elementwise) sum of `lhs` and `rhs`. @_transparent public static func ${wrap}+(lhs: ${vectype}, rhs: ${vectype}) -> ${vectype} { return ${vectype}(Builtin.${prefix}add_${llvm_vectype}(lhs._value, rhs._value)) } /// Vector (elementwise) difference of `lhs` and `rhs`. @_transparent public static func ${wrap}-(lhs: ${vectype}, rhs: ${vectype}) -> ${vectype} { return ${vectype}(Builtin.${prefix}sub_${llvm_vectype}(lhs._value, rhs._value)) } /// Negation of `rhs`. @_transparent public static prefix func -(rhs: ${vectype}) -> ${vectype} { return ${vectype}() ${wrap}- rhs } /// Elementwise product of `lhs` and `rhs` (A.k.a. the Hadamard or Schur /// vector product). @_transparent public static func ${wrap}*(lhs: ${vectype}, rhs: ${vectype}) -> ${vectype} { return ${vectype}(Builtin.${prefix}mul_${llvm_vectype}(lhs._value, rhs._value)) } /// Scalar-Vector product. @_transparent public static func ${wrap}*(lhs: ${scalar}, rhs: ${vectype}) -> ${vectype} { return ${vectype}(lhs) ${wrap}* rhs } /// Scalar-Vector product. @_transparent public static func ${wrap}*(lhs: ${vectype}, rhs: ${scalar}) -> ${vectype} { return lhs ${wrap}* ${vectype}(rhs) } /// Elementwise quotient of `lhs` and `rhs`. @_transparent public static func /(lhs: ${vectype}, rhs: ${vectype}) -> ${vectype} { return ${vectype}(Builtin.${divide}_${llvm_vectype}(lhs._value, rhs._value)) } /// Divide vector by scalar. @_transparent public static func /(lhs: ${vectype}, rhs: ${scalar}) -> ${vectype} { return lhs / ${vectype}(rhs) } /// Add `rhs` to `lhs`. % if is_floating: @_transparent public static func +=(lhs: inout ${vectype}, rhs: ${vectype}) -> Void { lhs = lhs + rhs } /// Subtract `rhs` from `lhs`. @_transparent public static func -=(lhs: inout ${vectype}, rhs: ${vectype}) -> Void { lhs = lhs - rhs } /// Multiply `lhs` by `rhs` (elementwise). @_transparent public static func *=(lhs: inout ${vectype}, rhs: ${vectype}) -> Void { lhs = lhs * rhs } % end /// Divide `lhs` by `rhs` (elementwise). @_transparent public static func /=(lhs: inout ${vectype}, rhs: ${vectype}) -> Void { lhs = lhs / rhs } % if is_floating: /// Scales `lhs` by `rhs`. @_transparent public static func *=(lhs: inout ${vectype}, rhs: ${scalar}) -> Void { lhs = lhs * rhs } /// Scales `lhs` by `1/rhs`. @_transparent public static func /=(lhs: inout ${vectype}, rhs: ${scalar}) -> Void { lhs = lhs / rhs } % else: // Integer vector types only support wrapping arithmetic. Make the non- // wrapping operators unavailable so that fixits guide users to the // unchecked operations. @available(*, unavailable, renamed: "&+", message: "integer vector types do not support checked arithmetic; use the wrapping operations instead") public static func +(x: ${vectype}, y: ${vectype}) -> ${vectype} { fatalError("Unavailable function cannot be called") } @available(*, unavailable, renamed: "&-", message: "integer vector types do not support checked arithmetic; use the wrapping operations instead") public static func -(x: ${vectype}, y: ${vectype}) -> ${vectype} { fatalError("Unavailable function cannot be called") } @available(*, unavailable, renamed: "&*", message: "integer vector types do not support checked arithmetic; use the wrapping operations instead") public static func *(x: ${vectype}, y: ${vectype}) -> ${vectype} { fatalError("Unavailable function cannot be called") } @available(*, unavailable, renamed: "&*", message: "integer vector types do not support checked arithmetic; use the wrapping operations instead") public static func *(x: ${vectype}, y: ${scalar}) -> ${vectype} { fatalError("Unavailable function cannot be called") } @available(*, unavailable, renamed: "&*", message: "integer vector types do not support checked arithmetic; use the wrapping operations instead") public static func *(x: ${scalar}, y: ${vectype}) -> ${vectype} { fatalError("Unavailable function cannot be called") } @available(*, unavailable, message: "integer vector types do not support checked arithmetic; use the wrapping operation 'x = x &+ y' instead") public static func +=(x: inout ${vectype}, y: ${vectype}) { fatalError("Unavailable function