//===--- FieldSensitivePrunedLiveness.cpp ---------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sil-move-only-checker" #include "swift/SIL/FieldSensitivePrunedLiveness.h" #include "swift/AST/TypeExpansionContext.h" #include "swift/Basic/Defer.h" #include "swift/Basic/SmallBitVector.h" #include "swift/SIL/BasicBlockDatastructures.h" #include "swift/SIL/BasicBlockUtils.h" #include "swift/SIL/OwnershipUtils.h" #include "swift/SIL/SILBuilder.h" #include "swift/SIL/SILInstruction.h" #include "swift/SIL/ScopedAddressUtils.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace swift; static llvm::cl::opt EmitLogging( "sil-move-only-checker-emit-pruned-liveness-logging"); #define PRUNED_LIVENESS_LOG(X) \ do { \ if (EmitLogging) { \ LLVM_DEBUG(X); \ } \ } while (0) // We can only analyze components of structs whose storage is fully accessible // from Swift. static StructDecl *getFullyReferenceableStruct(SILType ktypeTy) { auto structDecl = ktypeTy.getStructOrBoundGenericStruct(); if (!structDecl || structDecl->hasUnreferenceableStorage()) return nullptr; return structDecl; } //===----------------------------------------------------------------------===// // MARK: TypeSubElementCount //===----------------------------------------------------------------------===// TypeSubElementCount::TypeSubElementCount(SILType type, SILModule &mod, TypeExpansionContext context) : number(1) { if (auto tupleType = type.getAs()) { unsigned numElements = 0; for (auto index : indices(tupleType.getElementTypes())) numElements += TypeSubElementCount(type.getTupleElementType(index), mod, context); number = numElements; return; } if (auto *structDecl = getFullyReferenceableStruct(type)) { unsigned numElements = 0; for (auto *fieldDecl : structDecl->getStoredProperties()) numElements += TypeSubElementCount( type.getFieldType(fieldDecl, mod, context), mod, context); number = numElements; // If we do not have any elements, just set our size to 1. if (numElements == 0) number = 1; return; } // If we have an enum, we add one for tracking if the base enum is set and use // the remaining bits for the max sized payload. This ensures that if we have // a smaller sized payload, we still get all of the bits set, allowing for a // homogeneous representation. if (auto *enumDecl = type.getEnumOrBoundGenericEnum()) { unsigned numElements = 0; for (auto *eltDecl : enumDecl->getAllElements()) { if (!eltDecl->hasAssociatedValues()) continue; auto elt = type.getEnumElementType(eltDecl, mod, context); numElements = std::max(numElements, unsigned(TypeSubElementCount(elt, mod, context))); } number = numElements + 1; return; } // If this isn't a tuple, struct, or enum, it is a single element. This was // our default value, so we can just return. } //===----------------------------------------------------------------------===// // MARK: SubElementNumber //===----------------------------------------------------------------------===// Optional SubElementOffset::computeForAddress(SILValue projectionDerivedFromRoot, SILValue rootAddress) { unsigned finalSubElementOffset = 0; SILModule &mod = *rootAddress->getModule(); while (1) { // If we got to the root, we're done. if (rootAddress == projectionDerivedFromRoot) return {SubElementOffset(finalSubElementOffset)}; if (auto *pbi = dyn_cast(projectionDerivedFromRoot)) { projectionDerivedFromRoot = pbi->getOperand(); continue; } if (auto *bai = dyn_cast(projectionDerivedFromRoot)) { projectionDerivedFromRoot = bai->getSource(); continue; } if (auto *m = dyn_cast( projectionDerivedFromRoot)) { projectionDerivedFromRoot = m->getOperand(); continue; } if (auto *teai = dyn_cast(projectionDerivedFromRoot)) { SILType tupleType = teai->getOperand()->getType(); // Keep track of what subelement is being referenced. for (unsigned i : range(teai->getFieldIndex())) { finalSubElementOffset += TypeSubElementCount( tupleType.getTupleElementType(i), mod, TypeExpansionContext(*rootAddress->getFunction())); } projectionDerivedFromRoot = teai->getOperand(); continue; } if (auto *seai = dyn_cast(projectionDerivedFromRoot)) { SILType