//===--- AbstractionPattern.cpp - Abstraction patterns --------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file defines routines relating to abstraction patterns. // working in concert with the Clang importer. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "libsil" #include "swift/AST/ASTContext.h" #include "swift/AST/Decl.h" #include "swift/AST/ForeignAsyncConvention.h" #include "swift/AST/ForeignErrorConvention.h" #include "swift/AST/GenericEnvironment.h" #include "swift/AST/GenericSignature.h" #include "swift/AST/ModuleLoader.h" #include "swift/AST/TypeCheckRequests.h" #include "swift/AST/TypeVisitor.h" #include "swift/SIL/TypeLowering.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/PrettyPrinter.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" using namespace swift; using namespace swift::Lowering; AbstractionPattern TypeConverter::getAbstractionPattern(AbstractStorageDecl *decl, bool isNonObjC) { if (auto var = dyn_cast(decl)) { return getAbstractionPattern(var, isNonObjC); } else { return getAbstractionPattern(cast(decl), isNonObjC); } } AbstractionPattern TypeConverter::getAbstractionPattern(SubscriptDecl *decl, bool isNonObjC) { auto sig = decl->getGenericSignatureOfContext().getCanonicalSignature(); auto type = sig.getReducedType(decl->getElementInterfaceType()); return AbstractionPattern(sig, type); } static const clang::Type *getClangType(const clang::Decl *decl) { if (auto valueDecl = dyn_cast(decl)) { return valueDecl->getType().getTypePtr(); } // This should *really* be a ValueDecl. return cast(decl)->getType().getTypePtr(); } static Bridgeability getClangDeclBridgeability(const clang::Decl *decl) { // These declarations are always imported without bridging (for now). if (isa(decl) || isa(decl) || isa(decl)) return Bridgeability::None; // Functions and methods always use normal bridging. return Bridgeability::Full; } AbstractionPattern TypeConverter::getAbstractionPattern(VarDecl *var, bool isNonObjC) { auto sig = var->getDeclContext() ->getGenericSignatureOfContext() .getCanonicalSignature(); auto interfaceType = var->getInterfaceType(); if (auto *packExpansionType = interfaceType->getAs()) interfaceType = packExpansionType->getPatternType(); auto swiftType = sig.getReducedType(interfaceType); if (isNonObjC) return AbstractionPattern(sig, swiftType); if (auto clangDecl = var->getClangDecl()) { auto clangType = getClangType(clangDecl); auto contextType = var->getDeclContext()->mapTypeIntoContext(swiftType); swiftType = getLoweredBridgedType(AbstractionPattern(sig, swiftType, clangType), contextType, getClangDeclBridgeability(clangDecl), SILFunctionTypeRepresentation::CFunctionPointer, TypeConverter::ForMemory) ->getCanonicalType(); return AbstractionPattern(sig, swiftType, clangType); } return AbstractionPattern(sig, swiftType); } AbstractionPattern TypeConverter::getAbstractionPattern(EnumElementDecl *decl) { assert(decl->hasAssociatedValues()); assert(!decl->hasClangNode()); // This cannot be implemented correctly for Optional.Some. assert(!decl->getParentEnum()->isOptionalDecl() && "Optional.Some does not have a unique abstraction pattern because " "optionals are re-abstracted"); auto sig = decl->getParentEnum() ->getGenericSignatureOfContext() .getCanonicalSignature(); auto type = sig.getReducedType(decl->getArgumentInterfaceType()); return AbstractionPattern(sig, type); } AbstractionPattern::EncodedForeignInfo AbstractionPattern::EncodedForeignInfo::encode( const Optional &foreignError, const Optional &foreignAsync) { // Foreign async convention takes precedence. if (foreignAsync.has_value()) { return EncodedForeignInfo(EncodedForeignInfo::Async, foreignAsync->completionHandlerParamIndex(), foreignAsync->completionHandlerErrorParamIndex(), foreignAsync->completionHandlerFlagParamIndex(), foreignAsync->completionHandlerFlagIsErrorOnZero()); } else if (foreignError.has_value()) { return EncodedForeignInfo(EncodedForeignInfo::Error, foreignError->getErrorParameterIndex(), foreignError->isErrorParameterReplacedWithVoid(), foreignError->stripsResultOptionality()); } else { return {}; } } AbstractionPattern AbstractionPattern::getObjCMethod(CanType origType, const clang::ObjCMethodDecl *method, const Optional &foreignError, const Optional &foreignAsync) { auto errorInfo = EncodedForeignInfo::encode(foreignError, foreignAsync); return getObjCMethod(origType, method, errorInfo); } AbstractionPattern AbstractionPattern::getCurriedObjCMethod(CanType origType, const clang::ObjCMethodDecl *method, const Optional &foreignError, const Optional &foreignAsync) { auto errorInfo = EncodedForeignInfo::encode(foreignError, foreignAsync); return getCurriedObjCMethod(origType, method, errorInfo); } AbstractionPattern AbstractionPattern::getCurriedCFunctionAsMethod(CanType origType, const AbstractFunctionDecl *function) { auto clangFn = cast(function->getClangDecl()); return getCurriedCFunctionAsMethod(origType, clangFn->getType().getTypePtr(), function->getImportAsMemberStatus()); } AbstractionPattern AbstractionPattern::getCurriedCXXMethod(CanType origType, const AbstractFunctionDecl *function) { auto clangMethod = cast(function->getClangDecl()); return getCurriedCXXMethod(origType, clangMethod, function->getImportAsMemberStatus()); } AbstractionPattern AbstractionPattern::getOptional(AbstractionPattern object) { switch (object.getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::Tuple: case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::CFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("cannot add optionality to non-type abstraction"); case Kind::Opaque: return AbstractionPattern::getOpaque(); case Kind::ClangType: return AbstractionPattern(object.getGenericSubstitutions(), object.getGenericSignature(), OptionalType::get(object.getType()) ->getCanonicalType(), object.getClangType()); case Kind::Type: return AbstractionPattern(object.getGenericSubstitutions(), object.getGenericSignature(), OptionalType::get(object.getType()) ->getCanonicalType()); case Kind::Discard: return AbstractionPattern::getDiscard( object.getGenericSubstitutions(), object.getGenericSignature(), OptionalType::get(object.getType()) ->getCanonicalType()); } llvm_unreachable("bad kind"); } bool AbstractionPattern::isConcreteType() const { assert(isTypeParameter()); return (getKind() != Kind::Opaque && GenericSig != nullptr && GenericSig->isConcreteType(getType())); } bool AbstractionPattern::requiresClass() const { switch (getKind()) { case Kind::Opaque: return false; case Kind::Type: case Kind::Discard: case Kind::ClangType: { auto type = getType(); if (auto archetype = dyn_cast(type)) return archetype->requiresClass(); if (type->isTypeParameter()) { if (getKind() == Kind::ClangType) { // ObjC generics are always class constrained. return true; } assert(GenericSig && "Dependent type in pattern without generic signature?"); return GenericSig->requiresClass(type); } return false; } default: return false; } } LayoutConstraint AbstractionPattern::getLayoutConstraint() const { switch (getKind()) { case Kind::Opaque: return LayoutConstraint(); case Kind::Type: case Kind::Discard: case Kind::ClangType: { auto type = getType(); if (auto archetype = dyn_cast(type)) { return archetype->getLayoutConstraint(); } else if (isa(type) || isa(type)) { if (getKind() == Kind::ClangType) { // ObjC generics are always class constrained. return LayoutConstraint::getLayoutConstraint( LayoutConstraintKind::Class); } assert(GenericSig && "Dependent type in pattern without generic signature?"); return GenericSig->getLayoutConstraint(type); } return LayoutConstraint(); } default: return