//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // StringObject abstracts the bit-level interpretation and creation of the // String struct. // // TODO(String docs): Word-level diagram @_fixed_layout @usableFromInline internal struct _StringObject { /* On 64-bit platforms, the discriminator is the most significant 8 bits of the bridge object. ┌─────────────────────╥─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ │ Form ║ 7 │ 6 │ 5 │ 4 │ 3 │ 2 │ 1 │ 0 │ ╞═════════════════════╬═════╪═════╪═════╪═════╪═════╧═════╧═════╧═════╡ │ Immortal, Small ║ 1 │ASCII│ 1 │ 0 │ small count │ ├─────────────────────╫─────┼─────┼─────┼─────┼─────┬─────┬─────┬─────┤ │ Immortal, Large ║ 1 │ 0 │ 0 │ 0 │ 0 │ TBD │ TBD │ TBD │ ╞═════════════════════╬═════╪═════╪═════╪═════╪═════╪═════╪═════╪═════╡ │ Native ║ 0 │ 0 │ 0 │ 0 │ 0 │ TBD │ TBD │ TBD │ ├─────────────────────╫─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │ Shared ║ x │ 0 │ 0 │ 0 │ 1 │ TBD │ TBD │ TBD │ ├─────────────────────╫─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │ Shared, Bridged ║ 0 │ 1 │ 0 │ 0 │ 1 │ TBD │ TBD │ TBD │ ╞═════════════════════╬═════╪═════╪═════╪═════╪═════╪═════╪═════╪═════╡ │ Foreign ║ x │ 0 │ 0 │ 1 │ 1 │ TBD │ TBD │ TBD │ ├─────────────────────╫─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │ Foreign, Bridged ║ 0 │ 1 │ 0 │ 1 │ 1 │ TBD │ TBD │ TBD │ └─────────────────────╨─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘ b7: isImmortal: Should the Swift runtime skip ARC - Small strings are just values, always immortal - Large strings can sometimes be immortal, e.g. literals b6: (large) isBridged / (small) isASCII - For large strings, this means lazily-bridged NSString: perform ObjC ARC - Small strings repurpose this as a dedicated bit to remember ASCII-ness b5: isSmall: Dedicated bit to denote small strings b4: isForeign: aka isSlow, cannot provide access to contiguous UTF-8 b3: (large) not isTailAllocated: payload isn't a biased pointer - Shared strings provide contiguous UTF-8 through extra level of indirection The canonical empty string is the zero-sized small string. It has a leading nibble of 1110, and all other bits are 0. A "dedicated" bit is used for the most frequent fast-path queries so that they can compile to a fused check-and-branch, even if that burns part of the encoding space. On 32-bit platforms, we use an explicit discriminator with the same encoding as above, except bit 7 is omitted from storage -- it is left free, to supply extra inhabitants in the StringObject structure. The missing bit can be recovered by looking at `_variant.isImmortal`. */ @_fixed_layout @usableFromInline struct Discriminator { @usableFromInline internal var _value: UInt8 @inlinable @inline(__always) internal init(_ value: UInt8) { self._value = value } } #if arch(i386) || arch(arm) @usableFromInline @_frozen internal enum Variant { case immortal(UInt) case native(AnyObject) case bridged(_CocoaString) @inlinable @inline(__always) internal static func immortal(start: UnsafePointer) -> Variant { let biased = UInt(bitPattern: start) &- _StringObject.nativeBias return .immortal(biased) } @inlinable internal var isImmortal: Bool { @inline(__always) get { if case .immortal = self { return true } return false } } } @_fixed_layout @usableFromInline struct Flags { @usableFromInline internal var _value: UInt16 @inlinable @inline(__always) init(_ value: UInt16) { self._value = value } } @_fixed_layout @usableFromInline struct CountAndFlags { @usableFromInline internal var count: Int @usableFromInline internal var flags: Flags @inlinable @inline(__always) init(count: Int, flags: Flags) { self.count = count self.flags = flags } @inlinable @inline(__always) internal func _invariantCheck() { flags._invariantCheck() } } @usableFromInline internal var _count: Int @usableFromInline internal var _variant: Variant @usableFromInline internal var _discriminator: Discriminator @usableFromInline internal var _flags: Flags @inlinable @inline(__always) init( count: Int, variant: Variant, discriminator: Discriminator, flags: Flags ) { self._count = count self._variant = variant self._discriminator = discriminator self._flags = flags } @inlinable internal var _countAndFlags: CountAndFlags { @inline(__always) get { return CountAndFlags(count: _count, flags: _flags) } } #else // Abstract the count and performance-flags containing word @_fixed_layout @usableFromInline struct CountAndFlags { @usableFromInline var _storage: UInt @inlinable @inline(__always) internal init(zero: ()) { self._storage = 0 } } // // Laid out as (_countAndFlags, _object), which allows small string contents to // naturally start on vector-alignment. // @usableFromInline internal var _countAndFlags: CountAndFlags @usableFromInline internal var _object: Builtin.BridgeObject @inlinable @inline(__always) internal init(zero: ()) { self._countAndFlags = CountAndFlags(zero:()) self._object = Builtin.valueToBridgeObject(UInt64(0)._value) } #endif // Namespace to hold magic numbers @usableFromInline @_frozen enum Nibbles {} } extension _StringObject { @inlinable internal var discriminator: Discriminator { @inline(__always) get { #if arch(i386) || arch(arm) return _discriminator #else let d = objectRawBits &>> Nibbles.discriminatorShift return Discriminator(UInt8(truncatingIfNeeded: d)) #endif } } } // Raw extension _StringObject { @usableFromInline internal typealias RawBitPattern = (UInt64, UInt64) #if arch(i386) || arch(arm) // On 32-bit platforms, raw bit conversion is one-way only and uses the same // layout as on 64-bit platforms. @usableFromInline internal var rawBits: RawBitPattern { @inline(__always) get { let count = UInt64(truncatingIfNeeded: UInt(bitPattern: _count)) let payload = UInt64(truncatingIfNeeded: undiscriminatedObjectRawBits) let flags = UInt64(truncatingIfNeeded: _flags._value) let discr = UInt64(truncatingIfNeeded: _discriminator._value) if isSmall { // Rearrange small strings in a different way, compacting bytes into a // contiguous sequence. See comment on small string layout below. return (count | (payload &<< 32), flags | (discr &<< 56)) } return (count | (flags &<< 48), payload | (discr &<< 56)) } } #else @inlinable internal var rawBits: RawBitPattern { @inline(__always) get { return (_countAndFlags.rawBits, objectRawBits) } } @inlinable @inline(__always) internal init( bridgeObject: Builtin.BridgeObject, countAndFlags: CountAndFlags ) { self._object = bridgeObject self._countAndFlags = countAndFlags _invariantCheck() } @inlinable @inline(__always) internal init( object: AnyObject, discriminator: UInt64, countAndFlags: CountAndFlags ) { let builtinRawObject: Builtin.Int64 = Builtin.reinterpretCast(object) let builtinDiscrim: Builtin.Int64 = discriminator._value self.init( bridgeObject: Builtin.reinterpretCast( Builtin.stringObjectOr_Int64(builtinRawObject, builtinDiscrim)), countAndFlags: countAndFlags) } // Initializer to use for tagged (unmanaged) values @inlinable @inline(__always) internal init( pointerBits: UInt64, discriminator: UInt64, countAndFlags: CountAndFlags ) { let builtinValueBits: Builtin.Int64 = pointerBits._value let builtinDiscrim: Builtin.Int64 = discriminator._value self.init( bridgeObject: Builtin.valueToBridgeObject(Builtin.stringObjectOr_Int64( builtinValueBits, builtinDiscrim)), countAndFlags: countAndFlags) } @inlinable @inline(__always) internal init(rawUncheckedValue bits: RawBitPattern) { self.init(zero:()) self._countAndFlags = CountAndFlags(rawUnchecked: bits.0) self._object = Builtin.valueToBridgeObject(bits.1._value) _internalInvariant(self.rawBits == bits) } @inlinable @inline(__always) internal init(rawValue bits: RawBitPattern) { self.init(rawUncheckedValue: bits) _invariantCheck() } @inlinable @_transparent internal var objectRawBits: UInt64 { @inline(__always) get { return Builtin.reinterpretCast(_object) } } #endif } extension _StringObject { @inlinable @_transparent internal var undiscriminatedObjectRawBits: UInt { @inline(__always) get { #if arch(i386) || arch(arm) switch _variant { case .immortal(let bitPattern): return bitPattern case .native(let storage): return Builtin.reinterpretCast(storage) case .bridged(let object): return Builtin.reinterpretCast(object) } #else return UInt(truncatingIfNeeded: objectRawBits & Nibbles.largeAddressMask) #endif } } } #if !