//===--- CSDiagnostics.cpp - Constraint Diagnostics -----------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements diagnostics for constraint system. // //===----------------------------------------------------------------------===// #include "CSDiagnostics.h" #include "MiscDiagnostics.h" #include "TypeCheckProtocol.h" #include "TypoCorrection.h" #include "swift/Sema/IDETypeChecking.h" #include "swift/AST/ASTContext.h" #include "swift/AST/ASTPrinter.h" #include "swift/AST/Decl.h" #include "swift/AST/ExistentialLayout.h" #include "swift/AST/Expr.h" #include "swift/AST/GenericSignature.h" #include "swift/AST/Initializer.h" #include "swift/AST/ParameterList.h" #include "swift/AST/Pattern.h" #include "swift/AST/ProtocolConformance.h" #include "swift/AST/ProtocolConformanceRef.h" #include "swift/AST/SourceFile.h" #include "swift/AST/Stmt.h" #include "swift/AST/Types.h" #include "swift/Basic/SourceLoc.h" #include "swift/Parse/Lexer.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/SmallString.h" #include using namespace swift; using namespace constraints; static bool hasFixFor(const Solution &solution, ConstraintLocator *locator) { return llvm::any_of(solution.Fixes, [&locator](const ConstraintFix *fix) { return fix->getLocator() == locator; }); } FailureDiagnostic::~FailureDiagnostic() {} bool FailureDiagnostic::diagnose(bool asNote) { return asNote ? diagnoseAsNote() : diagnoseAsError(); } bool FailureDiagnostic::diagnoseAsNote() { return false; } ASTNode FailureDiagnostic::getAnchor() const { auto *locator = getLocator(); // Resolve the locator to a specific expression. auto anchor = locator->getAnchor(); { SourceRange range; auto path = locator->getPath(); simplifyLocator(anchor, path, range); if (!anchor) return locator->getAnchor(); } // FIXME: Work around an odd locator representation that doesn't separate the // base of a subscript member from the member access. if (locator->isLastElement()) { if (auto subscript = getAsExpr(anchor)) anchor = subscript->getBase(); } return anchor; } Type FailureDiagnostic::getType(ASTNode node, bool wantRValue) const { return resolveType(getRawType(node), /*reconstituteSugar=*/false, wantRValue); } Type FailureDiagnostic::getRawType(ASTNode node) const { return S.getType(node); } template InFlightDiagnostic FailureDiagnostic::emitDiagnostic(ArgTypes &&... Args) const { return emitDiagnosticAt(getLoc(), std::forward(Args)...); } template InFlightDiagnostic FailureDiagnostic::emitDiagnosticAt(ArgTypes &&... Args) const { auto &DE = getASTContext().Diags; return DE.diagnose(std::forward(Args)...); } Expr *FailureDiagnostic::findParentExpr(const Expr *subExpr) const { auto &cs = getConstraintSystem(); return cs.getParentExpr(const_cast(subExpr)); } Expr * FailureDiagnostic::getArgumentListExprFor(ConstraintLocator *locator) const { auto path = locator->getPath(); auto iter = path.begin(); if (!locator->findFirst(iter)) return nullptr; // Form a new locator that ends at the ApplyArgument element, then simplify // to get the argument list. auto newPath = ArrayRef(path.begin(), iter + 1); auto argListLoc = getConstraintLocator(locator->getAnchor(), newPath); return getAsExpr(simplifyLocatorToAnchor(argListLoc)); } Expr *FailureDiagnostic::getBaseExprFor(const Expr *anchor) const { if (!anchor) return nullptr; if (auto *UDE = dyn_cast(anchor)) return UDE->getBase(); else if (auto *SE = dyn_cast(anchor)) return SE->getBase(); else if (auto *MRE = dyn_cast(anchor)) return MRE->getBase(); else if (auto *call = dyn_cast(anchor)) { auto fnType = getType(call->getFn()); if (fnType->isCallableNominalType(getDC())) { return call->getFn(); } } return nullptr; } Type FailureDiagnostic::restoreGenericParameters( Type