LayoutConstraint(); } } bool AbstractionPattern::matchesTuple(CanTupleType substType) const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: return false; case Kind::Opaque: return true; case Kind::ObjCCompletionHandlerArgumentsType: case Kind::ClangType: case Kind::Type: case Kind::Discard: if (isTypeParameterOrOpaqueArchetype()) return true; if (!isa(getType())) return false; LLVM_FALLTHROUGH; case Kind::Tuple: { size_t nextSubstIndex = 0; auto nextComponentIsAcceptable = [&](bool isPackExpansion) -> bool { if (nextSubstIndex == substType->getNumElements()) return false; auto substComponentType = substType.getElementType(nextSubstIndex++); return (isPackExpansion == isa(substComponentType)); }; for (auto elt : getTupleElementTypes()) { bool isPackExpansion = elt.isPackExpansion(); if (isPackExpansion && elt.GenericSubs) { auto origExpansion = cast(elt.getType()); auto substShape = cast( origExpansion.getCountType().subst(elt.GenericSubs) ->getCanonicalType()); for (auto shapeElt : substShape.getElementTypes()) { if (!nextComponentIsAcceptable(isa(shapeElt))) return false; } } else if (!nextComponentIsAcceptable(isPackExpansion)) { return false; } } return nextSubstIndex == substType->getNumElements(); } } llvm_unreachable("bad kind"); } static const clang::FunctionType * getClangFunctionType(const clang::Type *clangType) { if (auto ptrTy = clangType->getAs()) { clangType = ptrTy->getPointeeType().getTypePtr(); } else if (auto blockTy = clangType->getAs()) { clangType = blockTy->getPointeeType().getTypePtr(); } else if (auto refTy = clangType->getAs()) { clangType = refTy->getPointeeType().getTypePtr(); } return clangType->castAs(); } static const clang::Type *getClangFunctionParameterType(const clang::Type *ty, unsigned index) { // TODO: adjust for error type parameter. // If we're asking about parameters, we'd better have a FunctionProtoType. auto fnType = getClangFunctionType(ty)->castAs(); assert(index < fnType->getNumParams()); return fnType->getParamType(index).getTypePtr(); } static const clang::Type *getClangArrayElementType(const clang::Type *ty, unsigned index) { return ty->castAsArrayTypeUnsafe()->getElementType().getTypePtr(); } static CanType getCanTupleElementType(CanType type, unsigned index) { if (auto tupleTy = dyn_cast(type)) return tupleTy.getElementType(index); assert(index == 0); return type; } AbstractionPattern AbstractionPattern::getTupleElementType(unsigned index) const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: llvm_unreachable("function types are not tuples"); case Kind::Opaque: return *this; case Kind::Tuple: assert(index < getNumTupleElements_Stored()); return OrigTupleElements[index]; case Kind::ClangType: return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), getCanTupleElementType(getType(), index), getClangArrayElementType(getClangType(), index)); case Kind::Discard: llvm_unreachable("operation not needed on discarded abstractions yet"); case Kind::Type: if (isTypeParameterOrOpaqueArchetype()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), getCanTupleElementType(getType(), index)); case Kind::ObjCCompletionHandlerArgumentsType: { // Match up the tuple element with the parameter from the Clang block type, // skipping the error parameter and flag indexes if any. auto callback = cast(getClangType()); auto errorIndex = getEncodedForeignInfo() .getAsyncCompletionHandlerErrorParamIndex(); auto flagIndex = getEncodedForeignInfo() .getAsyncCompletionHandlerErrorFlagParamIndex(); unsigned paramIndex = index; if (errorIndex && paramIndex >= *errorIndex) ++paramIndex; if (flagIndex && paramIndex >= *flagIndex) ++paramIndex; return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), getCanTupleElementType(getType(), index), callback->getParamType(paramIndex).getTypePtr()); } } llvm_unreachable("bad kind"); } bool AbstractionPattern::doesTupleContainPackExpansionType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::Opaque: case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::CFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: llvm_unreachable("pattern is not a tuple"); case Kind::Tuple: { for (auto &elt : llvm::makeArrayRef(OrigTupleElements, getNumTupleElements_Stored())) { if (elt.isPackExpansion()) return true; } return true; } case Kind::ObjCCompletionHandlerArgumentsType: case Kind::Type: case Kind::Discard: case Kind::ClangType: return cast(getType()).containsPackExpansionType(); } llvm_unreachable("bad kind"); } void AbstractionPattern::forEachTupleElement(CanTupleType substType, llvm::function_ref handleScalar, llvm::function_ref handleExpansion) const { assert(isTuple() && "can only call on a tuple expansion"); assert(matchesTuple(substType)); size_t substEltIndex = 0; auto substEltTypes = substType.getElementTypes(); for (size_t origEltIndex : range(getNumTupleElements())) { auto origEltType = getTupleElementType(origEltIndex); if (!origEltType.isPackExpansion()) { handleScalar(origEltIndex, substEltIndex, origEltType, substEltTypes[substEltIndex]); substEltIndex++; } else { auto numComponents = origEltType.getNumPackExpandedComponents(); handleExpansion(origEltIndex, substEltIndex, origEltType, substEltTypes.slice(substEltIndex, numComponents)); substEltIndex += numComponents; } } assert(substEltIndex == substEltTypes.size()); } void AbstractionPattern::forEachExpandedTupleElement(CanTupleType substType, llvm::function_ref handleElement) const { assert(matchesTuple(substType)); auto substEltTypes = substType.getElementTypes(); // Handle opaque patterns by just iterating the substituted components. if (!isTuple()) { for (auto i : indices(substEltTypes)) { handleElement(getTupleElementType(i), substEltTypes[i], substType->getElement(i)); } return; } // For non-opaque patterns, we have to iterate the original components // in order to match things up properly, but we'll still end up calling // once per substituted element. size_t substEltIndex = 0; for (size_t origEltIndex : range(getNumTupleElements())) { auto origEltType = getTupleElementType(origEltIndex); if (!origEltType.isPackExpansion()) { handleElement(origEltType, substEltTypes[substEltIndex], substType->getElement(substEltIndex)); substEltIndex++; } else { auto origPatternType = origEltType.getPackExpansionPatternType(); for (auto i : range(origEltType.getNumPackExpandedComponents())) { (void) i; auto substEltType = substEltTypes[substEltIndex]; // When the substituted type is a pack expansion, pass down // the original element type so that it's *also* a pack expansion. // Clients expect to look through this structure in parallel on // both types. The count is misleading, but normal usage won't // access it, and there's nothing we could provide that *wouldn't* // be misleading in one way or another. handleElement(isa(substEltType) ? origEltType : origPatternType, substEltType, substType->getElement(substEltIndex)); substEltIndex++; } } } assert(substEltIndex == substEltTypes.size()); } static CanType getCanPackElementType(CanType type, unsigned index) { return cast(type).getElementType(index); } AbstractionPattern AbstractionPattern::getPackElementType(unsigned index) const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::ClangType: case Kind::Tuple: case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("not a pack type"); case Kind::Opaque: return *this; case Kind::Discard: llvm_unreachable("operation not needed on discarded abstractions yet"); case Kind::Type: if (isTypeParameterOrOpaqueArchetype()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), getCanPackElementType(getType(), index)); } llvm_unreachable("bad kind"); } bool