cannot be called") } @available(*, unavailable, message: "integer vector types do not support checked arithmetic; use the wrapping operation 'x = x &- y' instead") public static func -=(x: inout ${vectype}, y: ${vectype}) { fatalError("Unavailable function cannot be called") } @available(*, unavailable, message: "integer vector types do not support checked arithmetic; use the wrapping operation 'x = x &* y' instead") public static func *=(x: inout ${vectype}, y: ${vectype}) { fatalError("Unavailable function cannot be called") } @available(*, unavailable, message: "integer vector types do not support checked arithmetic; use the wrapping operation 'x = x &* y' instead") public static func *=(x: inout ${vectype}, y: ${scalar}) { fatalError("Unavailable function cannot be called") } % end } % if is_signed: /// Elementwise absolute value of a vector. The result is a vector of the same /// length with all elements positive. @_transparent public func abs(_ x: ${vectype}) -> ${vectype} { return simd_abs(x) } % end /// Elementwise minimum of two vectors. Each component of the result is the /// smaller of the corresponding component of the inputs. @_transparent public func min(_ x: ${vectype}, _ y: ${vectype}) -> ${vectype} { return simd_min(x, y) } /// Elementwise maximum of two vectors. Each component of the result is the /// larger of the corresponding component of the inputs. @_transparent public func max(_ x: ${vectype}, _ y: ${vectype}) -> ${vectype} { return simd_max(x, y) } /// Vector-scalar minimum. Each component of the result is the minimum of the /// corresponding element of the input vector and the scalar. @_transparent public func min(_ vector: ${vectype}, _ scalar: ${scalar}) -> ${vectype} { return min(vector, ${vectype}(scalar)) } /// Vector-scalar maximum. Each component of the result is the maximum of the /// corresponding element of the input vector and the scalar. @_transparent public func max(_ vector: ${vectype}, _ scalar: ${scalar}) -> ${vectype} { return max(vector, ${vectype}(scalar)) } /// Each component of the result is the corresponding element of `x` clamped to /// the range formed by the corresponding elements of `min` and `max`. Any /// lanes of `x` that contain NaN will end up with the `min` value. @_transparent public func clamp(_ x: ${vectype}, min: ${vectype}, max: ${vectype}) -> ${vectype} { return simd.min(simd.max(x, min), max) } /// Clamp each element of `x` to the range [`min`, max]. If any lane of `x` is /// NaN, the corresponding lane of the result is `min`. @_transparent public func clamp(_ x: ${vectype}, min: ${scalar}, max: ${scalar}) -> ${vectype} { return simd.min(simd.max(x, min), max) } /// Sum of the elements of the vector. @_transparent public func reduce_add(_ x: ${vectype}) -> ${scalar} { return simd_reduce_add(x) } /// Minimum element of the vector. @_transparent public func reduce_min(_ x: ${vectype}) -> ${scalar} { return simd_reduce_min(x) } /// Maximum element of the vector. @_transparent public func reduce_max(_ x: ${vectype}) -> ${scalar} { return simd_reduce_max(x) } % if is_floating: /// Sign of a vector. Each lane contains -1 if the corresponding lane of `x` /// is less than zero, +1 if the corresponding lane of `x` is greater than /// zero, and 0 otherwise. @_transparent public func sign(_ x: ${vectype}) -> ${vectype} { return simd_sign(x) } /// Linear interpolation between `x` (at `t=0`) and `y` (at `t=1`). May be /// used with `t` outside of [0, 1] as well. @_transparent public func mix(_ x: ${vectype}, _ y: ${vectype}, t: ${vectype}) -> ${vectype} { return x + t*(y-x) } /// Linear interpolation between `x` (at `t=0`) and `y` (at `t=1`). May be /// used with `t` outside of [0, 1] as well. @_transparent public func mix(_ x: ${vectype}, _ y: ${vectype}, t: ${scalar}) -> ${vectype} { return x + t*(y-x) } /// Elementwise reciprocal. @_transparent public func recip(_ x: ${vectype}) -> ${vectype} { return simd_recip(x) } /// Elementwise reciprocal square root. @_transparent public func rsqrt(_ x: ${vectype}) -> ${vectype} { return simd_rsqrt(x) } /// Alternate name for minimum