//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #include "swift/Runtime/Metadata.h" #include "swift/Strings.h" #include "Private.h" #include #if SWIFT_OBJC_INTEROP #include #endif using namespace swift; // FIXME: This stuff should be merged with the existing logic in // include/swift/Reflection/TypeRefBuilder.h as part of the rewrite // to change stdlib reflection over to using remote mirrors. Demangle::NodePointer swift::_swift_buildDemanglingForMetadata(const Metadata *type, Demangle::Demangler &Dem); static Demangle::NodePointer _applyGenericArguments(const Metadata * const *genericArgs, const NominalTypeDescriptor *description, Demangle::NodePointer node, unsigned depth, Demangle::Demangler &Dem) { assert(depth > 0); auto typeNode = node; if (typeNode->getKind() == Node::Kind::Type) typeNode = typeNode->getChild(0); auto parentNode = typeNode->getChild(0); // It might be more accurate to keep this sugar, but the old version // of this function dropped it, and I want to keep things compatible. if (parentNode->getKind() == Node::Kind::Extension) { parentNode = parentNode->getChild(1); } switch (parentNode->getKind()) { case Node::Kind::Class: case Node::Kind::Structure: case Node::Kind::Enum: { // The parent type is a nominal type which may have its own generic // arguments. auto newParentNode = _applyGenericArguments(genericArgs, description, parentNode, depth - 1, Dem); if (newParentNode == nullptr) return nullptr; auto newTypeNode = Dem.createNode(typeNode->getKind()); newTypeNode->addChild(newParentNode, Dem); newTypeNode->addChild(typeNode->getChild(1), Dem); typeNode = newTypeNode; break; } default: // Parent is a local context or module. Leave it as-is, and just apply // generic arguments below. break; } // See if we have any generic arguments at this depth. unsigned numArgumentsAtDepth = description->getGenericContext(depth - 1).NumPrimaryParams; if (numArgumentsAtDepth == 0) { // No arguments here, just return the original node (except we may have // replaced its parent type above). return typeNode; } // Ok, we have generic arguments. Figure out where the arguments for this // depth begin in the generic type metadata. unsigned firstArgumentAtDepth = 0; for (unsigned i = 0; i < depth - 1; i++) { firstArgumentAtDepth += description->getGenericContext(i).NumPrimaryParams; } // Demangle them. auto typeParams = Dem.createNode(Node::Kind::TypeList); for (unsigned i = firstArgumentAtDepth, e = firstArgumentAtDepth + numArgumentsAtDepth; i < e; ++i) { auto demangling = _swift_buildDemanglingForMetadata(genericArgs[i], Dem); if (demangling == nullptr) return nullptr; typeParams->addChild(demangling, Dem); } Node::Kind boundGenericKind; switch (typeNode->getKind()) { case Node::Kind::Class: boundGenericKind = Node::Kind::BoundGenericClass; break; case Node::Kind::Structure: boundGenericKind = Node::Kind::BoundGenericStructure; break; case Node::Kind::Enum: boundGenericKind = Node::Kind::BoundGenericEnum; break; default: return nullptr; } auto newNode = Dem.createNode(Node::Kind::Type); newNode->addChild(typeNode, Dem); auto genericNode = Dem.createNode(boundGenericKind); genericNode->addChild(newNode, Dem); genericNode->addChild(typeParams, Dem); return genericNode; } static Demangle::NodePointer _buildDemanglerForBuiltinType(const Metadata *type, Demangle::Demangler &Dem) { #define BUILTIN_TYPE(Symbol, Name) \ if (type == &METADATA_SYM(Symbol).base) \ return Dem.createNode(Node::Kind::BuiltinTypeName, Name); #include "swift/Runtime/BuiltinTypes.def" return nullptr; } // Build a demangled type tree for a nominal type. static Demangle::NodePointer _buildDemanglingForNominalType(const Metadata *type, Demangle::Demangler &Dem) { using namespace Demangle; const NominalTypeDescriptor *description; // Demangle the parent type, if any. switch (type->getKind()) { case MetadataKind::Class: { auto classType = static_cast(type); #if SWIFT_OBJC_INTEROP // Peek through artificial subclasses. while (classType->isTypeMetadata() && classType->isArtificialSubclass()) classType = classType->SuperClass; #endif description = classType->getDescription(); break; } case MetadataKind::Enum: case MetadataKind::Optional: { auto enumType = static_cast(type); description = enumType->Description; break; } case MetadataKind::Struct: { auto structType = static_cast(type); description = structType->Description; break; } default: return