//===--- PerformanceInlinerUtils.cpp - Performance inliner utilities. -----===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #include "swift/SILOptimizer/Utils/PerformanceInlinerUtils.h" //===----------------------------------------------------------------------===// // ConstantTracker //===----------------------------------------------------------------------===// void ConstantTracker::trackInst(SILInstruction *inst) { if (auto *LI = dyn_cast(inst)) { SILValue baseAddr = scanProjections(LI->getOperand()); if (SILInstruction *loadLink = getMemoryContent(baseAddr)) links[LI] = loadLink; } else if (StoreInst *SI = dyn_cast(inst)) { SILValue baseAddr = scanProjections(SI->getOperand(1)); memoryContent[baseAddr] = SI; } else if (CopyAddrInst *CAI = dyn_cast(inst)) { if (!CAI->isTakeOfSrc()) { // Treat a copy_addr as a load + store SILValue loadAddr = scanProjections(CAI->getOperand(0)); if (SILInstruction *loadLink = getMemoryContent(loadAddr)) { links[CAI] = loadLink; SILValue storeAddr = scanProjections(CAI->getOperand(1)); memoryContent[storeAddr] = CAI; } } } } SILValue ConstantTracker::scanProjections(SILValue addr, SmallVectorImpl *Result) { for (;;) { if (Projection::isAddressProjection(addr)) { SILInstruction *I = cast(addr); if (Result) { Result->push_back(Projection(I)); } addr = I->getOperand(0); continue; } if (SILValue param = getParam(addr)) { // Go to the caller. addr = param; continue; } // Return the base address = the first address which is not a projection. return addr; } } SILValue ConstantTracker::getStoredValue(SILInstruction *loadInst, ProjectionPath &projStack) { SILInstruction *store = links[loadInst]; if (!store && callerTracker) store = callerTracker->links[loadInst]; if (!store) return SILValue(); assert(isa(loadInst) || isa(loadInst)); // Push the address projections of the load onto the stack. SmallVector loadProjections; scanProjections(loadInst->getOperand(0), &loadProjections); for (const Projection &proj : loadProjections) { projStack.push_back(proj); } // Pop the address projections of the store from the stack. SmallVector storeProjections; scanProjections(store->getOperand(1), &storeProjections); for (auto iter = storeProjections.rbegin(); iter != storeProjections.rend(); ++iter) { const Projection &proj = *iter; // The corresponding load-projection must match the store-projection. if (projStack.empty() || projStack.back() != proj) return SILValue(); projStack.pop_back(); } if (isa(store)) return store->getOperand(0); // The copy_addr instruction is both a load and a store. So we follow the link // again. assert(isa(store)); return getStoredValue(store, projStack); } // Get the aggregate member based on the top of the projection stack. static SILValue getMember(SILInstruction *inst, ProjectionPath &projStack) { if (!projStack.empty()) { const Projection &proj = projStack.back(); return proj.getOperandForAggregate(inst); } return SILValue(); } SILInstruction *ConstantTracker::getDef(SILValue val, ProjectionPath &projStack) { // Track the value up the dominator tree. for (;;) { if (SILInstruction *inst = dyn_cast(val)) { if (Projection::isObjectProjection(inst)) { // Extract a member from a struct/tuple/enum. projStack.push_back(Projection(inst)); val = inst->getOperand(0); continue; } else if (SILValue member = getMember(inst, projStack)) { // The opposite of a projection instruction: composing a struct/tuple. projStack.pop_back(); val = member; continue; } else if (SILValue loadedVal = getStoredValue(inst, projStack)) { // A value loaded from memory. val = loadedVal; continue; } else if (isa(inst)) { val = inst->getOperand(0); continue; } return inst; } else if (SILValue param = getParam(val)) { // Continue in the caller. val = param; continue; } return nullptr; } } ConstantTracker::IntConst ConstantTracker::getBuiltinConst(BuiltinInst *BI, int depth) { const BuiltinInfo &Builtin = BI->getBuiltinInfo(); OperandValueArrayRef Args = BI->getArguments(); switch (Builtin.ID) { default: break; // Fold comparison predicates. #define BUILTIN(id, name, Attrs) #define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \ case BuiltinValueKind::id: #include "swift/AST/Builtins.def" { IntConst lhs = getIntConst(Args[0], depth); IntConst rhs = getIntConst(Args[1], depth); if (lhs.isValid && rhs.isValid) { return IntConst(constantFoldComparison(lhs.value, rhs.value, Builtin.ID), lhs.isFromCaller || rhs.isFromCaller); } break; } case BuiltinValueKind::SAddOver: case BuiltinValueKind::UAddOver: case BuiltinValueKind::SSubOver: case BuiltinValueKind::USubOver: case BuiltinValueKind::SMulOver: case BuiltinValueKind::UMulOver: { IntConst lhs = getIntConst(Args[0], depth); IntConst rhs = getIntConst(Args[1], depth); if (lhs.isValid && rhs.isValid) { bool IgnoredOverflow; return IntConst(constantFoldBinaryWithOverflow(lhs.value, rhs.value, IgnoredOverflow, getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID)), lhs.isFromCaller || rhs.isFromCaller); } break; } case BuiltinValueKind::SDiv: case BuiltinValueKind::SRem: case BuiltinValueKind::UDiv: case BuiltinValueKind::URem: { IntConst lhs = getIntConst(Args[0], depth); IntConst rhs = getIntConst(Args[1], depth); if (lhs.isValid && rhs.isValid && rhs.value != 0) { bool IgnoredOverflow; return IntConst(constantFoldDiv(lhs.value, rhs.value, IgnoredOverflow, Builtin.ID), lhs.isFromCaller || rhs.isFromCaller); } break; } case BuiltinValueKind::And: case BuiltinValueKind::AShr: case BuiltinValueKind::LShr: case BuiltinValueKind::Or: case BuiltinValueKind::Shl: case BuiltinValueKind::Xor: { IntConst lhs = getIntConst(Args[0], depth); IntConst rhs = getIntConst(Args[1], depth); if (lhs.isValid && rhs.isValid) { return IntConst(constantFoldBitOperation(lhs.value, rhs.value, Builtin.ID), lhs.isFromCaller || rhs.isFromCaller); } break; } case BuiltinValueKind::Trunc: case BuiltinValueKind::ZExt: case BuiltinValueKind::SExt: case BuiltinValueKind::TruncOrBitCast: case BuiltinValueKind::ZExtOrBitCast: case BuiltinValueKind::SExtOrBitCast: { IntConst val = getIntConst(Args[0], depth); if (val.isValid) { return IntConst(constantFoldCast(val.value, Builtin), val.isFromCaller); } break; } } return IntConst(); } // Tries to evaluate the integer constant of a value. The \p depth is used // to limit the complexity. ConstantTracker::IntConst ConstantTracker::getIntConst(SILValue val, int depth) { // Don't spend too much time with constant evaluation. if (depth >= 10) return IntConst(); SILInstruction *I = getDef(val); if (!I) return IntConst(); if (auto *IL = dyn_cast(I)) { return IntConst(IL->getValue(), IL->getFunction() != F); } if (auto *BI = dyn_cast(I)) { if (constCache.count(BI) != 0) return constCache[BI]; IntConst builtinConst = getBuiltinConst(BI, depth + 1); constCache[BI] = builtinConst; return builtinConst; } return IntConst(); } // Returns the taken block of a terminator instruction if the condition turns // out to be constant. SILBasicBlock *ConstantTracker::getTakenBlock(TermInst *term) { if (CondBranchInst *CBI = dyn_cast(term)) { IntConst condConst = getIntConst(CBI->getCondition()); if (condConst.isFromCaller) { return condConst.value != 0 ? CBI->getTrueBB() : CBI->getFalseBB(); } return nullptr; } if (SwitchValueInst *SVI = dyn_cast(term)) { IntConst switchConst = getIntConst(SVI->getOperand()); if (switchConst.isFromCaller) { for (unsigned Idx = 0; Idx < SVI->getNumCases(); ++Idx) { auto switchCase = SVI->getCase(Idx); if (auto *IL = dyn_cast(switchCase.first)) { if (switchConst.value == IL->getValue()) return switchCase.second; } else { return nullptr; } } if (SVI->hasDefault()) return SVI->getDefaultBB(); } return nullptr; } if (SwitchEnumInst *SEI = dyn_cast(term)) { if (SILInstruction *def = getDefInCaller(SEI->getOperand())) { if (EnumInst *EI = dyn_cast(def)) { for (unsigned Idx = 0; Idx < SEI->getNumCases(); ++Idx) { auto enumCase = SEI->getCase(Idx); if (enumCase.first == EI->getElement()) return enumCase.second; } if (SEI->hasDefault()) return SEI->getDefaultBB(); } } return nullptr; } if (CheckedCastBranchInst *CCB = dyn_cast(term)) { if (SILInstruction *def = getDefInCaller(CCB->getOperand())) { if (UpcastInst *UCI = dyn_cast(def)) { SILType castType = UCI->getOperand()->getType(); if (CCB->getCastType().isExactSuperclassOf(castType)) { return CCB->getSuccessBB(); } if (!castType.isBindableToSuperclassOf(CCB->getCastType())) { return CCB->getFailureBB(); } } } } return nullptr; } //===----------------------------------------------------------------------===// // Shortest path analysis //===----------------------------------------------------------------------===// int ShortestPathAnalysis::getEntryDistFromPreds(const SILBasicBlock *BB, int LoopDepth) { int MinDist = InitialDist; for (SILBasicBlock *Pred : BB->getPredecessorBlocks()) { BlockInfo *PredInfo = getBlockInfo(Pred); Distances &PDists = PredInfo->getDistances(LoopDepth); int DistFromEntry = PDists.DistFromEntry + PredInfo->Length + PDists.LoopHeaderLength; assert(DistFromEntry >= 0); if (DistFromEntry < MinDist) MinDist = DistFromEntry; } return MinDist; } int ShortestPathAnalysis::getExitDistFromSuccs(const SILBasicBlock *BB, int LoopDepth) { int MinDist = InitialDist; for (const SILSuccessor &Succ : BB->getSuccessors()) { BlockInfo *SuccInfo = getBlockInfo(Succ); Distances &SDists = SuccInfo->getDistances(LoopDepth); if (SDists.DistToExit < MinDist) MinDist = SDists.DistToExit; } return MinDist; } /// Detect an edge from the loop pre-header's predecessor to the loop exit /// block. Such an edge "short-cuts" a loop if it is never iterated. But usually /// it is the less frequent case and we want to ignore it. /// E.g. it handles the case of N==0 for /// for i in 0..getLoopPreheader(); if (!Pred) return nullptr; SILBasicBlock *PredPred = Pred->getSinglePredecessorBlock(); if (!PredPred) return nullptr; auto *CBR = dyn_cast(PredPred->getTerminator()); if (!CBR) return nullptr; SILBasicBlock *Succ = (CBR->getTrueBB() == Pred ? CBR->getFalseBB() : CBR->getTrueBB()); for (SILBasicBlock *PredOfSucc : Succ->getPredecessorBlocks()) { SILBasicBlock *Exiting = PredOfSucc->getSinglePredecessorBlock(); if (!Exiting) Exiting = PredOfSucc; if (Loop->contains(Exiting)) return PredPred; } return nullptr; } void ShortestPathAnalysis::analyzeLoopsRecursively(SILLoop *Loop, int LoopDepth) { if (LoopDepth >= MaxNumLoopLevels) return; // First dive into the inner loops. for (SILLoop *SubLoop : Loop->getSubLoops()) { analyzeLoopsRecursively(SubLoop, LoopDepth + 1); } BlockInfo *HeaderInfo = getBlockInfo(Loop->getHeader()); Distances &HeaderDists = HeaderInfo->getDistances(LoopDepth); // Initial values for the entry (== header) and exit-predecessor (== header as // well). HeaderDists.DistFromEntry = 0; HeaderDists.DistToExit = 0; solveDataFlow(Loop->getBlocks(), LoopDepth); int LoopLength = getExitDistFromSuccs(Loop->getHeader(), LoopDepth) + HeaderInfo->getLength(LoopDepth); HeaderDists.DistToExit = LoopLength; // If there is a loop bypass edge, add the loop length to the loop pre-pre- // header instead to the header. This actually let us ignore the loop bypass // edge in the length calculation for the loop's parent scope. if (SILBasicBlock *Bypass = detectLoopBypassPreheader(Loop)) HeaderInfo = getBlockInfo(Bypass); // Add the full loop length (= assumed-iteration-count * length) to the loop // header so that it is considered in the parent scope. HeaderInfo->getDistances(LoopDepth - 1).LoopHeaderLength = LoopCount * LoopLength; } ShortestPathAnalysis::Weight ShortestPathAnalysis:: getWeight(SILBasicBlock *BB, Weight CallerWeight) { assert(BB->getParent() == F); SILLoop *Loop = LI->getLoopFor(BB); if (!Loop) { // We are not in a loop. So just account the length of our function scope // in to the length of the CallerWeight. return Weight(CallerWeight.ScopeLength + getScopeLength(BB, 0), CallerWeight.LoopWeight); } int LoopDepth = Loop->getLoopDepth(); // Deal with the corner case of having more than 4 nested loops. while (LoopDepth >= MaxNumLoopLevels) { --LoopDepth; Loop = Loop->getParentLoop(); } Weight W(getScopeLength(BB, LoopDepth), SingleLoopWeight); // Add weights for all the loops BB is in. while (Loop) { assert(LoopDepth > 0); BlockInfo *HeaderInfo = getBlockInfo(Loop->getHeader()); int InnerLoopLength = HeaderInfo->getScopeLength(LoopDepth) * ShortestPathAnalysis::LoopCount; int OuterLoopWeight = SingleLoopWeight; int OuterScopeLength = HeaderInfo->getScopeLength(LoopDepth - 1); // Reaching the outermost loop, we use the CallerWeight to get the outer // length+loopweight. if (LoopDepth == 1) { // If the apply in the caller is not in a significant loop, just stop with // what we have now. if (CallerWeight.LoopWeight < 4) return W; // If this function is part of the caller's scope length take the caller's // scope length. Note: this is not the case e.g. if the apply is in a // then-branch of an if-then-else in the caller and the else-branch is // the short path. if (CallerWeight.ScopeLength > OuterScopeLength) OuterScopeLength = CallerWeight.ScopeLength; OuterLoopWeight = CallerWeight.LoopWeight; } assert(OuterScopeLength >= InnerLoopLength); // If the current loop is only a small part of its outer loop, we don't // take the outer loop that much into account. Only if the current loop is // actually the "main part" in the outer loop we add the full loop weight // for the outer loop. if (OuterScopeLength < InnerLoopLength * 2) { W.LoopWeight += OuterLoopWeight - 1; } else if (OuterScopeLength < InnerLoopLength * 3) { W.LoopWeight += OuterLoopWeight - 2; } else if (OuterScopeLength < InnerLoopLength * 4) { W.LoopWeight += OuterLoopWeight - 3; } else { return W; } --LoopDepth; Loop = Loop->getParentLoop(); } assert(LoopDepth == 0); return W; } void ShortestPathAnalysis::dump() { printFunction(llvm::errs()); } void ShortestPathAnalysis::printFunction(llvm::raw_ostream &OS) { OS << "SPA @" << F->getName() << "\n"; for (SILBasicBlock &BB : *F) { printBlockInfo(OS, &BB, 0); } for (SILLoop *Loop : *LI) { printLoop(OS, Loop, 1); } } void ShortestPathAnalysis::printLoop(llvm::raw_ostream &OS, SILLoop *Loop, int LoopDepth) { if (LoopDepth >= MaxNumLoopLevels) return; assert(LoopDepth == (int)Loop->getLoopDepth()); OS << "Loop bb" << Loop->getHeader()->getDebugID() << ":\n"; for (SILBasicBlock *BB : Loop->getBlocks()) { printBlockInfo(OS, BB, LoopDepth); } for (SILLoop *SubLoop : Loop->getSubLoops()) { printLoop(OS, SubLoop, LoopDepth + 1); } } void ShortestPathAnalysis::printBlockInfo(llvm::raw_ostream &OS, SILBasicBlock *BB, int LoopDepth) { BlockInfo *BBInfo = getBlockInfo(BB); Distances &D = BBInfo->getDistances(LoopDepth); OS << " bb" << BB->getDebugID() << ": length=" << BBInfo->Length << '+' << D.LoopHeaderLength << ", d-entry=" << D.DistFromEntry << ", d-exit=" << D.DistToExit << '\n'; } void ShortestPathAnalysis::Weight::updateBenefit(int &Benefit, int Importance) const { assert(isValid()); int newBenefit = 0; // Use some heuristics. The basic idea is: length is bad, loops are good. if (ScopeLength > 320) { newBenefit = Importance; } else if (ScopeLength > 160) { newBenefit = Importance + LoopWeight * 4; } else if (ScopeLength > 80) { newBenefit = Importance + LoopWeight * 8; } else if (ScopeLength > 40) { newBenefit = Importance + LoopWeight * 12; } else if (ScopeLength > 20) { newBenefit = Importance + LoopWeight * 16; } else { newBenefit = Importance + 20 + LoopWeight * 16; } // We don't accumulate the benefit instead we max it. if (newBenefit > Benefit) Benefit = newBenefit; }