(arch(i386) || arch(arm)) extension _StringObject.CountAndFlags { @usableFromInline internal typealias RawBitPattern = UInt64 @inlinable internal var rawBits: RawBitPattern { @inline(__always) get { return UInt64(truncatingIfNeeded: _storage) } } @inlinable @inline(__always) internal init(rawUnchecked bits: RawBitPattern) { self._storage = UInt(truncatingIfNeeded: bits) } @inlinable @inline(__always) internal init(raw bits: RawBitPattern) { self.init(rawUnchecked: bits) _invariantCheck() } } #endif /* Encoding is optimized for common fast creation. The canonical empty string, ASCII small strings, as well as most literals, have all consecutive 1s in their high nibble mask, and thus can all be encoded as a logical immediate operand on arm64. See docs for _StringOjbect.Discriminator for the layout of the high nibble */ #if arch(i386) || arch(arm) extension _StringObject.Discriminator { @inlinable internal static var empty: _StringObject.Discriminator { @inline(__always) get { return _StringObject.Discriminator.small(withCount: 0, isASCII: true) } } } #else extension _StringObject.Nibbles { // The canonical empty sting is an empty small string @inlinable internal static var emptyString: UInt64 { @inline(__always) get { return _StringObject.Nibbles.small(isASCII: true) } } } #endif /* Large strings can either be "native", "shared", or "foreign". Native strings have tail-allocated storage, which begins at an offset of `nativeBias` from the storage object's address. String literals, which reside in the constant section, are encoded as their start address minus `nativeBias`, unifying code paths for both literals ("immortal native") and native strings. Native Strings are always managed by the Swift runtime. Shared strings do not have tail-allocated storage, but can provide access upon query to contiguous UTF-8 code units. Lazily-bridged NSStrings capable of providing access to contiguous ASCII/UTF-8 set the ObjC bit. Accessing shared string's pointer should always be behind a resilience barrier, permitting future evolution. Foreign strings cannot provide access to contiguous UTF-8. Currently, this only encompasses lazily-bridged NSStrings that cannot be treated as "shared". Such strings may provide access to contiguous UTF-16, or may be discontiguous in storage. Accessing foreign strings should remain behind a resilience barrier for future evolution. Other foreign forms are reserved for the future. Shared and foreign strings are always created and accessed behind a resilience barrier, providing flexibility for the future. ┌────────────┐ │ nativeBias │ ├────────────┤ │ 32 │ └────────────┘ ┌───────────────┬────────────┐ │ b63:b56 │ b55:b0 │ ├───────────────┼────────────┤ │ discriminator │ objectAddr │ └───────────────┴────────────┘ discriminator: See comment for _StringObject.Discriminator objectAddr: The address of the beginning of the potentially-managed object. TODO(Future): For Foreign strings, consider allocating a bit for whether they can provide contiguous UTF-16 code units, which would allow us to avoid doing the full call for non-contiguous NSString. */ extension _StringObject.Nibbles { // Mask for address bits, i.e. non-discriminator and non-extra high bits @inlinable static internal var largeAddressMask: UInt64 { @inline(__always) get { return 0x00FF_FFFF_FFFF_FFFF } } // Mask for discriminator bits @inlinable static internal var discriminatorMask: UInt64 { @inline(__always) get { return ~largeAddressMask } } // Position of discriminator bits @inlinable static internal var discriminatorShift: Int { @inline(__always) get { return 56 } } } extension _StringObject.Discriminator { // Discriminator for small strings @inlinable @inline(__always) internal static func small( withCount count: Int, isASCII: Bool ) -> _StringObject.Discriminator { _internalInvariant(count >= 0 && count <= _SmallString.capacity) let c = UInt8(truncatingIfNeeded: count) return _StringObject.Discriminator((isASCII ? 0xE0 : 0xA0) | c) } #if arch(i386) || arch(arm) // Discriminator for large, immortal, swift-native strings @inlinable @inline(__always) internal static func largeImmortal() -> _StringObject.Discriminator { return _StringObject.Discriminator(0x80) } // Discriminator for large, mortal (i.e. managed), swift-native strings @inlinable @inline(__always) internal static func largeMortal() -> _StringObject.Discriminator { return _StringObject.Discriminator(0x00) } // Discriminator for large, shared, mortal (i.e. managed), swift-native // strings @inlinable @inline(__always) internal static func largeSharedMortal() -> _StringObject.Discriminator { return _StringObject.Discriminator(0x08) } internal static func largeCocoa( providesFastUTF8: Bool ) -> _StringObject.Discriminator { return _StringObject.Discriminator(providesFastUTF8 ? 