type = seai->getOperand()->getType(); // Keep track of what subelement is being referenced. StructDecl *structDecl = seai->getStructDecl(); for (auto *fieldDecl : structDecl->getStoredProperties()) { if (fieldDecl == seai->getField()) break; auto context = TypeExpansionContext(*rootAddress->getFunction()); finalSubElementOffset += TypeSubElementCount( type.getFieldType(fieldDecl, mod, context), mod, context); } projectionDerivedFromRoot = seai->getOperand(); continue; } // In the case of enums, we note that our representation is: // // ---------|Enum| --- // / \ // / \ // v v // |Bits for Max Sized Payload| |Discrim Bit| // // So our payload is always going to start at the current field number since // we are the left most child of our parent enum. So we just need to look // through to our parent enum. if (auto *enumData = dyn_cast( projectionDerivedFromRoot)) { projectionDerivedFromRoot = enumData->getOperand(); continue; } // Init enum data addr is treated like unchecked take enum data addr. if (auto *initData = dyn_cast(projectionDerivedFromRoot)) { projectionDerivedFromRoot = initData->getOperand(); continue; } // If we do not know how to handle this case, just return None. // // NOTE: We use to assert here, but since this is used for diagnostics, we // really do not want to abort. Instead, our caller can choose to abort if // they get back a None. This ensures that we do not abort in cases where we // just want to emit to the user a "I do not understand" error. return None; } } Optional SubElementOffset::computeForValue(SILValue projectionDerivedFromRoot, SILValue rootAddress) { unsigned finalSubElementOffset = 0; SILModule &mod = *rootAddress->getModule(); while (1) { // If we got to the root, we're done. if (rootAddress == projectionDerivedFromRoot) return {SubElementOffset(finalSubElementOffset)}; // Look through these single operand instructions. if (isa(projectionDerivedFromRoot) || isa(projectionDerivedFromRoot) || isa(projectionDerivedFromRoot)) { projectionDerivedFromRoot = cast(projectionDerivedFromRoot) ->getOperand(0); continue; } if (auto *teai = dyn_cast(projectionDerivedFromRoot)) { SILType tupleType = teai->getOperand()->getType(); // Keep track of what subelement is being referenced. for (unsigned i : range(teai->getFieldIndex())) { finalSubElementOffset += TypeSubElementCount( tupleType.getTupleElementType(i), mod, TypeExpansionContext(*rootAddress->getFunction())); } projectionDerivedFromRoot = teai->getOperand(); continue; } if (auto *mvir = dyn_cast( projectionDerivedFromRoot)) { if (auto *dsi = dyn_cast(mvir->getParent())) { SILType type = dsi->getOperand()->getType(); // Keep track of what subelement is being referenced. unsigned resultIndex = mvir->getIndex(); StructDecl *structDecl = dsi->getStructDecl(); for (auto pair : llvm::enumerate(structDecl->getStoredProperties())) { if (pair.index() == resultIndex) break; auto context = TypeExpansionContext(*rootAddress->getFunction()); finalSubElementOffset += TypeSubElementCount( type.getFieldType(pair.value(), mod, context), mod, context); } projectionDerivedFromRoot = dsi->getOperand(); continue; } if (auto *dti = dyn_cast(mvir->getParent())) { SILType type = dti->getOperand()->getType(); // Keep track of what subelement is being referenced. unsigned resultIndex = mvir->getIndex(); for (unsigned i : range(resultIndex)) { auto context = TypeExpansionContext(*rootAddress->getFunction()); finalSubElementOffset += TypeSubElementCount(type.getTupleElementType(i), mod, context); } projectionDerivedFromRoot = dti->getOperand(); continue; } } if (auto *seai = dyn_cast(projectionDerivedFromRoot)) { SILType type = seai->getOperand()->getType(); // Keep track of what subelement is being referenced. StructDecl *structDecl = seai->getStructDecl(); for (auto *fieldDecl : structDecl->getStoredProperties()) { if (fieldDecl == seai->getField()) break; auto context = TypeExpansionContext(*rootAddress->getFunction()); finalSubElementOffset += TypeSubElementCount( type.getFieldType(fieldDecl, mod, context), mod, context); } projectionDerivedFromRoot = seai->getOperand(); continue; } // In the case of enums, we note that our representation is: // // ---------|Enum| --- // / \ // / \ // v v // |Bits for Max Sized Payload| |Discrim Bit| // // So our payload is always going to start at the current field number since // we are the left most child of our parent enum. So we just need to look // through to our parent enum. if (auto *enumData = dyn_cast(projectionDerivedFromRoot)) { projectionDerivedFromRoot = enumData->getOperand(); continue; } // If we do not know how to handle this case, just return None. // // NOTE: We use to assert here, but since this is used for diagnostics, we // really do not want to abort. Instead, our caller can choose to abort if // they get back a None. This ensures that we do not abort in cases where we // just want to emit to the user a "I do not understand" error. return None; } } //===----------------------------------------------------------------------===// // MARK: TypeTreeLeafTypeRange //===----------------------------------------------------------------------===// void TypeTreeLeafTypeRange::constructFilteredProjections( SILValue value, SILInstruction *insertPt, SmallBitVector &filterBitVector, llvm::function_ref callback) { auto *fn = insertPt->getFunction(); SILType type = value->getType(); PRUNED_LIVENESS_LOG(llvm::dbgs() << "ConstructFilteredProjection. Bv: " << filterBitVector << '\n'); SILBuilderWithScope builder(insertPt); auto noneSet = [](SmallBitVector &bv, unsigned start, unsigned end) { return llvm::none_of(range(start, end), [&](unsigned index) { return bv[index]; }); }; auto allSet = [](SmallBitVector &bv, unsigned start, unsigned end) { return llvm::all_of(range(start, end), [&](unsigned index) { return bv[index]; }); }; if (auto *structDecl = type.getStructOrBoundGenericStruct()) { unsigned start = startEltOffset; for (auto *varDecl : structDecl->getStoredProperties()) { auto nextType = type.getFieldType(varDecl, fn); unsigned next = start + TypeSubElementCount(nextType, fn); // If we do not have any set bits, do not create the struct element addr // for this entry. if (noneSet(filterBitVector, start, next)) { start = next; continue; } auto newValue = builder.createStructElementAddr(insertPt->getLoc(), value, varDecl); callback(newValue, TypeTreeLeafTypeRange(start, next)); start = next; } assert(start == endEltOffset); return; } // We only allow for enums that can be completely destroyed. If there is code // where an enum should be partially destroyed, we need to treat the // unchecked_take_enum_data_addr as a separate value whose liveness we are // tracking. if (auto *enumDecl = type.getEnumOrBoundGenericEnum()) { unsigned start = startEltOffset; unsigned maxSubEltCount = 0; for (auto *eltDecl : enumDecl->getAllElements()) { if (!eltDecl->hasAssociatedValues()) continue; auto nextType = type.getEnumElementType(eltDecl, fn); maxSubEltCount = std::max(maxSubEltCount, unsigned(TypeSubElementCount(nextType, fn))); } // Add a bit for the case bit. unsigned next = maxSubEltCount + 1; // Make sure we are all set. assert(allSet(filterBitVector, start, next)); // Then just pass back our enum base value as the pointer. callback(value, TypeTreeLeafTypeRange(start, next)); // Then set start to next and assert we covered the entire end elt offset. start = next; assert(start == endEltOffset); return; } if (auto tupleType = type.getAs()) { unsigned start = startEltOffset; for (unsigned index : indices(tupleType.getElementTypes())) { auto nextType = type.getTupleElementType(index); unsigned next = start + TypeSubElementCount(nextType, fn); if (noneSet(filterBitVector, start, next)) { start = next; continue; } auto newValue = builder.createTupleElementAddr(insertPt->getLoc(), value, index); callback(newValue, TypeTreeLeafTypeRange(start, next)); start = next; } assert(start == endEltOffset); return; } llvm_unreachable("Not understand subtype"); } void TypeTreeLeafTypeRange::constructProjectionsForNeededElements( SILValue rootValue, SILInstruction *insertPt, SmallBitVector &neededElements, SmallVectorImpl> &resultingProjections) { TypeTreeLeafTypeRange rootRange(rootValue); (void)rootRange; assert(rootRange.size() == neededElements.size()); StackList> worklist( insertPt->getFunction()); worklist.push_back({rootValue, rootRange}); // Temporary vector we use for our computation. SmallBitVector tmp(neededElements.size()); auto allInRange = [](const SmallBitVector &bv, TypeTreeLeafTypeRange span) { return llvm::all_of(span.getRange(), [&bv](unsigned index) { return bv[index]; }); }; while (!worklist.empty()) { auto pair = worklist.pop_back_val(); auto value = pair.first; auto range = pair.second; tmp.reset(); tmp.set(range.startEltOffset, range.endEltOffset); tmp &= neededElements; // If we do not have any unpaired bits in this range, just continue... we do // not have any further work to do. if (tmp.none()) { continue; } // Otherwise, we had some sort of overlap. First lets see if we have // everything set in the range. In that case, we just add this range to the // result and continue. if (allInRange(tmp, range)) { resultingProjections.emplace_back(value, range); continue; } // Otherwise, we have a partial range. We need to split our range and then // recursively process those ranges looking for subranges that have // completely set bits. range.constructFilteredProjections( value, insertPt, neededElements, [&](SILValue subType, TypeTreeLeafTypeRange range) -> bool { worklist.push_back({subType, range}); return true; }); } } //===----------------------------------------------------------------------===// // MARK: FieldSensitivePrunedLiveBlocks //===----------------------------------------------------------------------===// void FieldSensitivePrunedLiveBlocks::computeScalarUseBlockLiveness( SILBasicBlock *userBB, unsigned bitNo) { // If, we are visiting this block, then it is not already LiveOut. Mark it // LiveWithin to indicate a liveness boundary within the block. markBlockLive(userBB, bitNo, LiveWithin); BasicBlockWorklist worklist(userBB->getFunction()); worklist.push(userBB); while (auto *block = worklist.pop()) { // The popped `bb` is live; now mark all its predecessors LiveOut. // // Traversal terminates at any previously visited block, including the // blocks initialized as definition blocks. for (auto *predBlock : block->getPredecessorBlocks()) { switch (getBlockLiveness(predBlock, bitNo)) { case Dead: worklist.pushIfNotVisited(predBlock); LLVM_FALLTHROUGH; case LiveWithin: markBlockLive(predBlock, bitNo, LiveOut); break; case LiveOut: break; } } } } /// Update the current def's liveness based on one specific use instruction. /// /// Return the updated liveness of the \p use block (LiveOut or LiveWithin). /// /// Terminators are not live out of the block. void FieldSensitivePrunedLiveBlocks::updateForUse( SILInstruction *user, unsigned startBitNo, unsigned endBitNo, SmallVectorImpl &resultingLivenessInfo) { assert(isInitialized()); resultingLivenessInfo.clear(); SWIFT_ASSERT_ONLY(seenUse = true); auto *bb = user->getParent(); getBlockLiveness(bb, startBitNo, endBitNo, resultingLivenessInfo); assert(resultingLivenessInfo.size() == (endBitNo - startBitNo)); for (unsigned index : indices(resultingLivenessInfo)) { unsigned specificBitNo = startBitNo + index; switch (resultingLivenessInfo[index]) { case LiveOut: case LiveWithin: continue; case Dead: { // This use block has not yet been marked live. Mark it and its // predecessor blocks live. computeScalarUseBlockLiveness(bb, specificBitNo); resultingLivenessInfo[index] = getBlockLiveness(bb, specificBitNo); continue; } } llvm_unreachable("covered switch"); } } llvm::StringRef FieldSensitivePrunedLiveBlocks::getStringRef(IsLive isLive) const { switch (isLive) { case Dead: return "Dead"; case LiveWithin: return "LiveWithin"; case LiveOut: return "LiveOut"; } llvm_unreachable("Covered switch?!"); } void FieldSensitivePrunedLiveBlocks::print(llvm::raw_ostream &OS) const { if (!discoveredBlocks) { OS << "No deterministic live block list\n"; return; } SmallVector isLive; for (auto *block : *discoveredBlocks) { block->printAsOperand(OS); OS << ": "; for (unsigned