of two floating-point vectors. @_transparent public func fmin(_ x: ${vectype}, _ y: ${vectype}) -> ${vectype} { return min(x, y) } /// Alternate name for maximum of two floating-point vectors. @_transparent public func fmax(_ x: ${vectype}, _ y: ${vectype}) -> ${vectype} { return max(x, y) } /// Each element of the result is the smallest integral value greater than or /// equal to the corresponding element of the input. @_transparent public func ceil(_ x: ${vectype}) -> ${vectype} { return __tg_ceil(x) } /// Each element of the result is the largest integral value less than or equal /// to the corresponding element of the input. @_transparent public func floor(_ x: ${vectype}) -> ${vectype} { return __tg_floor(x) } /// Each element of the result is the closest integral value with magnitude /// less than or equal to that of the corresponding element of the input. @_transparent public func trunc(_ x: ${vectype}) -> ${vectype} { return __tg_trunc(x) } /// `x - floor(x)`, clamped to lie in the range [0,1). Without this clamp step, /// the result would be 1.0 when `x` is a very small negative number, which may /// result in out-of-bounds table accesses in common usage. @_transparent public func fract(_ x: ${vectype}) -> ${vectype} { return simd_fract(x) } /// 0.0 if `x < edge`, and 1.0 otherwise. @_transparent public func step(_ x: ${vectype}, edge: ${vectype}) -> ${vectype} { return simd_step(edge, x) } /// 0.0 if `x < edge0`, 1.0 if `x > edge1`, and cubic interpolation between /// 0 and 1 in the interval [edge0, edge1]. @_transparent public func smoothstep(_ x: ${vectype}, edge0: ${vectype}, edge1: ${vectype}) -> ${vectype} { return simd_smoothstep(edge0, edge1, x) } /// Dot product of `x` and `y`. @_transparent public func dot(_ x: ${vectype}, _ y: ${vectype}) -> ${scalar} { return reduce_add(x * y) } /// Projection of `x` onto `y`. @_transparent public func project(_ x: ${vectype}, _ y: ${vectype}) -> ${vectype} { return simd_project(x, y) } /// Length of `x`, squared. This is more efficient to compute than the length, /// so you should use it if you only need to compare lengths to each other. /// I.e. instead of writing: /// /// if (length(x) < length(y)) { ... } /// /// use: /// /// if (length_squared(x) < length_squared(y)) { ... } /// /// Doing it this way avoids one or two square roots, which is a fairly costly /// operation. @_transparent public func length_squared(_ x: ${vectype}) -> ${scalar} { return dot(x, x) } /// Length (two-norm or "Euclidean norm") of `x`. @_transparent public func length(_ x: ${vectype}) -> ${scalar} { return sqrt(length_squared(x)) } /// The one-norm (or "taxicab norm") of `x`. @_transparent public func norm_one(_ x: ${vectype}) -> ${scalar} { return reduce_add(abs(x)) } /// The infinity-norm (or "sup norm") of `x`. @_transparent public func norm_inf(_ x: ${vectype}) -> ${scalar} { return reduce_max(abs(x)) } /// Distance between `x` and `y`, squared. @_transparent public func distance_squared(_ x: ${vectype}, _ y: ${vectype}) -> ${scalar} { return length_squared(x - y) } /// Distance between `x` and `y`. @_transparent public func distance(_ x: ${vectype}, _ y: ${vectype}) -> ${scalar} { return length(x - y) } /// Unit vector pointing in the same direction as `x`. @_transparent public func normalize(_ x: ${vectype}) -> ${vectype} { return simd_normalize(x) } /// `x` reflected through the hyperplane with unit normal vector `n`, passing /// through the origin. E.g. if `x` is [1,2,3] and `n` is [0,0,1], the result /// is [1,2,-3]. @_transparent public func reflect(_ x: ${vectype}, n: ${vectype}) -> ${vectype} { return simd_reflect(x, n) } /// The refraction direction given unit incident vector `x`, unit surface /// normal `n`, and index of refraction `eta`. If the angle between the /// incident vector and the surface is so small that total internal reflection /// occurs, zero is returned. @_transparent public func refract(_ x: ${vectype}, n: ${vectype}, eta: ${scalar}) -> ${vectype} { return simd_refract(x, n, eta) } % end # if is_floating % end # for count in [2, 3, 4] % if is_floating: // Scalar