0x48 : 0x58) } #endif } #if !(arch(i386) || arch(arm)) // FIXME: Can we just switch to using the Discriminator factories above? extension _StringObject.Nibbles { // Discriminator for small strings @inlinable @inline(__always) internal static func small(isASCII: Bool) -> UInt64 { return isASCII ? 0xE000_0000_0000_0000 : 0xA000_0000_0000_0000 } // Discriminator for small strings @inlinable @inline(__always) internal static func small(withCount count: Int, isASCII: Bool) -> UInt64 { _internalInvariant(count <= _SmallString.capacity) return small(isASCII: isASCII) | UInt64(truncatingIfNeeded: count) &<< 56 } // Discriminator for large, immortal, swift-native strings @inlinable @inline(__always) internal static func largeImmortal() -> UInt64 { return 0x8000_0000_0000_0000 } // Discriminator for large, mortal (i.e. managed), swift-native strings @inlinable @inline(__always) internal static func largeMortal() -> UInt64 { return 0x0000_0000_0000_0000 } // Discriminator for large, shared, mortal (i.e. managed), swift-native // strings @inlinable @inline(__always) internal static func largeSharedMortal() -> UInt64 { return 0x0800_0000_0000_0000 } internal static func largeCocoa(providesFastUTF8: Bool) -> UInt64 { return providesFastUTF8 ? 0x4800_0000_0000_0000 : 0x5800_0000_0000_0000 } } #endif extension _StringObject.Discriminator { @inlinable internal var isImmortal: Bool { @inline(__always) get { return (_value & 0x80) != 0 } } @inlinable internal var isSmall: Bool { @inline(__always) get { return (_value & 0x20) != 0 } } @inlinable internal var smallIsASCII: Bool { @inline(__always) get { _internalInvariant(isSmall) return (_value & 0x40) != 0 } } @inlinable internal var smallCount: Int { @inline(__always) get { _internalInvariant(isSmall) return Int(truncatingIfNeeded: _value & 0x0F) } } @inlinable internal var providesFastUTF8: Bool { @inline(__always) get { return (_value & 0x10) == 0 } } // Whether we are a mortal, native string @inlinable internal var hasNativeStorage: Bool { @inline(__always) get { return (_value & 0xF8) == 0 } } // Whether we are a mortal, shared string (managed by Swift runtime) internal var hasSharedStorage: Bool { @inline(__always) get { return (_value & 0xF8) == 0x08 } } @inlinable internal var largeFastIsNative: Bool { @inline(__always) get { _internalInvariant(!isSmall && providesFastUTF8) return (_value & 0x08) == 0 } } // Whether this string is a lazily-bridged NSString, presupposing it is large @inlinable internal var largeIsCocoa: Bool { @inline(__always) get { _internalInvariant(!isSmall) return (_value & 0x40) != 0 } } } extension _StringObject.Discriminator { @inlinable internal var rawBits: UInt64 { return UInt64(_value) &<< _StringObject.Nibbles.discriminatorShift } } extension _StringObject { @inlinable internal static var nativeBias: UInt { @inline(__always) get { #if arch(i386) || arch(arm) return 20 #else return 32 #endif } } @inlinable internal var isImmortal: Bool { @inline(__always) get { #if arch(i386) || arch(arm) return _variant.isImmortal #else return (objectRawBits & 0x8000_0000_0000_0000) != 0 #endif } } @inlinable internal var isMortal: Bool { @inline(__always) get { return !isImmortal } } @inlinable internal var isSmall: Bool { @inline(__always) get { #if arch(i386) || arch(arm) return _discriminator.isSmall #else return (objectRawBits & 0x2000_0000_0000_0000) != 0 #endif } } @inlinable internal var isLarge: Bool { @inline(__always) get { return !isSmall } } // Whether this string can provide access to contiguous UTF-8 code units: // - Small strings can by spilling to the stack // - Large native strings can through an offset // - Shared strings can: // - Cocoa strings which respond to e.g. CFStringGetCStringPtr() // - Non-Cocoa shared strings @inlinable internal var providesFastUTF8: Bool { @inline(__always) get { #if arch(i386) || arch(arm) return _discriminator.providesFastUTF8 #else return (objectRawBits & 0x1000_0000_0000_0000) == 0 #endif } } @inlinable internal var isForeign: Bool { @inline(__always) get { return !providesFastUTF8 } } // Whether we are a mortal, native string @inlinable internal var hasNativeStorage: Bool { @inline(__always) get { #if arch(i386) || arch(arm) return _discriminator.hasNativeStorage #else return (objectRawBits & 0xF800_0000_0000_0000) == 0 #endif } } // Whether we are a mortal, shared string (managed by Swift runtime) internal var hasSharedStorage: Bool { @inline(__always) get { #if arch(i386) || arch(arm) return _discriminator.hasSharedStorage #else return (objectRawBits & 0xF800_0000_0000_0000) == Nibbles.largeSharedMortal() #endif } } } // Queries conditional on being in a large or fast form. extension _StringObject { // Whether this string is native, presupposing it is both large and fast @inlinable internal var largeFastIsNative: Bool { @inline(__always) get { _internalInvariant(isLarge && providesFastUTF8) #if arch(i386) || arch(arm) return _discriminator.largeFastIsNative #else return (objectRawBits & 0x0800_0000_0000_0000) == 0 #endif } } // Whether this string is shared, presupposing it is both large and fast @inlinable internal var largeFastIsShared: Bool { @inline(__always) get { return !largeFastIsNative } } // Whether this string is a lazily-bridged NSString, presupposing it is large @inlinable internal var largeIsCocoa: Bool { @inline(__always) get { _internalInvariant(isLarge) #if arch(i386) || arch(arm) return _discriminator.largeIsCocoa #else return (objectRawBits & 0x4000_0000_0000_0000) != 0 #endif } } } /* On 64-bit platforms, small strings have the following per-byte layout. When stored in memory (little-endian), their first character ('a') is in the lowest address and their top-nibble and count is in the highest address. ┌───────────────────────────────┬─────────────────────────────────────────────┐ │ _countAndFlags │ _object │ ├───┬───┬───┬───┬───┬───┬───┬───┼───┬───┬────┬────┬────┬────┬────┬────────────┤ │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │ 12 │ 13 │ 14 │ 15 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼────┼────┼────┼────┼────┼────────────┤ │ a │ b │ c │ d │ e │ f │ g │ h │ i │ j │ k │ l │ m │ n │ o │ 1x0x count │ └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴────┴────┴────┴────┴────┴────────────┘ On 32-bit platforms, we have less space to store code units, and it isn't contiguous. However, we still use the above layout for the RawBitPattern representation. ┌───────────────┬───────────────────┬───────┬─────────┐ │ _count │_variant .immortal │_discr │ _flags │ ├───┬───┬───┬───┼───┬───┬───┬───┬───┼───────┼────┬────┤ │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │ ├───┼───┼───┼───┼───┴───┴───┴───┴───┼───────┼────┼────┤ │ a │ b │ c │ d │ e f g h │x10 cnt│ i │ j │ └───┴───┴───┴───┴───────────────────┴───────┴────┴────┘ */ extension _StringObject { @inlinable internal var smallCount: Int { @inline(__always) get { _internalInvariant(isSmall) return discriminator.smallCount } } @inlinable internal var smallIsASCII: Bool { @inline(__always) get { _internalInvariant(isSmall) #if arch(i386) || arch(arm) return _discriminator.smallIsASCII #else return objectRawBits & 0x4000_0000_0000_0000 != 0 #endif } } @inlinable @inline(__always) internal init(_ small: _SmallString) { #if arch(i386) || arch(arm) let (word1, word2) = small.rawBits let countBits = Int(truncatingIfNeeded: word1) let variantBits = UInt(truncatingIfNeeded: word1 &>> 32) let flagBits = UInt16(truncatingIfNeeded: word2) let discriminatorBits = UInt8(truncatingIfNeeded: word2 &>> 56) _internalInvariant(discriminatorBits & 0xA0 == 0xA0) self.init( count: countBits, variant: .immortal(variantBits), discriminator: Discriminator(discriminatorBits), flags: Flags(flagBits) ) #else self.init(rawValue: small.rawBits) #endif _internalInvariant(isSmall) } @inlinable @inline(__always) internal init(empty:()) { // Canonical empty pattern: small zero-length string #if arch(i386) || arch(arm) self.init( count: 0, variant: .immortal(0), discriminator: .empty, flags: Flags(0)) #else self._countAndFlags = CountAndFlags(zero:()) self._object = Builtin.valueToBridgeObject(Nibbles.emptyString._value) #endif _internalInvariant(self.smallCount == 0) _invariantCheck() } } /* // TODO(String docs): Combine this with Nibbles table, and perhaps small string // table, into