i : range(getNumBitsToTrack())) OS << getStringRef(this->getBlockLiveness(block, i)) << ", "; OS << "\n"; } } void FieldSensitivePrunedLiveBlocks::dump() const { print(llvm::dbgs()); } //===----------------------------------------------------------------------===// // MARK: FieldSensitiveLiveness //===----------------------------------------------------------------------===// void FieldSensitivePrunedLiveness::updateForUse(SILInstruction *user, TypeTreeLeafTypeRange range, bool lifetimeEnding) { SmallVector resultingLiveness; liveBlocks.updateForUse(user, range.startEltOffset, range.endEltOffset, resultingLiveness); addInterestingUser(user, range, lifetimeEnding); } //===----------------------------------------------------------------------===// // MARK: FieldSensitivePrunedLiveRange //===----------------------------------------------------------------------===// template bool FieldSensitivePrunedLiveRange::isWithinBoundary( SILInstruction *inst, TypeTreeLeafTypeRange span) const { assert(asImpl().isInitialized()); PRUNED_LIVENESS_LOG( llvm::dbgs() << "FieldSensitivePrunedLiveRange::isWithinBoundary!\n" << "Span: "; span.print(llvm::dbgs()); llvm::dbgs() << '\n'); // If we do not have any span, return true since we have no counter examples. if (span.empty()) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " span is empty! Returning true!\n"); return true; } using IsLive = FieldSensitivePrunedLiveBlocks::IsLive; auto *block = inst->getParent(); SmallVector outVector; getBlockLiveness(block, span, outVector); for (auto pair : llvm::enumerate(outVector)) { unsigned bit = span.startEltOffset + pair.index(); PRUNED_LIVENESS_LOG(llvm::dbgs() << " Visiting bit: " << bit << '\n'); bool isLive = false; switch (pair.value()) { case FieldSensitivePrunedLiveBlocks::Dead: PRUNED_LIVENESS_LOG(llvm::dbgs() << " Dead... continuing!\n"); // We are only not within the boundary if all of our bits are dead. We // track this via allDeadBits. So, just continue. continue; case FieldSensitivePrunedLiveBlocks::LiveOut: // If we are LiveOut and are not a def block, then we know that we are // within the boundary for this bit. We consider ourselves to be within // the boundary if /any/ of our bits are within the boundary. So return // true. if (!asImpl().isDefBlock(block, bit)) { PRUNED_LIVENESS_LOG( llvm::dbgs() << " LiveOut... but not in a def block... returning true " "since we are within the boundary for at least one bit"); return true; } isLive = true; PRUNED_LIVENESS_LOG(llvm::dbgs() << " LiveOut, but a def block... searching block!\n"); [[clang::fallthrough]]; case FieldSensitivePrunedLiveBlocks::LiveWithin: bool shouldContinue = false; if (!isLive) PRUNED_LIVENESS_LOG(llvm::dbgs() << " LiveWithin... searching block!\n"); // Now check if the instruction is between a last use and a definition. for (auto &blockInst : llvm::reverse(*block)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Inst: Live: " << (isLive ? "true" : "false") << "\n" << " " << blockInst); // First if we see a def, set isLive to false. if (asImpl().isDef(&blockInst, bit)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Inst is a def... marking live to false!\n"); isLive = false; } // Then check if we found our instruction in the block... if (&blockInst == inst) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Inst is inst we are looking for.\n"); // If we are live in the block when we reach the inst... we must be in // the block. if (isLive) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Inst was live... so returning true!\n"); return true; } // Otherwise, we know that we are not within the boundary for this // def... continue. shouldContinue = true; PRUNED_LIVENESS_LOG(llvm::dbgs() << " Inst was dead... so breaking out of loop!