type, llvm::function_ref substitution) { llvm::SmallPtrSet processed; return type.transform([&](Type type) -> Type { if (auto *typeVar = type->getAs()) { type = resolveType(typeVar); if (auto *GP = typeVar->getImpl().getGenericParameter()) { if (processed.insert(GP).second) substitution(GP, type); return GP; } } return type; }); } bool FailureDiagnostic::conformsToKnownProtocol( Type type, KnownProtocolKind protocol) const { auto &cs = getConstraintSystem(); return constraints::conformsToKnownProtocol(cs.DC, type, protocol); } Type RequirementFailure::getOwnerType() const { auto anchor = getRawAnchor(); // If diagnostic is anchored at assignment expression // it means that requirement failure happend while trying // to convert source to destination, which means that // owner type is actually not an assignment expression // itself but its source. if (auto *assignment = getAsExpr(anchor)) anchor = assignment->getSrc(); return getType(anchor)->getInOutObjectType()->getMetatypeInstanceType(); } const GenericContext *RequirementFailure::getGenericContext() const { if (auto *genericCtx = AffectedDecl->getAsGenericContext()) return genericCtx; auto parentDecl = AffectedDecl->getDeclContext()->getAsDecl(); if (!parentDecl) return nullptr; return parentDecl->getAsGenericContext(); } const Requirement &RequirementFailure::getRequirement() const { // If this is a conditional requirement failure we need to // fetch conformance from constraint system associated with // type requirement this conditional conformance belongs to. auto requirements = isConditional() ? Conformance->getConditionalRequirements() : Signature->getRequirements(); return requirements[getRequirementIndex()]; } ProtocolConformance *RequirementFailure::getConformanceForConditionalReq( ConstraintLocator *locator) { auto reqElt = locator->castLastElementTo(); if (!reqElt.isConditionalRequirement()) return nullptr; auto conformanceRef = locator->findLast(); assert(conformanceRef && "Invalid locator for a conditional requirement"); return conformanceRef->getConformance(); } ValueDecl *RequirementFailure::getDeclRef() const { // Get a declaration associated with given type (if any). // This is used to retrieve affected declaration when // failure is in any way contextual, and declaration can't // be fetched directly from constraint system. auto getAffectedDeclFromType = [](Type type) -> ValueDecl * { assert(type); // If problem is related to a typealias, let's point this // diagnostic directly to its declaration without desugaring. if (auto *alias = dyn_cast(type.getPointer())) return alias->getDecl(); if (auto *opaque = type->getAs()) return opaque->getDecl(); return type->getAnyGeneric(); }; // If the locator is for a result builder body result type, the requirement // came from the function's return type. if (getLocator()->isForResultBuilderBodyResult()) { auto *func = getAsDecl(getAnchor()); return getAffectedDeclFromType(func->getResultInterfaceType()); } if (isFromContextualType()) { auto anchor = getRawAnchor(); auto contextualPurpose = getContextualTypePurpose(anchor); auto contextualTy = getContextualType(anchor); // If the issue is a mismatch between `return` statement/expression // and its contextual requirements, it means that affected declaration // is a declarer of a contextual "result" type e.g. member of a // type, local function etc. if (contextualPurpose == CTP_ReturnStmt || contextualPurpose == CTP_ReturnSingleExpr) { // In case of opaque result type, let's point to the declaration // associated with the type itself (since it has one) instead of // declarer. if (auto *opaque = contextualTy->getAs()) return opaque->getDecl(); return