something that describes the higher-level structure of // _StringObject. All non-small forms share the same structure for the other half of the bits (i.e. non-object bits) as a word containing code unit count and various performance flags. The top 16 bits are for performance flags, which are not semantically relevant but communicate that some operations can be done more efficiently on this particular string, and the lower 48 are the code unit count (aka endIndex). ┌─────────┬───────┬────────┬───────┐ │ b63 │ b62 │ b61:48 │ b47:0 │ ├─────────┼───────┼────────┼───────┤ │ isASCII │ isNFC │ TBD │ count │ └─────────┴───────┴────────┴───────┘ isASCII: set when all code units are known to be ASCII, enabling: - Trivial Unicode scalars, they're just the code units - Trivial UTF-16 transcoding (just bit-extend) - Also, isASCII always implies isNFC isNFC: set when the contents are in normal form C, enable: - Trivial lexicographical comparisons: just memcmp Allocation of more performance flags is TBD, un-used bits will be reserved for future use. Count stores the number of code units: corresponds to `endIndex`. */ #if arch(i386) || arch(arm) extension _StringObject.Flags { @inlinable internal var isASCII: Bool { @inline(__always) get { return _value & 0x8000 != 0 } } @inlinable internal var isNFC: Bool { @inline(__always) get { return _value & 0x4000 != 0 } } @inlinable @inline(__always) init(isASCII: Bool) { // ASCII also entails NFC self._value = isASCII ? 0xC000 : 0x0000 } #if !INTERNAL_CHECKS_ENABLED @inlinable @inline(__always) internal func _invariantCheck() {} #else @usableFromInline @inline(never) @_effects(releasenone) internal func _invariantCheck() { if isASCII { _internalInvariant(isNFC) } } #endif // INTERNAL_CHECKS_ENABLED } #else extension _StringObject.CountAndFlags { @inlinable @inline(__always) internal init(count: Int) { self.init(zero:()) self.count = count _invariantCheck() } @inlinable @inline(__always) internal init(count: Int, isASCII: Bool) { self.init(zero:()) self.count = count if isASCII { // ASCII implies NFC self._storage |= 0xC000_0000_0000_0000 } _invariantCheck() } @inlinable internal var countMask: UInt { @inline(__always) get { return 0x0000_FFFF_FFFF_FFFF } } @inlinable internal var flagsMask: UInt { @inline(__always) get { return ~countMask} } @inlinable internal var count: Int { @inline(__always) get { return Int(bitPattern: _storage & countMask) } @inline(__always) set { _internalInvariant(newValue <= countMask, "too large") _storage = (_storage & flagsMask) | UInt(bitPattern: newValue) } } @inlinable internal var isASCII: Bool { return 0 != _storage & 0x8000_0000_0000_0000 } @inlinable internal var isNFC: Bool { return 0 != _storage & 0x4000_0000_0000_0000 } #if !INTERNAL_CHECKS_ENABLED @inlinable @inline(__always) internal func _invariantCheck() {} #else @usableFromInline @inline(never) @_effects(releasenone) internal func _invariantCheck() { if isASCII { _internalInvariant(isNFC) } } #endif // INTERNAL_CHECKS_ENABLED } #endif // Extract extension _StringObject { @inlinable internal var largeCount: Int { @inline(__always) get { _internalInvariant(isLarge) #if arch(i386) || arch(arm) return _count #else return _countAndFlags.count #endif } @inline(__always) set { #if arch(i386) || arch(arm) _count = newValue #else _countAndFlags.count = newValue #endif _internalInvariant(newValue == largeCount) _invariantCheck() } } @inlinable internal var largeAddressBits: UInt { @inline(__always) get { _internalInvariant(isLarge) return undiscriminatedObjectRawBits } } @inlinable internal var nativeUTF8Start: UnsafePointer { @inline(__always) get { _internalInvariant(largeFastIsNative) return UnsafePointer( bitPattern: largeAddressBits &+ _StringObject.nativeBias )._unsafelyUnwrappedUnchecked } } @inlinable internal var nativeUTF8: UnsafeBufferPointer { @inline(__always) get { _internalInvariant(largeFastIsNative) return UnsafeBufferPointer(start: nativeUTF8Start, count: largeCount) } } // Resilient way to fetch a pointer @usableFromInline @inline(never) @_effects(releasenone) internal func getSharedUTF8Start() -> UnsafePointer { _internalInvariant(largeFastIsShared) #if _runtime(_ObjC) if largeIsCocoa { return _cocoaUTF8Pointer(cocoaObject)._unsafelyUnwrappedUnchecked } #endif return