\n"); break; } // If we are not live and have an interesting user that maps to our bit, // mark this bit as being live again. if (!isLive) { auto interestingUser = isInterestingUser(&blockInst); bool isInteresting = interestingUser.first && interestingUser.second->contains(bit); PRUNED_LIVENESS_LOG(llvm::dbgs() << " Inst was dead... Is InterestingUser: " << (isInteresting ? "true" : "false") << '\n'); isLive |= isInteresting; } } // If we broke out of the inner loop, continue. if (shouldContinue) continue; llvm_unreachable("Inst not in parent block?!"); } } // We succeeded in proving we are not within the boundary for any of our bits. return false; } static StringRef getStringRef(FieldSensitivePrunedLiveBlocks::IsLive isLive) { switch (isLive) { case FieldSensitivePrunedLiveBlocks::Dead: return "Dead"; case FieldSensitivePrunedLiveBlocks::LiveWithin: return "LiveWithin"; case FieldSensitivePrunedLiveBlocks::LiveOut: return "LiveOut"; } } template void FieldSensitivePrunedLiveRange::computeBoundary( FieldSensitivePrunedLivenessBoundary &boundary) const { assert(asImpl().isInitialized()); PRUNED_LIVENESS_LOG(llvm::dbgs() << "Liveness Boundary Compuation!\n"); using IsLive = FieldSensitivePrunedLiveBlocks::IsLive; SmallVector isLiveTmp; for (SILBasicBlock *block : getDiscoveredBlocks()) { SWIFT_DEFER { isLiveTmp.clear(); }; getBlockLiveness(block, isLiveTmp); PRUNED_LIVENESS_LOG(llvm::dbgs() << "Checking for boundary in bb" << block->getDebugID() << '\n'); // Process each block that has not been visited and is not LiveOut. bool foundAnyNonDead = false; for (auto pair : llvm::enumerate(isLiveTmp)) { unsigned index = pair.index(); PRUNED_LIVENESS_LOG(llvm::dbgs() << "Bit: " << index << ". Liveness: " << getStringRef(pair.value()) << '\n'); switch (pair.value()) { case FieldSensitivePrunedLiveBlocks::LiveOut: for (SILBasicBlock *succBB : block->getSuccessors()) { if (getBlockLiveness(succBB, index) == FieldSensitivePrunedLiveBlocks::Dead) { PRUNED_LIVENESS_LOG(llvm::dbgs() << "Marking succBB as boundary edge: bb" << succBB->getDebugID() << '\n'); boundary.getBoundaryEdgeBits(succBB).set(index); } } asImpl().findBoundariesInBlock(block, index, /*isLiveOut*/ true, boundary); foundAnyNonDead = true; break; case FieldSensitivePrunedLiveBlocks::LiveWithin: { asImpl().findBoundariesInBlock(block, index, /*isLiveOut*/ false, boundary); foundAnyNonDead = true; break; } case FieldSensitivePrunedLiveBlocks::Dead: // We do not assert here like in the normal pruned liveness // implementation since we can have dead on some bits and liveness along // others. break; } } assert(foundAnyNonDead && "We should have found atleast one non-dead bit"); } } template void FieldSensitivePrunedLiveRange::updateForUse( SILInstruction *user, TypeTreeLeafTypeRange range, bool lifetimeEnding) { PRUNED_LIVENESS_LOG( llvm::dbgs() << "Begin FieldSensitivePrunedLiveRange::updateForUse " "for: " << *user); PRUNED_LIVENESS_LOG( llvm::dbgs() << "Looking for def instruction earlier in the block!\n"); auto *parentBlock = user->getParent(); for (auto ii = std::next(user->getReverseIterator()), ie = parentBlock->rend(); ii != ie; ++ii) { // If we find the def, just mark this instruction as being an interesting // instruction. if (asImpl().isDef(&*ii, range)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Found def: " << *ii); PRUNED_LIVENESS_LOG(llvm::dbgs() << " Marking inst as interesting user and returning!\n"); addInterestingUser(user, range, lifetimeEnding); return; } } // Otherwise, just delegate to our parent class's update for use. This will // update liveness for our predecessor blocks and add this instruction as an // interesting user. PRUNED_LIVENESS_LOG(llvm::dbgs() << "No defs found! Delegating to " "FieldSensitivePrunedLiveness::updateForUse.\n"); FieldSensitivePrunedLiveness::updateForUse(user, range, lifetimeEnding); } //===----------------------------------------------------------------------===// // MARK: Boundary Computation Utilities //===----------------------------------------------------------------------===// /// Given live-within (non-live-out) \p block, find the last user. void findBoundaryInNonDefBlock(SILBasicBlock *block, unsigned bitNo, FieldSensitivePrunedLivenessBoundary &boundary, const FieldSensitivePrunedLiveness &liveness) { assert(liveness.getBlockLiveness(block, bitNo) == FieldSensitivePrunedLiveBlocks::LiveWithin); PRUNED_LIVENESS_LOG(llvm::dbgs() << "Looking for boundary in non-def block\n"); for (SILInstruction &inst : llvm::reverse(*block)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << "Visiting: " << inst); auto interestingUser = liveness.isInterestingUser(&inst); if (interestingUser.first && interestingUser.second->contains(bitNo)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Is interesting user for this bit!