AbstractionPattern::matchesPack(CanPackType substType) { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::Tuple: case Kind::ObjCCompletionHandlerArgumentsType: case Kind::ClangType: return false; case Kind::Opaque: return true; case Kind::Type: case Kind::Discard: { if (isTypeParameterOrOpaqueArchetype()) return true; auto type = getType(); if (auto pack = dyn_cast(type)) return (pack->getNumElements() == substType->getNumElements()); return false; } } llvm_unreachable("bad kind"); } AbstractionPattern AbstractionPattern::getPackExpansionComponentType(CanType substType) const { return getPackExpansionComponentType(isa(substType)); } AbstractionPattern AbstractionPattern::getPackExpansionComponentType(bool isExpansion) const { assert(isPackExpansion()); return isExpansion ? *this : getPackExpansionPatternType(); } static CanType getPackExpansionPatternType(CanType type) { return cast(type).getPatternType(); } AbstractionPattern AbstractionPattern::getPackExpansionPatternType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::ObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: case Kind::CFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::Tuple: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::ObjCCompletionHandlerArgumentsType: case Kind::ClangType: llvm_unreachable("pattern for function or tuple cannot be for " "pack expansion type"); case Kind::Opaque: return *this; case Kind::Type: if (isTypeParameterOrOpaqueArchetype()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), ::getPackExpansionPatternType(getType())); case Kind::Discard: return AbstractionPattern::getDiscard( getGenericSubstitutions(), getGenericSignature(), ::getPackExpansionPatternType(getType())); } llvm_unreachable("bad kind"); } size_t AbstractionPattern::getNumPackExpandedComponents() const { assert(isPackExpansion()); assert(getKind() == Kind::Type || getKind() == Kind::Discard); // If we don't have substitutions, we should be walking parallel // structure; take a single element. if (!GenericSubs) return 1; // Otherwise, substitute the expansion shape. auto origExpansion = cast(getType()); auto substShape = cast( origExpansion.getCountType().subst(GenericSubs)->getCanonicalType()); return substShape->getNumElements(); } AbstractionPattern AbstractionPattern::removingMoveOnlyWrapper() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: llvm_unreachable("function types can not be move only"); case Kind::ClangType: llvm_unreachable("clang types can not be move only yet"); case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("not handled yet"); case Kind::Discard: llvm_unreachable("operation not needed on discarded abstractions yet"); case Kind::Tuple: llvm_unreachable("cannot apply move-only wrappers to open-coded patterns"); case Kind::Opaque: case Kind::Type: if (auto mvi = dyn_cast(getType())) { return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), mvi->getInnerType()); } return *this; } llvm_unreachable("bad kind"); } AbstractionPattern AbstractionPattern::addingMoveOnlyWrapper() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: llvm_unreachable("function types can not be move only"); case Kind::ClangType: llvm_unreachable("clang types can not be move only yet"); case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("not handled yet"); case Kind::Discard: llvm_unreachable("operation not needed on discarded abstractions yet"); case Kind::Tuple: llvm_unreachable("cannot add move only wrapper to open-coded pattern"); case Kind::Opaque: case Kind::Type: if (isa(getType())) return *this; return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), SILMoveOnlyWrappedType::get(getType())); } llvm_unreachable("bad kind"); } /// Return a pattern corresponding to the 'self' parameter of the given /// Objective-C method. AbstractionPattern AbstractionPattern::getObjCMethodSelfPattern(CanType selfType) const { // Just use id for the receiver type. If this is ever // insufficient --- if we have interesting bridging to do to // 'self' --- we have the right information to be more exact. auto clangSelfType = getObjCMethod()->getASTContext().getObjCIdType().getTypePtr(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), selfType, clangSelfType); } /// Return a pattern corresponding to the 'self' parameter of the given /// C function imported as a method. AbstractionPattern AbstractionPattern::getCFunctionAsMethodSelfPattern(CanType selfType) const { auto memberStatus = getImportAsMemberStatus(); if (memberStatus.isInstance()) { // Use the clang type for the receiver type. If this is ever // insufficient --- if we have interesting bridging to do to // 'self' --- we have the right information to be more exact. auto clangSelfType = getClangFunctionParameterType(getClangType(),memberStatus.getSelfIndex()); return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), selfType, clangSelfType); } // The formal metatype parameter to a C function imported as a static method // is dropped on the floor. Leave it untransformed. return AbstractionPattern::getDiscard( getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), selfType); } AbstractionPattern AbstractionPattern::getCXXMethodSelfPattern(CanType selfType) const { assert(hasStoredCXXMethod()); auto CXXMethod = getCXXMethod(); if (CXXMethod->isInstance()) { // Use the clang type for the receiver type. If this is ever // insufficient --- if we have interesting bridging to do to // 'self' --- we have the right information to be more exact. auto clangSelfType = CXXMethod->getThisType().getTypePtr(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), selfType, clangSelfType); } // The formal metatype parameter to a C++ function imported as a static method // is dropped on the floor. Leave it untransformed. return AbstractionPattern::getDiscard( getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), selfType); } static CanType getResultType(CanType type) { return cast(type).getResult(); } AbstractionPattern AbstractionPattern::getFunctionResultType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::ObjCCompletionHandlerArgumentsType: case Kind::Tuple: llvm_unreachable("abstraction pattern for tuple cannot be function"); case Kind::Opaque: return *this; case Kind::Type: if (isTypeParameterOrOpaqueArchetype()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType())); case Kind::Discard: llvm_unreachable("don't need to discard function abstractions yet"); case Kind::ClangType: case Kind::CFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: { auto clangFunctionType = getClangFunctionType(getClangType()); return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType()), clangFunctionType->getReturnType().getTypePtr()); } case Kind::CXXMethodType: case Kind::PartialCurriedCXXMethodType: return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType()), getCXXMethod()->getReturnType().getTypePtr()); case Kind::CurriedObjCMethodType: return getPartialCurriedObjCMethod( getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType()), getObjCMethod(), getEncodedForeignInfo()); case Kind::CurriedCFunctionAsMethodType: return getPartialCurriedCFunctionAsMethod( getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType()), getClangType(), getImportAsMemberStatus()); case Kind::CurriedCXXMethodType: return getPartialCurriedCXXMethod(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType()), getCXXMethod(), getImportAsMemberStatus()); case Kind::PartialCurriedObjCMethodType: case Kind::ObjCMethodType: { // If this is a foreign async function, the result type comes from the // completion callback argument to the original method. Line up the // result abstraction pattern with that callback argument. if (getEncodedForeignInfo().getKind() == EncodedForeignInfo::IsAsync) { auto paramIndex = getEncodedForeignInfo().getAsyncCompletionHandlerParamIndex(); auto callbackParamTy = getObjCMethod()->parameters()[paramIndex] ->getType() ->getPointeeType() ->getAs(); // The result comprises the non-error argument(s) to the callback, if // any. auto callbackErrorIndex = getEncodedForeignInfo() .getAsyncCompletionHandlerErrorParamIndex(); auto callbackErrorFlagIndex = getEncodedForeignInfo() .getAsyncCompletionHandlerErrorFlagParamIndex(); assert((!callbackErrorIndex.has_value() || callbackParamTy->getNumParams() > *callbackErrorIndex) && "completion handler has invalid error param index?!"); assert((!callbackErrorFlagIndex.has_value() || callbackParamTy->getNumParams() > *callbackErrorFlagIndex) && "completion handler has invalid error param index?!"); unsigned numNonErrorParams = callbackParamTy->getNumParams() - callbackErrorIndex.has_value() - callbackErrorFlagIndex.has_value(); switch (numNonErrorParams) { case 0: // If there are no result arguments, then the imported result type is // Void, with no interesting abstraction properties. return AbstractionPattern(TupleType::getEmpty(getType()->getASTContext())); case 1: { // If there's a single argument, abstract it according to its formal type // in the ObjC signature. unsigned callbackResultIndex = 0; for (auto index : indices(callbackParamTy->getParamTypes())) { if (callbackErrorIndex && index == *callbackErrorIndex) continue; if (callbackErrorFlagIndex && index == *callbackErrorFlagIndex) continue; callbackResultIndex = index; break; } auto clangResultType = callbackParamTy ->getParamType(callbackResultIndex) .getTypePtr(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType()), clangResultType); } default: // If there are multiple results, we have a special abstraction pattern // form to represent the mapping from block parameters to tuple elements // in the return type. return AbstractionPattern::getObjCCompletionHandlerArgumentsType( getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType()), callbackParamTy, getEncodedForeignInfo()); } } return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), getResultType(getType()), getObjCMethod()->getReturnType().getTypePtr()); } case Kind::OpaqueFunction: return getOpaque(); case Kind::OpaqueDerivativeFunction: static SmallVector elements{getOpaque(), getOpaqueFunction()}; return getTuple(elements); } llvm_unreachable("bad kind"); } AbstractionPattern AbstractionPattern::getObjCMethodAsyncCompletionHandlerType( CanType swiftCompletionHandlerType) const { switch (getKind()) { case Kind::PartialCurriedObjCMethodType: case Kind::ObjCMethodType: { // Create an abstraction pattern using the original ObjC type of the // completion handler. assert(getEncodedForeignInfo().getKind() == EncodedForeignInfo::IsAsync); auto paramIndex = getEncodedForeignInfo().getAsyncCompletionHandlerParamIndex(); auto callbackParamTy = getObjCMethod()->parameters()[paramIndex] ->getType().getTypePtr(); CanGenericSignature patternSig; if (auto origSig = getGenericSignature()) { patternSig = origSig; } else if (auto genFnTy = dyn_cast(getType())) { patternSig = genFnTy->getGenericSignature().getCanonicalSignature(); } return AbstractionPattern(patternSig, swiftCompletionHandlerType, callbackParamTy); } case Kind::Opaque: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::Type: return AbstractionPattern(getGenericSignature(), swiftCompletionHandlerType); case Kind::Invalid: case Kind::Tuple: case Kind::Discard: case Kind::ClangType: case Kind::CFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::CurriedObjCMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CurriedCXXMethodType: case Kind::ObjCCompletionHandlerArgumentsType: swift_unreachable("not appropriate for this kind"); } llvm_unreachable("covered switch"); } CanType AbstractionPattern::getObjCMethodAsyncCompletionHandlerForeignType( ForeignAsyncConvention convention, Lowering::TypeConverter &TC ) const { auto nativeCHTy = convention.completionHandlerType(); // Use the abstraction pattern we're lowering against in order to lower // the completion handler type, so we can preserve C/ObjC distinctions that // normally get abstracted away by the importer. auto completionHandlerNativeOrigTy = getObjCMethodAsyncCompletionHandlerType(nativeCHTy); // Bridge the Swift completion handler type back to its // foreign representation. auto foreignCHTy = TC.getLoweredBridgedType(completionHandlerNativeOrigTy, nativeCHTy, Bridgeability::Full, SILFunctionTypeRepresentation::ObjCMethod, TypeConverter::ForArgument) ->getCanonicalType(); return foreignCHTy; } AbstractionPattern AbstractionPattern::getFunctionParamType(unsigned index) const { switch (getKind()) { case Kind::Opaque: return *this; case Kind::Type: { if (isTypeParameterOrOpaqueArchetype()) return AbstractionPattern::getOpaque(); auto params = cast(getType()).getParams(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), params[index].getParameterType()); } case Kind::CurriedCFunctionAsMethodType: { auto params = cast(getType()).getParams(); assert(params.size() == 1); return getCFunctionAsMethodSelfPattern(params[0].getParameterType()); } case Kind::CurriedCXXMethodType: { auto params = cast(getType()).getParams(); assert(params.size() == 1); return getCXXMethodSelfPattern(params[0].getParameterType()); } case Kind::CFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: { auto params = cast(getType()).getParams(); // Only the full method type has a 'self' parameter. if (getKind() == Kind::CFunctionAsMethodType) { assert(params.size() > 0); // The last parameter is 'self'. if (index == params.size() - 1) { return getCFunctionAsMethodSelfPattern(params.back().getParameterType()); } } // A parameter of type () does not correspond to a Clang parameter. auto paramType = params[index].getParameterType(); if (paramType->isVoid()) return AbstractionPattern(paramType); // Otherwise, we're talking about the formal parameter clause. // Jump over the self parameter in the Clang type. unsigned clangIndex = index; auto memberStatus = getImportAsMemberStatus(); if (memberStatus.isInstance() && clangIndex >= memberStatus.getSelfIndex()) ++clangIndex; return AbstractionPattern(getGenericSignatureForFunctionComponent(), paramType, getClangFunctionParameterType(getClangType(), clangIndex)); } case Kind::CXXMethodType: case Kind::PartialCurriedCXXMethodType: { auto params = cast(getType()).getParams(); // Only the full method type has a 'self' parameter. if (getKind() == Kind::CXXMethodType) { assert(params.size() > 0); // The last parameter is 'self'. if (index == params.size() - 1) { return getCXXMethodSelfPattern(params.back().getParameterType()); } } // A parameter of type () does not correspond to a Clang parameter. auto paramType = params[index].getParameterType(); if (paramType->isVoid()) return AbstractionPattern(paramType); // Otherwise, we're talking about the formal parameter clause. auto methodType = getCXXMethod()->getType().getTypePtr(); return AbstractionPattern(getGenericSignatureForFunctionComponent(), paramType, getClangFunctionParameterType(methodType, index)); } case Kind::CurriedObjCMethodType: { auto params = cast(getType()).getParams(); assert(params.size() == 1); return getObjCMethodSelfPattern(params[0].getParameterType()); } case Kind::ObjCMethodType: case Kind::PartialCurriedObjCMethodType: { auto params = cast(getType()).getParams(); // Only the full method type has a 'self' parameter. if (getKind() == Kind::ObjCMethodType) { assert(params.size() > 