cast(getDC()->getAsDecl()); } return getAffectedDeclFromType(contextualTy); } if (auto overload = getCalleeOverloadChoiceIfAvailable(getLocator())) { // If there is a declaration associated with this // failure e.g. an overload choice of the call // expression, let's see whether failure is // associated with it directly or rather with // one of its parents. if (auto *decl = overload->choice.getDeclOrNull()) { // If declaration is an operator let's always use // it to produce `in reference to` diagnostics. if (decl->isOperator()) return decl; auto *DC = decl->getDeclContext(); do { if (auto *parent = DC->getAsDecl()) { if (auto *GC = parent->getAsGenericContext()) { // FIXME: Is this intending an exact match? if (GC->getGenericSignature().getPointer() != Signature.getPointer()) continue; // If this is a signature if an extension // then it means that code has referenced // something incorrectly and diagnostic // should point to the referenced declaration. if (isa(parent)) break; return cast(parent); } } } while ((DC = DC->getParent())); return decl; } } return getAffectedDeclFromType(getOwnerType()); } GenericSignature RequirementFailure::getSignature(ConstraintLocator *locator) { if (isConditional()) return Conformance->getGenericSignature(); if (auto genericElt = locator->findLast()) return genericElt->getSignature(); llvm_unreachable("Type requirement failure should always have signature"); } bool RequirementFailure::isFromContextualType() const { auto path = getLocator()->getPath(); assert(!path.empty()); return path.front().getKind() == ConstraintLocator::ContextualType; } const DeclContext *RequirementFailure::getRequirementDC() const { // In case of conditional requirement failure, we don't // have to guess where the it comes from. if (isConditional()) return Conformance->getDeclContext(); const auto &req = getRequirement(); auto *DC = AffectedDecl->getDeclContext(); do { if (auto sig = DC->getGenericSignatureOfContext()) { if (sig->isRequirementSatisfied(req)) return DC; } } while ((DC = DC->getParent())); return AffectedDecl->getAsGenericContext(); } bool RequirementFailure::isStaticOrInstanceMember(const ValueDecl *decl) { if (decl->isInstanceMember()) return true; if (auto *AFD = dyn_cast(decl)) return AFD->isStatic() && !AFD->isOperator(); return decl->isStatic(); } bool RequirementFailure::diagnoseAsError() { const auto *reqDC = getRequirementDC(); auto *genericCtx = getGenericContext(); auto lhs = getLHS(); auto rhs = getRHS(); if (auto *OTD = dyn_cast(AffectedDecl)) { auto *namingDecl = OTD->getNamingDecl(); emitDiagnostic(diag::type_does_not_conform_in_opaque_return, namingDecl->getDescriptiveKind(), namingDecl->getName(), lhs, rhs, rhs->isAnyObject()); if (auto *repr = namingDecl->getOpaqueResultTypeRepr()) { emitDiagnosticAt(repr->getLoc(), diag::opaque_return_type_declared_here) .highlight(repr->getSourceRange()); } return true; } if (reqDC->isTypeContext() && genericCtx != reqDC && (genericCtx->isChildContextOf(reqDC) || isStaticOrInstanceMember(AffectedDecl))) { auto *NTD = reqDC->getSelfNominalTypeDecl(); emitDiagnostic( getDiagnosticInRereference(), AffectedDecl->getDescriptiveKind(), AffectedDecl->getName(), NTD->getDeclaredType(), lhs, rhs); } else { emitDiagnostic(getDiagnosticOnDecl(), AffectedDecl->getDescriptiveKind(), AffectedDecl->getName(), lhs, rhs); } emitRequirementNote(reqDC->getAsDecl(), lhs, rhs); return true; } bool RequirementFailure::diagnoseAsNote() { const auto &req = getRequirement(); const auto *reqDC = getRequirementDC(); emitDiagnosticAt(reqDC->getAsDecl(), getDiagnosticAsNote(), getLHS(), getRHS(), req.getFirstType(), req.getSecondType(), ""); return true; } void