\n"); boundary.getLastUserBits(&inst).set(bitNo); return; } } llvm_unreachable("live-within block must contain an interesting use"); } /// Given a live-within \p block that contains an SSA definition, and knowledge /// that all live uses are dominated by that single definition, find either the /// last user or a dead def. /// /// A live range with a single definition cannot have any uses above that /// definition in the same block. This even holds for unreachable self-loops. /// /// Precondition: Caller must have chwecked that ssaDef's span contains bitNo. void findBoundaryInSSADefBlock(SILNode *ssaDef, unsigned bitNo, FieldSensitivePrunedLivenessBoundary &boundary, const FieldSensitivePrunedLiveness &liveness) { // defInst is null for argument defs. PRUNED_LIVENESS_LOG(llvm::dbgs() << "Searching using findBoundaryInSSADefBlock.\n"); SILInstruction *defInst = dyn_cast(ssaDef); for (SILInstruction &inst : llvm::reverse(*ssaDef->getParentBlock())) { PRUNED_LIVENESS_LOG(llvm::dbgs() << "Visiting: " << inst); if (&inst == defInst) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Found dead def: " << *defInst); boundary.getDeadDefsBits(cast(&inst)).set(bitNo); return; } auto interestingUser = liveness.isInterestingUser(&inst); if (interestingUser.first && interestingUser.second->contains(bitNo)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Found interesting user: " << inst); boundary.getLastUserBits(&inst).set(bitNo); return; } } auto *deadArg = cast(ssaDef); PRUNED_LIVENESS_LOG(llvm::dbgs() << " Found dead arg: " << *deadArg); boundary.getDeadDefsBits(deadArg).set(bitNo); } //===----------------------------------------------------------------------===// // MARK: FieldSensitiveSSAPrunedLiveRange //===----------------------------------------------------------------------===// namespace swift { template class FieldSensitivePrunedLiveRange; } // namespace swift void FieldSensitiveSSAPrunedLiveRange::findBoundariesInBlock( SILBasicBlock *block, unsigned bitNo, bool isLiveOut, FieldSensitivePrunedLivenessBoundary &boundary) const { assert(isInitialized()); // For SSA, a live-out block cannot have a boundary. if (isLiveOut) return; // Handle live-within block if (!isDefBlock(block, bitNo)) { findBoundaryInNonDefBlock(block, bitNo, boundary, *this); return; } // Find either the last user or a dead def assert(def.second->contains(bitNo)); auto *defInst = def.first->getDefiningInstruction(); SILNode *defNode = defInst ? cast(defInst) : cast(def.first); findBoundaryInSSADefBlock(defNode, bitNo, boundary, *this); } //===----------------------------------------------------------------------===// // MARK: FieldSensitiveMultiDefPrunedLiveRange //===----------------------------------------------------------------------===// namespace swift { template class FieldSensitivePrunedLiveRange< FieldSensitiveMultiDefPrunedLiveRange>; } // namespace swift void FieldSensitiveMultiDefPrunedLiveRange::findBoundariesInBlock( SILBasicBlock *block, unsigned bitNo, bool isLiveOut, FieldSensitivePrunedLivenessBoundary &boundary) const { assert(isInitialized()); PRUNED_LIVENESS_LOG(llvm::dbgs() << "Checking for boundary in bb" << block->getDebugID() << " for bit: " << bitNo << ". Is Live: " << (isLiveOut ? "true" : "false") << '\n'); if (!isDefBlock(block, bitNo)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Not a def block for this bit?!\n"); // A live-out block that does not contain any defs cannot have a boundary. if (isLiveOut) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Is live out... nothing further to do.\n"); return; } PRUNED_LIVENESS_LOG(llvm::dbgs() << " Is LiveWithin, so looking for boundary " "in non-def block?!