sharedStorage.start } @usableFromInline internal var sharedUTF8: UnsafeBufferPointer { @_effects(releasenone) @inline(never) get { _internalInvariant(largeFastIsShared) let start = self.getSharedUTF8Start() return UnsafeBufferPointer(start: start, count: largeCount) } } internal var nativeStorage: _StringStorage { @inline(__always) get { #if arch(i386) || arch(arm) guard case .native(let storage) = _variant else { _internalInvariantFailure() } return _unsafeUncheckedDowncast(storage, to: _StringStorage.self) #else _internalInvariant(hasNativeStorage) return Builtin.reinterpretCast(largeAddressBits) #endif } } internal var sharedStorage: _SharedStringStorage { @inline(__always) get { #if arch(i386) || arch(arm) guard case .native(let storage) = _variant else { _internalInvariantFailure() } return _unsafeUncheckedDowncast(storage, to: _SharedStringStorage.self) #else _internalInvariant(largeFastIsShared && !largeIsCocoa) _internalInvariant(hasSharedStorage) return Builtin.reinterpretCast(largeAddressBits) #endif } } internal var cocoaObject: AnyObject { @inline(__always) get { #if arch(i386) || arch(arm) guard case .bridged(let object) = _variant else { _internalInvariantFailure() } return object #else _internalInvariant(largeIsCocoa && !isImmortal) return Builtin.reinterpretCast(largeAddressBits) #endif } } } // Aggregate queries / abstractions extension _StringObject { // The number of code units stored // // TODO(String micro-performance): Check generated code @inlinable internal var count: Int { @inline(__always) get { return isSmall ? smallCount : largeCount } } // // Whether the string is all ASCII // @inlinable internal var isASCII: Bool { @inline(__always) get { if isSmall { return smallIsASCII } #if arch(i386) || arch(arm) return _flags.isASCII #else return _countAndFlags.isASCII #endif } } @inlinable internal var isNFC: Bool { @inline(__always) get { if isSmall { // TODO(String performance): Worth implementing more sophisiticated // check, or else performing normalization on- construction. For now, // approximate it with isASCII return smallIsASCII } #if arch(i386) || arch(arm) return _flags.isNFC #else return _countAndFlags.isNFC #endif } } // Get access to fast UTF-8 contents for large strings which provide it. @inlinable internal var fastUTF8: UnsafeBufferPointer { @inline(__always) get { _internalInvariant(self.isLarge && self.providesFastUTF8) if _slowPath(self.largeFastIsShared) { return sharedUTF8 } return UnsafeBufferPointer( start: self.nativeUTF8Start, count: self.largeCount) } } // Whether the object stored can be bridged directly as a NSString @usableFromInline // @opaque internal var hasObjCBridgeableObject: Bool { @_effects(releasenone) get { // Currently, all mortal objects can zero-cost bridge return !self.isImmortal } } // Fetch the stored subclass of NSString for bridging @inlinable internal var objCBridgeableObject: AnyObject { @inline(__always) get { _internalInvariant(hasObjCBridgeableObject) return Builtin.reinterpretCast(largeAddressBits) } } // Whether the object provides fast UTF-8 contents that are nul-terminated @inlinable internal var isFastZeroTerminated: Bool { if _slowPath(!providesFastUTF8) { return false } // Small strings nul-terminate when spilling for contiguous access if isSmall { return true } // TODO(String performance): Use performance flag, which could be more // inclusive. For now, we only know native strings and small strings (when // accessed) are. We could also know about some shared strings. return largeFastIsNative } } // Object creation extension _StringObject { @inlinable @inline(__always) internal init(immortal bufPtr: UnsafeBufferPointer, isASCII: Bool) { #if arch(i386) || arch(arm) self.init( count: bufPtr.count, variant: .immortal(start: bufPtr.baseAddress._unsafelyUnwrappedUnchecked), discriminator: .largeImmortal(), flags: Flags(isASCII: isASCII)) #else // We bias to align code paths for mortal and immortal strings let biasedAddress = UInt( bitPattern: bufPtr.baseAddress._unsafelyUnwrappedUnchecked ) &- _StringObject.nativeBias let countAndFlags = CountAndFlags(count: bufPtr.count, isASCII: isASCII) self.init( pointerBits: UInt64(truncatingIfNeeded: biasedAddress), discriminator: Nibbles.largeImmortal(), countAndFlags: countAndFlags) #endif } @inline(__always) internal init(_ storage: _StringStorage) { #if arch(i386) || arch(arm) self.init( count: storage._count, variant: .native(storage), discriminator: .largeMortal(), flags: storage._flags) #else self.init( object: storage, discriminator: Nibbles.largeMortal(), countAndFlags: storage._countAndFlags) #endif } internal init(_ storage: _SharedStringStorage, isASCII: Bool) { #if arch(i386) || arch(arm) self.init( count: storage._count, variant: .native(storage), discriminator: .largeSharedMortal(), flags: storage._flags) #else self.init( object: storage, discriminator: Nibbles.largeSharedMortal(), countAndFlags: storage._countAndFlags) #endif } internal init( cocoa: AnyObject, providesFastUTF8: Bool, isASCII: Bool, length: Int ) { #if arch(i386) || arch(arm) self.init( count: length, variant: .bridged(cocoa), discriminator: .largeCocoa(providesFastUTF8: providesFastUTF8), flags: Flags(isASCII: isASCII)) #else let countAndFlags = CountAndFlags(count: length, isASCII: isASCII) let discriminator = Nibbles.largeCocoa(providesFastUTF8: providesFastUTF8) self.init( object: cocoa, discriminator: discriminator, countAndFlags: countAndFlags) _internalInvariant(self.largeAddressBits == Builtin.reinterpretCast(cocoa)) _internalInvariant(self.providesFastUTF8 == providesFastUTF8) _internalInvariant(self.largeCount == length) #endif } } // Internal invariants extension _StringObject { #if !INTERNAL_CHECKS_ENABLED @inlinable @inline(__always) internal func _invariantCheck() {} #else @usableFromInline @inline(never) @_effects(releasenone) internal func _invariantCheck() { #if arch(i386) || arch(arm) _internalInvariant(MemoryLayout<_StringObject>.size == 12) _internalInvariant(MemoryLayout<_StringObject>.stride == 12) _internalInvariant(MemoryLayout<_StringObject>.alignment == 4) _internalInvariant(MemoryLayout<_StringObject?>.size == 12) _internalInvariant(MemoryLayout<_StringObject?>.stride == 12) _internalInvariant(MemoryLayout<_StringObject?>.alignment == 4) #else _internalInvariant(MemoryLayout<_StringObject>.size == 16) _internalInvariant(MemoryLayout<_StringObject?>.size == 16) #endif if isForeign { _internalInvariant(largeIsCocoa, "No other foreign forms yet") } if isSmall { _internalInvariant(isImmortal) _internalInvariant(smallCount <= 15) _internalInvariant(smallCount == count) _internalInvariant(!hasObjCBridgeableObject) } else { _internalInvariant(isLarge) _internalInvariant(largeCount == count) if providesFastUTF8 && largeFastIsNative { _internalInvariant(!isSmall) _internalInvariant(!largeIsCocoa) if isImmortal { _internalInvariant(!hasNativeStorage) _internalInvariant(!hasObjCBridgeableObject) } else { _internalInvariant(hasNativeStorage) _internalInvariant(hasObjCBridgeableObject) _internalInvariant(nativeStorage.count == self.count) } } if largeIsCocoa { _internalInvariant(hasObjCBridgeableObject) _internalInvariant(!isSmall) if isForeign { } else { _internalInvariant(largeFastIsShared) } } } #if arch(i386) || arch(arm) switch _variant { case .immortal: _internalInvariant(isImmortal) case .native: _internalInvariant(hasNativeStorage || hasSharedStorage) case .bridged: _internalInvariant(isLarge) _internalInvariant(largeIsCocoa) } #endif } #endif // INTERNAL_CHECKS_ENABLED @inline(never) internal func _dump() { #if INTERNAL_CHECKS_ENABLED let raw = self.rawBits let word0 = ("0000000000000000" + String(raw.0, radix: 16)).suffix(16) let word1 = ("0000000000000000" + String(raw.1, radix: 16)).suffix(16) #if arch(i386) || arch(arm) print(""" StringObject(\ <\(word0) \(word1)> \ count: \(String(_count, radix: 16)), \ variant: \(_variant), \ discriminator: \(_discriminator), \ flags: \(_flags)) """) #else print("StringObject(<\(word0) \(word1)>)") #endif let repr = _StringGuts(self)._classify() switch repr._form { case ._small: _SmallString(self)._dump() case ._immortal(address: let address): print(""" Immortal(\ start: \(UnsafeRawPointer(bitPattern: address)!), \ count: \(repr._count)) """) case ._native(_): print(""" Native(\ owner: \(repr._objectIdentifier!), \ count: \(repr._count), \ capacity: \(repr._capacity)) """) case ._cocoa(object: let object): let address: UnsafeRawPointer = Builtin.reinterpretCast(object) print("Cocoa(address: \(address))") } #endif // INTERNAL_CHECKS_ENABLED } }