nullptr; } // Demangle the base name. auto node = Dem.demangleType(StringRef(description->Name)); assert(node->getKind() == Node::Kind::Type); auto typeBytes = reinterpret_cast(type); auto genericArgs = reinterpret_cast( typeBytes + sizeof(void*) * description->GenericParams.getOffset(type)); return _applyGenericArguments(genericArgs, description, node, description->GenericParams.NestingDepth, Dem); } // Build a demangled type tree for a type. Demangle::NodePointer swift::_swift_buildDemanglingForMetadata(const Metadata *type, Demangle::Demangler &Dem) { using namespace Demangle; switch (type->getKind()) { case MetadataKind::Class: case MetadataKind::Enum: case MetadataKind::Optional: case MetadataKind::Struct: return _buildDemanglingForNominalType(type, Dem); case MetadataKind::ObjCClassWrapper: { #if SWIFT_OBJC_INTEROP auto objcWrapper = static_cast(type); const char *className = class_getName(objcWrapper->getObjCClassObject()); auto module = Dem.createNode(Node::Kind::Module, MANGLING_MODULE_OBJC); auto node = Dem.createNode(Node::Kind::Class); node->addChild(module, Dem); node->addChild(Dem.createNode(Node::Kind::Identifier, llvm::StringRef(className)), Dem); return node; #else assert(false && "no ObjC interop"); return nullptr; #endif } case MetadataKind::ForeignClass: { auto foreign = static_cast(type); return Dem.demangleType(foreign->getName()); } case MetadataKind::Existential: { auto exis = static_cast(type); std::vector protocols; protocols.reserve(exis->Protocols.NumProtocols); for (unsigned i = 0, e = exis->Protocols.NumProtocols; i < e; ++i) protocols.push_back(exis->Protocols[i]); auto type_list = Dem.createNode(Node::Kind::TypeList); auto proto_list = Dem.createNode(Node::Kind::ProtocolList); proto_list->addChild(type_list, Dem); // The protocol descriptors should be pre-sorted since the compiler will // only ever make a swift_getExistentialTypeMetadata invocation using // its canonical ordering of protocols. for (auto *protocol : protocols) { // The protocol name is mangled as a type symbol, with the _Tt prefix. StringRef ProtoName(protocol->Name); NodePointer protocolNode = Dem.demangleSymbol(ProtoName); // ObjC protocol names aren't mangled. if (!protocolNode) { auto module = Dem.createNode(Node::Kind::Module, MANGLING_MODULE_OBJC); auto node = Dem.createNode(Node::Kind::Protocol); node->addChild(module, Dem); node->addChild(Dem.createNode(Node::Kind::Identifier, llvm::StringRef(protocol->Name)), Dem); auto typeNode = Dem.createNode(Node::Kind::Type); typeNode->addChild(node, Dem); type_list->addChild(typeNode, Dem); continue; } // Dig out the protocol node. // Global -> (Protocol|TypeMangling) protocolNode = protocolNode->getChild(0); if (protocolNode->getKind() == Node::Kind::TypeMangling) { protocolNode = protocolNode->getChild(0); // TypeMangling -> Type protocolNode = protocolNode->getChild(0); // Type -> ProtocolList protocolNode = protocolNode->getChild(0); // ProtocolList -> TypeList protocolNode = protocolNode->getChild(0); // TypeList -> Type assert(protocolNode->getKind() == Node::Kind::Type); assert(protocolNode->getChild(0)->getKind() == Node::Kind::Protocol); } else { assert(protocolNode->getKind() == Node::Kind::Protocol); } type_list->addChild(protocolNode, Dem); } if (auto superclass = exis->getSuperclassConstraint()) { // If there is a superclass constraint, we mangle it specially. auto result = Dem.createNode(Node::Kind::ProtocolListWithClass); auto superclassNode = _swift_buildDemanglingForMetadata(superclass, Dem); result->addChild(proto_list, Dem); result->addChild(superclassNode, Dem); return result; } if (exis->isClassBounded()) { // Check if the class constraint is implied by any of our // protocols. bool requiresClassImplicit = false; for (auto *protocol : protocols) { if (protocol->Flags.getClassConstraint() == ProtocolClassConstraint::Class) requiresClassImplicit = true; } // If it was implied, we don't do anything special. if (requiresClassImplicit) return proto_list; // If the existential type has an explicit AnyObject constraint, // we must mangle it as such. auto result = Dem.createNode(Node::Kind::ProtocolListWithAnyObject); result->addChild(proto_list, Dem); return result; } // Just a simple composition of protocols. return proto_list; } case MetadataKind::ExistentialMetatype: { auto metatype = static_cast(type); auto instance = _swift_buildDemanglingForMetadata(metatype->InstanceType, Dem); auto