RequirementFailure::emitRequirementNote(const Decl *anchor, Type lhs, Type rhs) const { auto &req = getRequirement(); if (req.getKind() != RequirementKind::SameType) { if (auto wrappedType = lhs->getOptionalObjectType()) { auto kind = (req.getKind() == RequirementKind::Superclass ? ConstraintKind::Subtype : ConstraintKind::ConformsTo); if (TypeChecker::typesSatisfyConstraint(wrappedType, rhs, /*openArchetypes=*/false, kind, getDC())) emitDiagnostic(diag::wrapped_type_satisfies_requirement, wrappedType); } } if (isConditional()) { emitDiagnosticAt(anchor, diag::requirement_implied_by_conditional_conformance, resolveType(Conformance->getType()), Conformance->getProtocol()->getDeclaredInterfaceType()); return; } if (req.getKind() == RequirementKind::Layout || rhs->isEqual(req.getSecondType())) { emitDiagnosticAt(anchor, diag::where_requirement_failure_one_subst, req.getFirstType(), lhs); return; } if (lhs->isEqual(req.getFirstType())) { emitDiagnosticAt(anchor, diag::where_requirement_failure_one_subst, req.getSecondType(), rhs); return; } emitDiagnosticAt(anchor, diag::where_requirement_failure_both_subst, req.getFirstType(), lhs, req.getSecondType(), rhs); } bool MissingConformanceFailure::diagnoseAsError() { auto anchor = getAnchor(); auto nonConformingType = getLHS(); auto protocolType = getRHS(); // If this is a requirement of a pattern-matching operator, // let's see whether argument already has a fix associated // with it and if so skip conformance error, otherwise we'd // produce an unrelated ` doesn't conform to Equatable protocol` // diagnostic. if (isPatternMatchingOperator(anchor)) { auto *expr = castToExpr(anchor); if (auto *binaryOp = dyn_cast_or_null(findParentExpr(expr))) { auto *caseExpr = binaryOp->getArg()->getElement(0); llvm::SmallPtrSet anchors; for (const auto *fix : getSolution().Fixes) { if (auto anchor = fix->getAnchor()) { if (anchor.is()) anchors.insert(getAsExpr(anchor)); } } bool hasFix = false; forEachExprInConstraintSystem(caseExpr, [&](Expr *expr) -> Expr * { hasFix |= anchors.count(expr); return hasFix ? nullptr : expr; }); if (hasFix) return false; } } // If the problem has been (unambiguously) determined to be related // to one of of the standard comparison operators and argument is // enum with associated values, let's produce a tailored note which // says that conformances for enums with associated values can't be // synthesized. if (isStandardComparisonOperator(anchor)) { auto *expr = castToExpr(anchor); auto isEnumWithAssociatedValues = [](Type type) -> bool { if (auto *enumType = type->getAs()) return !enumType->getDecl()->hasOnlyCasesWithoutAssociatedValues(); return false; }; // Limit this to `Equatable` and `Comparable` protocols for now. auto *protocol = getRHS()->castTo()->getDecl(); if (isEnumWithAssociatedValues(getLHS()) && (protocol->isSpecificProtocol(KnownProtocolKind::Equatable) || protocol->isSpecificProtocol(KnownProtocolKind::Comparable))) { if (RequirementFailure::diagnoseAsError()) { auto opName = getOperatorName(expr); emitDiagnostic(diag::no_binary_op_overload_for_enum_with_payload, opName->str()); return true; } } } if (diagnoseAsAmbiguousOperatorRef()) return true; if (nonConformingType->isObjCExistentialType()) { emitDiagnostic(diag::protocol_does_not_conform_static, nonConformingType, protocolType); return true; } if (diagnoseTypeCannotConform(nonConformingType, protocolType)) return true; // If none of the special cases could be diagnosed, // let's fallback to the most general diagnostic. return RequirementFailure::diagnoseAsError(); } bool MissingConformanceFailure::diagnoseTypeCannotConform( Type nonConformingType, Type protocolType) const { if (getRequirement().getKind() == RequirementKind::Layout || !