\n"); findBoundaryInNonDefBlock(block, bitNo, boundary, *this); return; } PRUNED_LIVENESS_LOG(llvm::dbgs() << "Is def block!\n"); // Handle def blocks... // // First, check for an SSA live range if (defs.size() == 1) { PRUNED_LIVENESS_LOG(llvm::dbgs() << "Has single def...\n"); // For SSA, a live-out block cannot have a boundary. if (isLiveOut) { PRUNED_LIVENESS_LOG(llvm::dbgs() << "Is live out... no further work to do...\n"); return; } PRUNED_LIVENESS_LOG(llvm::dbgs() << "Is live within... checking for boundary " "using SSA def block impl.\n"); assert(defs.vector_begin()->second->contains(bitNo)); findBoundaryInSSADefBlock(defs.vector_begin()->first, bitNo, boundary, *this); return; } PRUNED_LIVENESS_LOG(llvm::dbgs() << "Has multiple defs!\n"); // Handle a live-out or live-within block with potentially multiple defs #ifndef NDEBUG // We only use prevCount when checking a specific invariant when asserts are // enabled. boundary.getNumLastUsersAndDeadDefs actually asserts if you try to // call it in a non-asserts compiler since it is relatively inefficient and // not needed. unsigned prevCount = boundary.getNumLastUsersAndDeadDefs(bitNo); #endif bool isLive = isLiveOut; for (auto &inst : llvm::reverse(*block)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << "Visiting: " << inst); PRUNED_LIVENESS_LOG(llvm::dbgs() << " Initial IsLive: " << (isLive ? "true" : "false") << '\n'); // Check if the instruction is a def before checking whether it is a // use. The same instruction can be both a dead def and boundary use. if (isDef(&inst, bitNo)) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Is a def inst!\n"); if (!isLive) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " We are not live... so mark as dead " "def and keep isLive false!\n"); boundary.getDeadDefsBits(cast(&inst)).set(bitNo); } else { PRUNED_LIVENESS_LOG( llvm::dbgs() << " Is live usage... so just mark isLive to false.\n"); } isLive = false; } // Note: the same instruction could potentially be both a dead def and last // user. The liveness boundary supports this, although it won't happen in // any context where we care about inserting code on the boundary. PRUNED_LIVENESS_LOG(llvm::dbgs() << " Checking if this inst is also a last user...\n"); if (!isLive) { auto interestingUser = isInterestingUser(&inst); if (interestingUser.first && interestingUser.second->contains(bitNo)) { PRUNED_LIVENESS_LOG( llvm::dbgs() << " Was interesting user! Moving from dead -> live!\n"); boundary.getLastUserBits(&inst).set(bitNo); isLive = true; } else { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Not interesting user... keeping dead!\n"); } } else { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Was live already, so cannot be a last user!\n"); } } PRUNED_LIVENESS_LOG(llvm::dbgs() << "Finished processing block instructions... now " "checking for dead arguments if dead!\n"); if (!isLive) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Not live! Checking for dead args!\n"); for (SILArgument *deadArg : block->getArguments()) { auto iter = defs.find(deadArg); if (iter.has_value() && llvm::any_of(*iter, [&](TypeTreeLeafTypeRange span) { return span.contains(bitNo); })) { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Found dead arg: " << *deadArg); boundary.getDeadDefsBits(deadArg).set(bitNo); } } // If all of our single predecessors are LiveOut and we are not live, then // we need to mark ourselves as a boundary block so we clean up the live out // value. // // TODO: What if we have a mix/match of LiveWithin and LiveOut. if (!block->pred_empty()) { if (llvm::all_of(block->getPredecessorBlocks(), [&](SILBasicBlock *predBlock) -> bool { return getBlockLiveness(predBlock, bitNo) == FieldSensitivePrunedLiveBlocks::IsLive::LiveOut; })) { boundary.getBoundaryEdgeBits(block).set(bitNo); } } } else { PRUNED_LIVENESS_LOG(llvm::dbgs() << " Live at beginning of block! No dead args!\n"); } assert((isLiveOut || prevCount < boundary.getNumLastUsersAndDeadDefs(bitNo)) && "findBoundariesInBlock must be called on a live block"); }