node = Dem.createNode(Node::Kind::ExistentialMetatype); node->addChild(instance, Dem); return node; } case MetadataKind::Function: { auto func = static_cast(type); Node::Kind kind; switch (func->getConvention()) { case FunctionMetadataConvention::Swift: kind = Node::Kind::FunctionType; break; case FunctionMetadataConvention::Block: kind = Node::Kind::ObjCBlock; break; case FunctionMetadataConvention::CFunctionPointer: kind = Node::Kind::CFunctionPointer; break; case FunctionMetadataConvention::Thin: kind = Node::Kind::ThinFunctionType; break; } std::vector> inputs; for (unsigned i = 0, e = func->getNumParameters(); i < e; ++i) { auto param = func->getParameter(i); auto flags = func->getParameterFlags(i); auto input = _swift_buildDemanglingForMetadata(param, Dem); if (flags.isInOut()) { NodePointer inout = Dem.createNode(Node::Kind::InOut); inout->addChild(input, Dem); input = inout; } else if (flags.isShared()) { NodePointer shared = Dem.createNode(Node::Kind::Shared); shared->addChild(input, Dem); input = shared; } inputs.push_back({input, flags.isVariadic()}); } NodePointer totalInput = nullptr; switch (inputs.size()) { case 1: { auto &singleParam = inputs.front(); if (!singleParam.second) { totalInput = singleParam.first; break; } // If single parameter has a variadic marker it // requires a tuple wrapper. LLVM_FALLTHROUGH; } // This covers both none and multiple parameters. default: auto tuple = Dem.createNode(Node::Kind::Tuple); for (auto &input : inputs) { NodePointer eltType; bool isVariadic; std::tie(eltType, isVariadic) = input; // Tuple element := variadic-marker label? type auto tupleElt = Dem.createNode(Node::Kind::TupleElement); if (isVariadic) tupleElt->addChild(Dem.createNode(Node::Kind::VariadicMarker), Dem); if (eltType->getKind() == Node::Kind::Type) { tupleElt->addChild(eltType, Dem); } else { auto type = Dem.createNode(Node::Kind::Type); type->addChild(eltType, Dem); tupleElt->addChild(type, Dem); } tuple->addChild(tupleElt, Dem); } totalInput = tuple; break; } NodePointer parameters = Dem.createNode(Node::Kind::ArgumentTuple); NodePointer paramType = Dem.createNode(Node::Kind::Type); paramType->addChild(totalInput, Dem); parameters->addChild(paramType, Dem); NodePointer resultTy = _swift_buildDemanglingForMetadata(func->ResultType, Dem); NodePointer result = Dem.createNode(Node::Kind::ReturnType); result->addChild(resultTy, Dem); auto funcNode = Dem.createNode(kind); if (func->throws()) funcNode->addChild(Dem.createNode(Node::Kind::ThrowsAnnotation), Dem); funcNode->addChild(parameters, Dem); funcNode->addChild(result, Dem); return funcNode; } case MetadataKind::Metatype: { auto metatype = static_cast(type); auto instance = _swift_buildDemanglingForMetadata(metatype->InstanceType, Dem); auto typeNode = Dem.createNode(Node::Kind::Type); typeNode->addChild(instance, Dem); auto node = Dem.createNode(Node::Kind::Metatype); node->addChild(typeNode, Dem); return node; } case MetadataKind::Tuple: { auto tuple = static_cast(type); const char *labels = tuple->Labels; auto tupleNode = Dem.createNode(Node::Kind::Tuple); for (unsigned i = 0, e = tuple->NumElements; i < e; ++i) { auto elt = Dem.createNode(Node::Kind::TupleElement); // Add a label child if applicable: if (labels) { // Look for the next space in the labels string. if (const char *space = strchr(labels, ' ')) { // If there is one, and the label isn't empty, add a label child. if (labels != space) { auto eltName = Dem.createNode(Node::Kind::TupleElementName, llvm::StringRef(labels, space - labels)); elt->addChild(eltName, Dem); } // Skip past the space. labels = space + 1; } } // Add the element type child. auto eltType = _swift_buildDemanglingForMetadata(tuple->getElement(i).Type, Dem); if (eltType->getKind() == Node::Kind::Type) { elt->addChild(eltType, Dem); } else { auto type = Dem.createNode(Node::Kind::Type); type->addChild(eltType, Dem); elt->addChild(type, Dem); } // Add the completed element to the tuple. tupleNode->addChild(elt, Dem); } return tupleNode; } case MetadataKind::Opaque: { if (auto builtinType = _buildDemanglerForBuiltinType(type, Dem)) return builtinType; // FIXME: Some opaque types do have manglings, but we don't have enough info // to figure them out. break; } case MetadataKind::HeapLocalVariable: case MetadataKind::HeapGenericLocalVariable: case MetadataKind::ErrorObject: break; } // Not a type. return nullptr; }