(nonConformingType->is() || nonConformingType->is() || nonConformingType->isExistentialType() || nonConformingType->is())) { return false; } emitDiagnostic(diag::type_cannot_conform, nonConformingType->isExistentialType(), nonConformingType, nonConformingType->isEqual(protocolType), protocolType); emitDiagnostic(diag::only_concrete_types_conform_to_protocols); if (auto *OTD = dyn_cast(AffectedDecl)) { auto *namingDecl = OTD->getNamingDecl(); if (auto *repr = namingDecl->getOpaqueResultTypeRepr()) { emitDiagnosticAt(repr->getLoc(), diag::required_by_opaque_return, namingDecl->getDescriptiveKind(), namingDecl->getName()) .highlight(repr->getSourceRange()); } return true; } auto &req = getRequirement(); auto *reqDC = getRequirementDC(); auto *genericCtx = getGenericContext(); auto noteLocation = reqDC->getAsDecl()->getLoc(); if (!noteLocation.isValid()) noteLocation = getLoc(); if (isConditional()) { emitDiagnosticAt(noteLocation, diag::requirement_implied_by_conditional_conformance, resolveType(Conformance->getType()), Conformance->getProtocol()->getDeclaredInterfaceType()); } else if (genericCtx != reqDC && (genericCtx->isChildContextOf(reqDC) || isStaticOrInstanceMember(AffectedDecl))) { emitDiagnosticAt(noteLocation, diag::required_by_decl_ref, AffectedDecl->getDescriptiveKind(), AffectedDecl->getName(), reqDC->getSelfNominalTypeDecl()->getDeclaredType(), req.getFirstType(), nonConformingType); } else { emitDiagnosticAt(noteLocation, diag::required_by_decl, AffectedDecl->getDescriptiveKind(), AffectedDecl->getName(), req.getFirstType(), nonConformingType); } return true; } bool MissingConformanceFailure::diagnoseAsAmbiguousOperatorRef() { auto anchor = getRawAnchor(); auto *ODRE = getAsExpr(anchor); if (!ODRE) return false; auto name = ODRE->getDecls().front()->getBaseName(); if (!(name.isOperator() && getLHS()->isStdlibType() && getRHS()->isStdlibType())) return false; // If this is an operator reference and both types are from stdlib, // let's produce a generic diagnostic about invocation and a note // about missing conformance just in case. auto operatorID = name.getIdentifier(); auto *fnType = getType(anchor)->getAs(); auto params = fnType->getParams(); if (params.size() == 2) { auto lhsType = params[0].getPlainType(); auto rhsType = params[1].getPlainType(); if (lhsType->isEqual(rhsType)) { emitDiagnostic(diag::cannot_apply_binop_to_same_args, operatorID.str(), lhsType); } else { emitDiagnostic(diag::cannot_apply_binop_to_args, operatorID.str(), lhsType, rhsType); } } else { emitDiagnostic(diag::cannot_apply_unop_to_arg, operatorID.str(), params[0].getPlainType()); } diagnoseAsNote(); return true; } Optional> GenericArgumentsMismatchFailure::getDiagnosticFor( ContextualTypePurpose context) { switch (context) { case CTP_Initialization: case CTP_AssignSource: return diag::cannot_convert_assign; case CTP_ReturnStmt: case CTP_ReturnSingleExpr: return diag::cannot_convert_to_return_type; case CTP_DefaultParameter: case CTP_AutoclosureDefaultParameter: return diag::cannot_convert_default_arg_value; case CTP_YieldByValue: return diag::cannot_convert_yield_value; case CTP_CallArgument: return diag::cannot_convert_argument_value; case CTP_ClosureResult: return diag::cannot_convert_closure_result; case CTP_ArrayElement: return diag::cannot_convert_array_element; case CTP_DictionaryKey: return diag::cannot_convert_dict_key; case CTP_DictionaryValue: return diag::cannot_convert_dict_value; case CTP_CoerceOperand: return diag::cannot_convert_coerce; case CTP_SubscriptAssignSource: return diag::cannot_convert_subscript_assign; case CTP_Condition: return diag::cannot_convert_condition_value; case