versions of common operations: /// Returns -1 if `x < 0`, +1 if `x > 0`, and 0 otherwise (`sign(NaN)` is 0). @_transparent public func sign(_ x: ${scalar}) -> ${scalar} { return simd_sign(x) } /// Reciprocal. @_transparent public func recip(_ x: ${scalar}) -> ${scalar} { return simd_recip(x) } /// Reciprocal square root. @_transparent public func rsqrt(_ x: ${scalar}) -> ${scalar} { return simd_rsqrt(x) } /// Returns 0.0 if `x < edge`, and 1.0 otherwise. @_transparent public func step(_ x: ${scalar}, edge: ${scalar}) -> ${scalar} { return simd_step(edge, x) } /// Interprets two two-dimensional vectors as three-dimensional vectors in the /// xy-plane and computes their cross product, which lies along the z-axis. @_transparent public func cross(_ x: ${ctype[scalar]}2, _ y: ${ctype[scalar]}2) -> ${ctype[scalar]}3 { return simd_cross(x,y) } /// Cross-product of two three-dimensional vectors. The resulting vector is /// perpendicular to the plane determined by `x` and `y`, with length equal to /// the oriented area of the parallelogram they determine. @_transparent public func cross(_ x: ${ctype[scalar]}3, _ y: ${ctype[scalar]}3) -> ${ctype[scalar]}3 { return simd_cross(x,y) } % end # is_floating %end # for scalar in scalar_types %for type in floating_types: % for rows in [2,3,4]: % for cols in [2,3,4]: % mattype = 'simd_' + ctype[type] + str(cols) + 'x' + str(rows) % diagsize = rows if rows < cols else cols % coltype = ctype[type] + str(rows) % rowtype = ctype[type] + str(cols) % diagtype = ctype[type] + str(diagsize) % transtype = ctype[type] + str(rows) + 'x' + str(cols) public typealias ${ctype[type]}${cols}x${rows} = ${mattype} extension ${mattype} { /// Initialize matrix to have `scalar` on main diagonal, zeros elsewhere. public init(_ scalar: ${type}) { self.init(diagonal: ${diagtype}(scalar)) } /// Initialize matrix to have specified `diagonal`, and zeros elsewhere. public init(diagonal: ${diagtype}) { self.init() % for i in range(diagsize): self.columns.${i}.${component[i]} = diagonal.${component[i]} % end } /// Initialize matrix to have specified `columns`. public init(_ columns: [${coltype}]) { _precondition(columns.count == ${cols}, "Requires array of ${cols} vectors") self.init() % for i in range(cols): self.columns.${i} = columns[${i}] % end } /// Initialize matrix to have specified `rows`. public init(rows: [${rowtype}]) { _precondition(rows.count == ${rows}, "Requires array of ${rows} vectors") self = ${transtype}(rows).transpose } /// Initialize matrix to have specified `columns`. public init(${', '.join(['_ col' + str(i) + ': ' + coltype for i in range(cols)])}) { self.init() % for i in range(cols): self.columns.${i} = col${i} % end } /// Initialize matrix from corresponding C matrix type. @available(swift, deprecated: 4, message: "This conversion is no longer necessary; use `cmatrix` directly.") @_transparent public init(_ cmatrix: ${mattype}) { self = cmatrix } /// Get the matrix as the corresponding C matrix type. @available(swift, deprecated: 4, message: "This property is no longer needed; use the matrix itself.") @_transparent public var cmatrix: ${mattype} { return self } /// Access to individual columns. public subscript(column: Int) -> ${coltype} { get { switch(column) { % for i in range(cols): case ${i}: return columns.${i} % end default: _preconditionFailure("Column index out of range") } } set (value) { switch(column) { % for i in range(cols): case ${i}: columns.${i} = value % end default: _preconditionFailure("Column index out of range") } } } /// Access to individual elements. public subscript(column: Int, row: Int) -> ${type} { get { return self[column][row] } set (value) { self[column][row] = value } } } extension ${mattype} : CustomDebugStringConvertible { public var debugDescription: String { return "${mattype}([${', '.join(map(lambda i: \ '\(columns.' + str(i) + '._descriptionAsArray)', range(cols)))}])" } } extension ${mattype} : Equatable { @_transparent public static func ==(lhs: ${mattype}, rhs: ${mattype}) -> Bool { return simd_equal(lhs, rhs) } } extension ${mattype} { /// Transpose of the