0); // The last parameter is 'self'. if (index == params.size() - 1) { return getObjCMethodSelfPattern(params.back().getParameterType()); } } // A parameter of type () does not correspond to a Clang parameter. auto paramType = params[index].getParameterType(); if (paramType->isVoid()) return AbstractionPattern(paramType); // Otherwise, we're talking about the formal parameter clause. auto method = getObjCMethod(); auto errorInfo = getEncodedForeignInfo(); unsigned paramIndex = index; if (errorInfo.hasValue()) { auto errorParamIndex = errorInfo.getForeignParamIndex(); if (!errorInfo.hasErrorParameterReplacedWithVoid()) { if (paramIndex >= errorParamIndex) { ++paramIndex; } } } return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), paramType, method->parameters()[paramIndex]->getType().getTypePtr()); } case Kind::ClangType: { auto params = cast(getType()).getParams(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignatureForFunctionComponent(), params[index].getParameterType(), getClangFunctionParameterType(getClangType(), index)); } case Kind::OpaqueFunction: return getOpaque(); case Kind::OpaqueDerivativeFunction: return getOpaque(); default: llvm_unreachable("does not have function parameters"); } } ParameterTypeFlags AbstractionPattern::getFunctionParamFlags(unsigned index) const { return cast(getType()).getParams()[index] .getParameterFlags(); } unsigned AbstractionPattern::getNumFunctionParams() const { return cast(getType()).getParams().size(); } void AbstractionPattern:: forEachFunctionParam(AnyFunctionType::CanParamArrayRef substParams, bool ignoreFinalParam, llvm::function_ref handleScalar, llvm::function_ref handleExpansion) const { // Honor ignoreFinalParam for the substituted parameters on all paths. if (ignoreFinalParam) substParams = substParams.drop_back(); // If this isn't a function type, use the substituted type. if (isTypeParameterOrOpaqueArchetype()) { for (auto substParamIndex : indices(substParams)) { handleScalar(substParamIndex, substParamIndex, substParams[substParamIndex].getParameterFlags(), *this, substParams[substParamIndex]); } return; } size_t numOrigParams = getNumFunctionParams(); if (ignoreFinalParam) numOrigParams--; size_t substParamIndex = 0; for (auto origParamIndex : range(numOrigParams)) { auto origParamType = getFunctionParamType(origParamIndex); if (origParamType.isPackExpansion()) { unsigned numComponents = origParamType.getNumPackExpandedComponents(); handleExpansion(origParamIndex, substParamIndex, getFunctionParamFlags(origParamIndex), origParamType, substParams.slice(substParamIndex, numComponents)); substParamIndex += numComponents; } else { handleScalar(origParamIndex, substParamIndex, getFunctionParamFlags(origParamIndex), origParamType, substParams[substParamIndex]); substParamIndex++; } } assert(substParamIndex == substParams.size()); } static CanType getOptionalObjectType(CanType type) { auto objectType = type.getOptionalObjectType(); assert(objectType && "type was not optional"); return objectType; } AbstractionPattern AbstractionPattern::getOptionalObjectType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::ObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: case Kind::CFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::Tuple: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("pattern for function or tuple cannot be for optional"); case Kind::Opaque: return *this; case Kind::Type: if (isTypeParameterOrOpaqueArchetype()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), ::getOptionalObjectType(getType())); case Kind::Discard: return AbstractionPattern::getDiscard(getGenericSubstitutions(), getGenericSignature(), ::getOptionalObjectType(getType())); case Kind::ClangType: // This is not reflected in clang types. return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), ::getOptionalObjectType(getType()), getClangType()); } llvm_unreachable("bad kind"); } AbstractionPattern AbstractionPattern::getReferenceStorageReferentType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::Opaque: case Kind::ObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::Tuple: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::ObjCCompletionHandlerArgumentsType: return *this; case Kind::Type: return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), getType().getReferenceStorageReferent()); case Kind::Discard: return AbstractionPattern::getDiscard(getGenericSubstitutions(), getGenericSignature(), getType().getReferenceStorageReferent()); case Kind::ClangType: // This is not reflected in clang types. return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), getType().getReferenceStorageReferent(), getClangType()); } llvm_unreachable("bad kind"); } static CanType getExistentialConstraintType(CanType type) { assert(type.isExistentialType()); if (auto *ET = type->getAs()) { return CanType(ET->getConstraintType()); } return type; } AbstractionPattern AbstractionPattern::getExistentialConstraintType() const { switch (getKind()) { case Kind::Invalid: llvm_unreachable("querying invalid abstraction pattern!"); case Kind::ObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: case Kind::CFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::Tuple: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("pattern for function or tuple cannot be for optional"); case Kind::Opaque: return *this; case Kind::Type: if (isTypeParameterOrOpaqueArchetype()) return AbstractionPattern::getOpaque(); return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), ::getExistentialConstraintType(getType())); case Kind::Discard: return AbstractionPattern::getDiscard( getGenericSubstitutions(), getGenericSignature(), ::getExistentialConstraintType(getType())); case Kind::ClangType: // This is not reflected in clang types. return AbstractionPattern(getGenericSubstitutions(), getGenericSignature(), ::getExistentialConstraintType(getType()), getClangType()); } llvm_unreachable("bad kind"); } void AbstractionPattern::dump() const { print(llvm::errs()); llvm::errs() << "\n"; } void AbstractionPattern::print(raw_ostream &out) const { switch (getKind()) { case Kind::Invalid: out << "AP::Invalid"; return; case Kind::Opaque: out << "AP::Opaque"; return; case Kind::OpaqueFunction: out << "AP::OpaqueFunction"; return; case Kind::OpaqueDerivativeFunction: out << "AP::OpaqueDerivativeFunction"; return; case Kind::Type: case Kind::Discard: out << (getKind() == Kind::Type ? "AP::Type" : getKind() == Kind::Discard ? "AP::Discard" : "<>"); if (auto sig = getGenericSignature()) { sig->print(out); } out << '('; getType().dump(out); out << ')'; return; case Kind::Tuple: out << "AP::Tuple("; for (unsigned i = 0, e = getNumTupleElements(); i != e; ++i) { if (i != 0) out << ", "; getTupleElementType(i).print(out); } out << ")"; return; case Kind::ClangType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCCompletionHandlerArgumentsType: out << (getKind() == Kind::ClangType ? "AP::ClangType(" : getKind() == Kind::CurriedCFunctionAsMethodType ? "AP::CurriedCFunctionAsMethodType(" : getKind() == Kind::PartialCurriedCFunctionAsMethodType ? "AP::PartialCurriedCFunctionAsMethodType(" : getKind() == Kind::ObjCCompletionHandlerArgumentsType ? "AP::ObjCCompletionHandlerArgumentsType(" : "AP::CFunctionAsMethodType("); if (auto sig = getGenericSignature()) { sig->print(out); } getType().dump(out); out << ", "; // [TODO: Improve-Clang-type-printing] // It would be better to use print, but we need a PrintingPolicy // for that, for which we need a clang LangOptions, and... ugh. clang::QualType(getClangType(), 0).dump(); if (hasImportAsMemberStatus()) { out << ", member="; auto status = getImportAsMemberStatus(); if (status.isInstance()) { out << "instance, self=" << status.getSelfIndex(); } else if (status.isStatic()) { out << "static"; } } if (hasStoredForeignInfo()) { if (auto errorIndex = getEncodedForeignInfo().getAsyncCompletionHandlerErrorParamIndex()){ out << ", errorParamIndex=" << *errorIndex; } } out << ")"; return; case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: out << (getKind() == Kind::CXXMethodType ? "AP::CXXMethodType(" : getKind() == Kind::CurriedCXXMethodType ? "AP::CurriedCXXMethodType(" : "AP::PartialCurriedCXXMethodType"); if (auto sig = getGenericSignature()) { sig->print(out); } getType().dump(out); out << ", "; getCXXMethod()->dump(); assert(!hasImportAsMemberStatus()); out << ")"; return; case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: case Kind::ObjCMethodType: out << (getKind() == Kind::ObjCMethodType ? "AP::ObjCMethodType(" : getKind() == Kind::CurriedObjCMethodType ? "AP::CurriedObjCMethodType(" : "AP::PartialCurriedObjCMethodType("); getType().dump(out); auto errorInfo = getEncodedForeignInfo(); switch (errorInfo.getKind()) { case EncodedForeignInfo::IsNotForeign: break; case EncodedForeignInfo::IsError: out << ", errorParameter=" << errorInfo.getErrorParamIndex(); if (errorInfo.hasErrorParameterReplacedWithVoid()) out << ", replacedWithVoid"; if (errorInfo.errorStripsResultOptionality()) out << ", stripsResultOptionality"; break; case EncodedForeignInfo::IsAsync: out << ", completionHandlerParameter=" << errorInfo.getAsyncCompletionHandlerParamIndex(); if (auto errorParam = errorInfo.getAsyncCompletionHandlerErrorParamIndex()) { out << " (errorParam=" << *errorParam; if (auto errorFlag = errorInfo.getAsyncCompletionHandlerErrorFlagParamIndex()) { out << ", errorFlagParam=" << *errorFlag << (errorInfo.isCompletionErrorFlagZeroOnError() ? ", zeroOnError" : ", nonzeroOnError"); } out << ')'; } } out << ", "; getObjCMethod()->dump(out); out << ")"; return; } llvm_unreachable("bad kind"); } bool AbstractionPattern::hasSameBasicTypeStructure(CanType l, CanType r) { if (l == r) return true; // Tuples must match. auto lTuple = dyn_cast(l); auto rTuple = dyn_cast(r); if (lTuple && rTuple) { auto lElts = lTuple.getElementTypes(); auto rElts = rTuple.getElementTypes(); if (lElts.size() != rElts.size()) return false; for (auto i : indices(lElts)) { if (!hasSameBasicTypeStructure(lElts[i], rElts[i])) return false; } return true; } else if (lTuple || rTuple) { return false; } // Functions must match. auto lFunction = dyn_cast(l); auto rFunction = dyn_cast(r); if (lFunction && rFunction) { auto lParam = lFunction.getParams(); auto rParam = rFunction.getParams(); if (lParam.size() != rParam.size()) return false; for (unsigned i : indices(lParam)) { if (!hasSameBasicTypeStructure(lParam[i].getPlainType(), rParam[i].getPlainType())) return false; } return hasSameBasicTypeStructure(lFunction.getResult(), rFunction.getResult()); } else if (lFunction || rFunction) { return false; } // Optionals must match, sortof. auto lObject = l.getOptionalObjectType(); auto rObject = r.getOptionalObjectType(); if (lObject && rObject) { return hasSameBasicTypeStructure(lObject, rObject); } else if (lObject || rObject) { // Allow optionality mis-matches, but require the underlying types to match. return hasSameBasicTypeStructure(lObject ? lObject : l, rObject ? rObject : r); } // Otherwise, the structure is similar enough. return true; } AbstractionPattern AbstractionPattern::unsafeGetSubstFieldType(ValueDecl *member, CanType origMemberInterfaceType) const { assert(origMemberInterfaceType); if (isTypeParameterOrOpaqueArchetype()) { // Fall back to the generic abstraction pattern for the member. auto sig = member->getDeclContext()->getGenericSignatureOfContext(); return AbstractionPattern(sig.getCanonicalSignature(), origMemberInterfaceType); } switch (getKind()) { case Kind::Opaque: llvm_unreachable("should be handled by isTypeParameter"); case Kind::Invalid: llvm_unreachable("called on invalid abstraction pattern"); case Kind::Tuple: llvm_unreachable("should not have a tuple pattern matching a struct/enum " "type"); case Kind::OpaqueFunction: llvm_unreachable("should not have an opaque function pattern matching a " "struct/enum type"); case Kind::OpaqueDerivativeFunction: llvm_unreachable("should not have an opaque derivative function pattern " "matching a struct/enum type"); case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("should not have a completion handler argument pattern " "matching a struct/enum type"); case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: case Kind::ClangType: case Kind::Type: case Kind::Discard: auto memberTy = getType()->getTypeOfMember(member->getModuleContext(), member, origMemberInterfaceType) ->getReducedType(getGenericSignature()); return AbstractionPattern(getGenericSignature(), memberTy); } llvm_unreachable("invalid abstraction pattern kind"); } AbstractionPattern AbstractionPattern::getAutoDiffDerivativeFunctionType( IndexSubset *parameterIndices, AutoDiffDerivativeFunctionKind kind, LookupConformanceFn lookupConformance, GenericSignature derivativeGenericSignature, bool makeSelfParamFirst) { switch (getKind()) { case Kind::Type: { auto fnTy = dyn_cast(getType()); if (!fnTy) return getOpaqueDerivativeFunction(); auto derivativeFnTy = fnTy->getAutoDiffDerivativeFunctionType( parameterIndices, kind, lookupConformance, derivativeGenericSignature, makeSelfParamFirst); assert(derivativeFnTy); return AbstractionPattern( getGenericSignature(), derivativeFnTy->getReducedType(getGenericSignature())); } case Kind::Opaque: return getOpaqueDerivativeFunction(); default: llvm_unreachable("called on unsupported abstraction pattern kind"); } } AbstractionPattern::CallingConventionKind AbstractionPattern::getResultConvention(TypeConverter &TC) const { // Tuples should be destructured. if (isTuple()) { return Destructured; } switch (getKind()) { case Kind::Opaque: // Maximally abstracted values are always passed indirectly. return Indirect; case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: // Function types are always passed directly return Direct; case Kind::ClangType: case Kind::Type: case Kind::Discard: // Pass according to the formal type. return SILType::isFormallyReturnedIndirectly(getType(), TC, getGenericSignatureOrNull()) ? Indirect : Direct; case Kind::Invalid: case Kind::Tuple: case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("should not get here"); } } AbstractionPattern::CallingConventionKind AbstractionPattern::getParameterConvention(TypeConverter &TC) const { // Tuples should be destructured. if (isTuple()) { return Destructured; } switch (getKind()) { case Kind::Opaque: // Maximally abstracted values are always passed indirectly. return Indirect; case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: case Kind::PartialCurriedObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedCFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::CFunctionAsMethodType: case Kind::ObjCMethodType: case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: // Function types are always passed directly return Direct; case Kind::ClangType: case Kind::Type: case Kind::Discard: // Pass according to the formal type. return SILType::isFormallyPassedIndirectly(getType(), TC, getGenericSignatureOrNull()) ? Indirect : Direct; case Kind::Invalid: case Kind::Tuple: case Kind::ObjCCompletionHandlerArgumentsType: llvm_unreachable("should not get here"); } } bool AbstractionPattern::arePackElementsPassedIndirectly(TypeConverter &TC) const { assert(getKind() == Kind::Type && isa(getType())); // It makes sense to pass classes, metatypes, and similar sorts of // types using direct packs. At the other end of the spectrum, we // definitely shouldn't pass types directly in packs if it's // address-only and we'd need to do a non-trivial operation to move // the value in and out of the pack. There's also a size component // to this analysis --- we shouldn't pass packs of enormous address-only // structs directly --- and unfortunately we don't have that // information at this point. // // The simplest thing to do is to just not use direct packs for now, // but we should revisit that before locking down the ABI. return true; } bool AbstractionPattern::operator==(const AbstractionPattern &other) const { if (TheKind != other.TheKind) return false; switch (getKind()) { case Kind::Opaque: case Kind::Invalid: case Kind::OpaqueFunction: case Kind::OpaqueDerivativeFunction: // No additional info to compare. return true; case Kind::Tuple: if (getNumTupleElements() != other.getNumTupleElements()) { return false; } for (unsigned i = 0; i < getNumTupleElements(); ++i) { if (getTupleElementType(i) != other.getTupleElementType(i)) { return false; } } return true; case Kind::Type: case Kind::Discard: return OrigType == other.OrigType && GenericSig == other.GenericSig; case Kind::ClangType: return OrigType == other.OrigType && GenericSig == other.GenericSig && ClangType == other.ClangType; case Kind::ObjCCompletionHandlerArgumentsType: case Kind::CFunctionAsMethodType: case Kind::CurriedCFunctionAsMethodType: case Kind::PartialCurriedCFunctionAsMethodType: return OrigType == other.OrigType && GenericSig == other.GenericSig && ClangType == other.ClangType && OtherData == other.OtherData; case Kind::ObjCMethodType: case Kind::CurriedObjCMethodType: case Kind::PartialCurriedObjCMethodType: return OrigType == other.OrigType && GenericSig == other.GenericSig && ObjCMethod == other.ObjCMethod && OtherData == other.OtherData; case Kind::CXXMethodType: case Kind::CurriedCXXMethodType: case Kind::PartialCurriedCXXMethodType: return OrigType == other.OrigType && GenericSig == other.GenericSig && CXXMethod == other.CXXMethod && OtherData == other.OtherData; } } namespace { class SubstFunctionTypePatternVisitor : public TypeVisitor { public: TypeConverter &TC; SmallVector substGenericParams; SmallVector substRequirements; SmallVector substReplacementTypes; CanType substYieldType; SubstFunctionTypePatternVisitor(TypeConverter &TC) : TC(TC) {} // Creates and returns a fresh type parameter in the substituted generic // signature if `pattern` is a type parameter or opaque archetype. Returns // null otherwise. CanType handleTypeParameterInAbstractionPattern(AbstractionPattern pattern, Type substTy) { if (!pattern.isTypeParameterOrOpaqueArchetype()) return CanType(); // If so, let's put a fresh generic parameter in the substituted signature // here. unsigned paramIndex = substGenericParams.size(); bool isParameterPack = false; if (substTy->isParameterPack() || substTy->is()) isParameterPack = true; else if (pattern.isTypeParameterPack()) isParameterPack = true; auto gp = GenericTypeParamType::get(isParameterPack, 0, paramIndex, TC.Context); substGenericParams.push_back(gp); if (isParameterPack) { substReplacementTypes.push_back( PackType::getSingletonPackExpansion(substTy)); } else { substReplacementTypes.push_back(substTy); } if (auto layout = pattern.getLayoutConstraint()) { // Look at the layout constraint on this position in the abstraction pattern // and carry it over, with some generalization to the point it affects // calling convention. // TODO: We should do this once we surface more interesting layout // constraints in the language. There are several places in type lowering // that need to be changed to allow for this and generate correct calling // convention lowering. #if WE_MAKE_LAYOUT_CONSTRAINTS_AVAILABLE_IN_THE_SURFACE_LANGUAGE switch (layout->getKind()) { // Keep these layout constraints as is. case LayoutConstraintKind::RefCountedObject: case LayoutConstraintKind::TrivialOfAtMostSize: break; case LayoutConstraintKind::UnknownLayout: case LayoutConstraintKind::Trivial: // These constraints don't really constrain the ABI, so we can // eliminate them. layout = LayoutConstraint(); break; // Replace these specific constraints with one of the more general // constraints above. case LayoutConstraintKind::NativeClass: case LayoutConstraintKind::Class: case LayoutConstraintKind::NativeRefCountedObject: // These can all be generalized to RefCountedObject. layout = LayoutConstraint::getLayoutConstraint( LayoutConstraintKind::RefCountedObject); break; case LayoutConstraintKind::TrivialOfExactSize: // Generalize to TrivialOfAtMostSize. layout = LayoutConstraint::getLayoutConstraint( LayoutConstraintKind::TrivialOfAtMostSize, layout->getTrivialSizeInBits(), layout->getAlignmentInBits(), C); break; } #endif if (layout) { substRequirements.push_back( Requirement(RequirementKind::Layout, gp, layout)); } } return CanType(gp); } CanType visitType(TypeBase *t, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, t)) return gp; assert(pattern.getType()->isExistentialType() || (!pattern.getType()->hasTypeParameter() && !pattern.getType()->hasArchetype() && !pattern.getType()->hasOpaqueArchetype())); return pattern.getType(); } CanType visitDynamicSelfType(DynamicSelfType *dst, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, dst)) return gp; // A "dynamic self" type can be bound to another dynamic self type, or the // non-dynamic base class type. if (auto origDynSelf = dyn_cast(pattern.getType())) { auto origSelf = AbstractionPattern(pattern.getGenericSignatureOrNull(), origDynSelf.getSelfType()); auto newBase = visit(dst->getSelfType(), origSelf); return DynamicSelfType::get(newBase, TC.Context) ->getCanonicalType(); } return visit(dst->getSelfType(), pattern); } CanType visitAnyMetatypeType(AnyMetatypeType *mt, AbstractionPattern pattern){ if (auto gp = handleTypeParameterInAbstractionPattern(pattern, mt)) return gp; auto origMeta = cast(pattern.getType()); auto substInstance = visit(mt->getInstanceType(), AbstractionPattern(pattern.getGenericSignatureOrNull(), origMeta.getInstanceType())); return isa(origMeta) ? CanType(CanExistentialMetatypeType::get(substInstance)) : CanType(CanMetatypeType::get(substInstance)); } CanType handleGenericNominalType(CanType orig, Type subst, CanGenericSignature origSig) { // If there are no loose type parameters in the pattern here, we don't need // to do a recursive visit at all. if (!orig->hasTypeParameter() && !orig->hasArchetype() && !orig->hasOpaqueArchetype()) { return CanType(subst); } // If the substituted type is a subclass of the abstraction pattern // type, use the substituted type for the abstraction pattern. This only // comes up when lowering override types for vtable entries. auto getDifferentBaseClass = [](Type substInstance, Type origInstance) -> ClassDecl* { if (auto dynA = substInstance->getAs()) { substInstance = dynA->getSelfType(); } if (auto dynB = origInstance->getAs()) { origInstance = dynB->getSelfType(); } if (auto aClass = substInstance->getClassOrBoundGenericClass()) { if (auto bClass = origInstance->getClassOrBoundGenericClass()) { if (aClass != bClass) { return bClass; } } } return nullptr; }; // Both instance and class methods can be overridden; check for metatype // subtyping too. ClassDecl *differentOrigClass = getDifferentBaseClass(subst, orig); if (!differentOrigClass) { if (auto substMeta = subst->getAs()) { if (auto origMeta = dyn_cast(orig)) { differentOrigClass = getDifferentBaseClass(substMeta->getInstanceType(), origMeta->getInstanceType()); } } } if (differentOrigClass) { orig = CanType(subst); origSig = TC.getCurGenericSignature(); assert((!subst->hasTypeParameter() || origSig) && "lowering mismatched interface types in a context without " "a generic signature"); } auto decl = orig->getAnyNominal(); auto moduleDecl = decl->getParentModule(); auto origSubMap = orig->getContextSubstitutionMap(moduleDecl, decl); auto substSubMap = subst->getContextSubstitutionMap(moduleDecl, decl); auto nomGenericSig = decl->getGenericSignature(); TypeSubstitutionMap replacementTypes; for (auto gp : nomGenericSig.getGenericParams()) { auto origParamTy = Type(gp).subst(origSubMap) ->getCanonicalType(); auto substParamTy = Type(gp).subst(substSubMap) ->getCanonicalType(); replacementTypes[gp->getCanonicalType()->castTo()] = visit(substParamTy, AbstractionPattern(origSig, origParamTy)); } auto newSubMap = SubstitutionMap::get(nomGenericSig, QueryTypeSubstitutionMap{replacementTypes}, LookUpConformanceInModule(moduleDecl)); for (auto reqt : nomGenericSig.getRequirements()) { substRequirements.push_back(reqt.subst(newSubMap)); } return decl->getDeclaredInterfaceType().subst(newSubMap)->getCanonicalType(); } CanType visitNominalType(NominalType *nom, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, nom)) return gp; auto nomDecl = nom->getDecl(); // If the type is generic (because it's a nested type in a generic context), // process the generic type bindings. if (!isa(nomDecl) && nomDecl->isGenericContext()) { return handleGenericNominalType(pattern.getType(), nom, pattern.getGenericSignatureOrNull()); } // Otherwise, there are no structural type parameters to visit. return CanType(nom); } CanType visitBoundGenericType(BoundGenericType *bgt, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, bgt)) return gp; return handleGenericNominalType(pattern.getType(), bgt, pattern.getGenericSignatureOrNull()); } CanType visitPackType(PackType *pack, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, pack)) return gp; // Break down the pack. SmallVector packElts; for (unsigned i = 0; i < pack->getNumElements(); ++i) { packElts.push_back(visit(pack->getElementType(i), pattern.getPackElementType(i))); } return CanType(PackType::get(TC.Context, packElts)); } CanType visitPackExpansionType(PackExpansionType *pack, AbstractionPattern pattern) { // Avoid walking into the pattern and count type if we can help it. if (!pack->hasTypeParameter() && !pack->hasArchetype() && !pack->hasOpaqueArchetype()) { return CanType(pack); } auto substPatternType = visit(pack->getPatternType(), pattern.getPackExpansionPatternType()); auto substCountType = visit(pack->getCountType(), AbstractionPattern::getOpaque()); SmallVector rootParameterPacks; substPatternType->getTypeParameterPacks(rootParameterPacks); for (auto parameterPack : rootParameterPacks) { substRequirements.emplace_back(RequirementKind::SameShape, parameterPack, substCountType); } return CanType(PackExpansionType::get( substPatternType, substCountType)); } CanType visitExistentialType(ExistentialType *exist, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, exist)) return gp; // Avoid walking into the constraint type if we can help it. if (!exist->hasTypeParameter() && !exist->hasArchetype() && !exist->hasOpaqueArchetype()) { return CanType(exist); } return CanExistentialType::get(visit( exist->getConstraintType(), pattern.getExistentialConstraintType())); } CanType visitParameterizedProtocolType(ParameterizedProtocolType *ppt, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, ppt)) return gp; // Recurse into the arguments of the parameterized protocol. SmallVector substArgs; auto origPPT = pattern.getAs(); if (!origPPT) return CanType(ppt); for (unsigned i = 0; i < ppt->getArgs().size(); ++i) { auto argTy = ppt->getArgs()[i]; auto origArgTy = AbstractionPattern(pattern.getGenericSignatureOrNull(), origPPT.getArgs()[i]); auto substEltTy = visit(argTy, origArgTy); substArgs.push_back(substEltTy); } return CanType(ParameterizedProtocolType::get( TC.Context, ppt->getBaseType(), substArgs)); } CanType visitTupleType(TupleType *tuple, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, tuple)) return gp; // Break down the tuple. SmallVector tupleElts; for (unsigned i = 0; i < tuple->getNumElements(); ++i) { auto elt = tuple->getElement(i); auto substEltTy = visit(elt.getType(), pattern.getTupleElementType(i)); tupleElts.emplace_back(substEltTy, elt.getName()); } return CanType(TupleType::get(tupleElts, TC.Context)); } CanType handleUnabstractedFunctionType(AnyFunctionType *func, AbstractionPattern pattern, CanType yieldType, AbstractionPattern yieldPattern) { SmallVector newParams; for (unsigned i = 0; i < func->getParams().size(); ++i) { auto param = func->getParams()[i]; // Lower the formal type of the argument binding, eliminating variadicity. auto newParamTy = visit(param.getParameterType(true)->getCanonicalType(), pattern.getFunctionParamType(i)); auto newParam = FunctionType::Param(newParamTy, param.getLabel(), param.getParameterFlags() .withVariadic(false), param.getInternalLabel()); newParams.push_back(newParam); } if (yieldType) { substYieldType = visit(yieldType, yieldPattern); } auto newResultTy = visit(func->getResult(), pattern.getFunctionResultType()); Optional extInfo; if (func->hasExtInfo()) extInfo = func->getExtInfo(); return CanFunctionType::get(FunctionType::CanParamArrayRef(newParams), CanType(newResultTy), extInfo); } CanType visitFunctionType(FunctionType *func, AbstractionPattern pattern) { if (auto gp = handleTypeParameterInAbstractionPattern(pattern, func)) return gp; return handleUnabstractedFunctionType(func, pattern, CanType(), AbstractionPattern::getInvalid()); } }; } std::tuple AbstractionPattern::getSubstFunctionTypePattern(CanAnyFunctionType substType, TypeConverter &TC, AbstractionPattern origYieldType, CanType substYieldType) const { // If this abstraction pattern isn't meaningfully generic, then we don't // need to do any transformation. if (!isTypeParameterOrOpaqueArchetype() && !isOpaqueFunctionOrOpaqueDerivativeFunction() && !getType()->hasArchetype() && !getType()->hasOpaqueArchetype() && !getType()->hasTypeParameter() && !isa(getType())) { return std::make_tuple( AbstractionPattern(TC.getCurGenericSignature(), substType), SubstitutionMap(), substYieldType ? AbstractionPattern(TC.getCurGenericSignature(), substYieldType) : AbstractionPattern::getInvalid()); } SubstFunctionTypePatternVisitor visitor(TC); auto substTy = visitor.handleUnabstractedFunctionType(substType, *this, substYieldType, origYieldType); auto substSig = buildGenericSignature(TC.Context, GenericSignature(), std::move(visitor.substGenericParams), std::move(visitor.substRequirements)) .getCanonicalSignature(); auto subMap = SubstitutionMap::get(substSig, [&](SubstitutableType *dependentType) -> Type { auto index = cast(dependentType)->getIndex(); return visitor.substReplacementTypes[index]; }, [&](CanType dependentType, Type conformingReplacementType, ProtocolDecl *conformedProtocol) -> ProtocolConformanceRef { // TODO: Should have collected the conformances used in the original // type. if (conformingReplacementType->isTypeParameter()) return ProtocolConformanceRef(conformedProtocol); return TC.M.lookupConformance(conformingReplacementType, conformedProtocol, /*allowMissing*/ true); }); auto yieldType = visitor.substYieldType; if (yieldType) yieldType = yieldType->getReducedType(substSig); return std::make_tuple( AbstractionPattern(substSig, substTy->getReducedType(substSig)), subMap, yieldType ? AbstractionPattern(substSig, yieldType) : AbstractionPattern::getInvalid()); }