matrix. @_transparent public var transpose: ${transtype} { return simd_transpose(self) } % if rows == cols: /// Inverse of the matrix if it exists, otherwise the contents of the /// resulting matrix are undefined. @available(macOS 10.10, iOS 8.0, tvOS 10.0, watchOS 3.0, *) @_transparent public var inverse: ${mattype} { return simd_inverse(self) } /// Determinant of the matrix. @_transparent public var determinant: ${type} { return simd_determinant(self) } % end /// Sum of two matrices. @_transparent public static func +(lhs: ${mattype}, rhs: ${mattype}) -> ${mattype} { return simd_add(lhs, rhs) } /// Negation of a matrix. @_transparent public static prefix func -(rhs: ${mattype}) -> ${mattype} { return ${mattype}() - rhs } /// Difference of two matrices. @_transparent public static func -(lhs: ${mattype}, rhs: ${mattype}) -> ${mattype} { return simd_sub(lhs, rhs) } @_transparent public static func +=(lhs: inout ${mattype}, rhs: ${mattype}) -> Void { lhs = lhs + rhs } @_transparent public static func -=(lhs: inout ${mattype}, rhs: ${mattype}) -> Void { lhs = lhs - rhs } /// Scalar-Matrix multiplication. @_transparent public static func *(lhs: ${type}, rhs: ${mattype}) -> ${mattype} { return simd_mul(lhs, rhs) } /// Matrix-Scalar multiplication. @_transparent public static func *(lhs: ${mattype}, rhs: ${type}) -> ${mattype} { return rhs*lhs } @_transparent public static func *=(lhs: inout ${mattype}, rhs: ${type}) -> Void { lhs = lhs*rhs } /// Matrix-Vector multiplication. Keep in mind that matrix types are named /// `${type}NxM` where `N` is the number of *columns* and `M` is the number of /// *rows*, so we multiply a `${type}3x2 * ${type}3` to get a `${type}2`, for /// example. @_transparent public static func *(lhs: ${mattype}, rhs: ${rowtype}) -> ${coltype} { return simd_mul(lhs, rhs) } /// Vector-Matrix multiplication. @_transparent public static func *(lhs: ${coltype}, rhs: ${mattype}) -> ${rowtype} { return simd_mul(lhs, rhs) } % for k in [2,3,4]: /// Matrix multiplication (the "usual" matrix product, not the elementwise /// product). % restype = ctype[type] + str(k) + 'x' + str(rows) % rhstype = ctype[type] + str(k) + 'x' + str(cols) @_transparent public static func *(lhs: ${mattype}, rhs: ${rhstype}) -> ${restype} { return simd_mul(lhs, rhs) } % end # for k in [2,3,4] % rhstype = ctype[type] + str(cols) + 'x' + str(cols) /// Matrix multiplication (the "usual" matrix product, not the elementwise /// product). @_transparent public static func *=(lhs: inout ${mattype}, rhs: ${rhstype}) -> Void { lhs = lhs*rhs } } // Make old-style C free functions with the `matrix_` prefix available but // deprecated in Swift 4. % if rows == cols: @available(swift, deprecated: 4, renamed: "${mattype}(diagonal:)") public func matrix_from_diagonal(_ d: ${diagtype}) -> ${mattype} { return ${mattype}(diagonal: d) } @available(swift, deprecated: 4, message: "Use the .inverse property instead.") @available(macOS 10.10, iOS 8.0, tvOS 10.0, watchOS 3.0, *) public func matrix_invert(_ x: ${mattype}) -> ${mattype} { return x.inverse } @available(swift, deprecated: 4, message: "Use the .determinant property instead.") public func matrix_determinant(_ x: ${mattype}) -> ${type} { return x.determinant } % end # rows == cols @available(swift, deprecated: 4, renamed: "${mattype}") public func matrix_from_columns(${', '.join(['_ col' + str(i) + ': ' + coltype for i in range(cols)])}) -> ${mattype} { return ${mattype}(${', '.join(['col' + str(i) for i in range(cols)])}) } public func matrix_from_rows(${', '.join(['_ row' + str(i) + ': ' + rowtype for i in range(rows)])}) -> ${mattype} { return ${transtype}(${', '.join(['row' + str(i) for i in range(rows)])}).transpose } @available(swift, deprecated: 4, message: "Use the .transpose property instead.") public func matrix_transpose(_ x: ${mattype}) -> ${transtype} { return x.transpose } @available(swift, deprecated: 4, renamed: "==") public func matrix_equal(_ lhs: ${mattype}, _ rhs: ${mattype}) -> Bool { return lhs == rhs } % end # for cols in [2,3,4] % end # for rows in [2,3,4] %end # for type in floating_types