CTP_WrappedProperty: return diag::wrapped_value_mismatch; case CTP_ComposedPropertyWrapper: return diag::composed_property_wrapper_mismatch; case CTP_ThrowStmt: case CTP_ForEachStmt: case CTP_Unused: case CTP_CannotFail: case CTP_YieldByReference: case CTP_CalleeResult: case CTP_EnumCaseRawValue: break; } return None; } void GenericArgumentsMismatchFailure::emitNoteForMismatch(int position) { auto *locator = getLocator(); // Since there could be implicit conversions associated with argument // to parameter conversions, let's use parameter type as a source of // generic parameter information. auto paramSourceTy = locator->isLastElement() ? getRequired() : getActual(); auto genericTypeDecl = paramSourceTy->getAnyGeneric(); auto param = genericTypeDecl->getGenericParams()->getParams()[position]; auto lhs = getActual()->getGenericArgs()[position]; auto rhs = getRequired()->getGenericArgs()[position]; auto noteLocation = param->getLoc(); if (!noteLocation.isValid()) noteLocation = getLoc(); emitDiagnosticAt(noteLocation, diag::generic_argument_mismatch, param->getName(), lhs, rhs); } bool GenericArgumentsMismatchFailure::diagnoseAsError() { auto anchor = getAnchor(); auto fromType = getFromType(); auto toType = getToType(); // This is a situation where right-hand size type is wrapped // into a number of optionals and argument isn't e.g. // // func test(_: UnsafePointer??) {} // // var value: Float = 0 // test(&value) // // `value` has to get implicitly wrapped into 2 optionals // before pointer types could be compared. auto path = getLocator()->getPath(); unsigned toDrop = 0; for (const auto &elt : llvm::reverse(path)) { if (!elt.is()) break; // Disregard optional payload element to look at its source. ++toDrop; } path = path.drop_back(toDrop); Optional> diagnostic; if (path.empty()) { if (isExpr(anchor)) { diagnostic = getDiagnosticFor(CTP_AssignSource); } else if (isExpr(anchor)) { diagnostic = getDiagnosticFor(CTP_CoerceOperand); } else { return false; } } else { const auto &last = path.back(); switch (last.getKind()) { case ConstraintLocator::ContextualType: { auto purpose = getContextualTypePurpose(); assert(!(purpose == CTP_Unused || purpose == CTP_CannotFail)); // If this is call to a closure e.g. `let _: A = { B() }()` // let's point diagnostic to its result. if (auto *call = getAsExpr(anchor)) { auto *fnExpr = call->getFn(); if (auto *closure = dyn_cast(fnExpr)) { purpose = CTP_ClosureResult; if (closure->hasSingleExpressionBody()) anchor = closure->getSingleExpressionBody(); } } diagnostic = getDiagnosticFor(purpose); break; } case ConstraintLocator::AutoclosureResult: case ConstraintLocator::ApplyArgToParam: case ConstraintLocator::ApplyArgument: { diagnostic = diag::cannot_convert_argument_value; break; } case ConstraintLocator::ParentType: { diagnostic = diag::cannot_convert_parent_type; break; } case ConstraintLocator::ClosureBody: case ConstraintLocator::ClosureResult: { diagnostic = diag::cannot_convert_closure_result; break; } case ConstraintLocator::TupleElement: { auto rawAnchor = getRawAnchor(); if (isExpr(rawAnchor)) { diagnostic = getDiagnosticFor(CTP_ArrayElement); } else if (isExpr(rawAnchor)) { auto eltLoc = last.castTo(); diagnostic = getDiagnosticFor( eltLoc.getIndex() == 0 ? CTP_DictionaryKey : CTP_DictionaryValue); } break; } case ConstraintLocator::UnresolvedMemberChainResult: { diagnostic = diag::cannot_convert_chain_result_type; break; } default: break; } } if (!diagnostic) { // Handle all mismatches involving an `AssignExpr` if (auto *assignExpr = getAsExpr(anchor)) { diagnostic = getDiagnosticFor(CTP_AssignSource); fromType = getType(assignExpr->getSrc()); toType = getType(assignExpr->getDest()); } else { // If we couldn't find a specific diagnostic let's fallback to // attempt to handle cases where we have an apply arg to param. auto applyInfo = getFunctionArgApplyInfo(getLocator()); if (applyInfo) { diagnostic = diag::cannot_convert_argument_value; fromType = applyInfo->getArgType(); toType = applyInfo->getParamType(); } } } if (!diagnostic) return false; emitDiagnosticAt(::getLoc(anchor), *diagnostic, fromType, toType); emitNotesForMismatches(); return true; } bool LabelingFailure::diagnoseAsError() { auto *argExpr = getArgumentListExprFor(getLocator()); if (!argExpr) return false; return diagnoseArgumentLabelError(getASTContext(), argExpr, CorrectLabels, isExpr(getRawAnchor())); } bool LabelingFailure::diagnoseAsNote() { auto *argExpr = getArgumentListExprFor(getLocator()); if (!argExpr) return false; SmallVector argLabels; if (isa(argExpr)) { argLabels.push_back(Identifier()); } else if (auto *tuple = dyn_cast(argExpr)) { argLabels.append(tuple->getElementNames().begin(), tuple->getElementNames().end()); } else { return false; } auto stringifyLabels = [](ArrayRef labels) -> std::string { std::string str; for (auto label : labels) { str += label.empty() ? "_" : label.str(); str += ':'; } return "(" + str + ")"; }; auto selectedOverload = getCalleeOverloadChoiceIfAvailable(getLocator()); if (!selectedOverload) return false; const auto &choice = selectedOverload->choice; if (auto *decl = choice.getDeclOrNull()) { emitDiagnosticAt(decl, diag::candidate_expected_different_labels, stringifyLabels(argLabels), stringifyLabels(CorrectLabels)); return true; } return false; } bool ArrayLiteralToDictionaryConversionFailure::diagnoseAsError() { ArrayExpr *AE = getAsExpr(getAnchor()); assert(AE); if (AE->getNumElements() == 0) { emitDiagnostic(diag::should_use_empty_dictionary_literal) .fixItInsertAfter(getLoc(), ":"); return true; } auto CTP = getConstraintSystem().getContextualTypePurpose(AE); emitDiagnostic(diag::should_use_dictionary_literal, getToType()->lookThroughAllOptionalTypes(), CTP == CTP_Initialization); auto diagnostic = emitDiagnostic(diag::meant_dictionary_lit); if (AE->getNumElements() == 1) diagnostic.fixItInsertAfter(AE->getElement(0)->getEndLoc(), ": <#value#>"); return true; } bool AttributedFuncToTypeConversionFailure::diagnoseAsError() { if (diagnoseParameterUse()) return true; if (auto *typeVar = getRawFromType()->getAs()) { if (auto *GP = typeVar->getImpl().getGenericParameter()) { emitDiagnostic(diag::converting_noattrfunc_to_type, attributeKind, GP); return true; } } emitDiagnostic( diag::converting_noattrfunc_to_type, attributeKind, getToType()); return true; } bool AttributedFuncToTypeConversionFailure::diagnoseParameterUse() const { auto convertTo = getToType(); // If the other side is not a function, we have common case diagnostics // which handle function-to-type conversion diagnostics. if (!convertTo->is()) return false; auto anchor = getAnchor(); auto diagnostic = diag::general_noattrfunc_to_attr; ParamDecl *PD = nullptr; if (auto *DRE = getAsExpr(anchor)) { PD = dyn_cast(DRE->getDecl()); // If anchor is not a parameter declaration there // is no need to dig up more information. if (!PD) return false; // Let's check whether this is a function parameter passed // as an argument to another function which accepts @escaping // function at that position. if (auto argApplyInfo = getFunctionArgApplyInfo(getLocator())) { auto paramInterfaceTy = argApplyInfo->getParamInterfaceType(); if (paramInterfaceTy->isTypeParameter() && attributeKind == AttributeKind::Escaping) { auto diagnoseGenericParamFailure = [&](GenericTypeParamDecl *decl) { emitDiagnostic(diag::converting_noespace_param_to_generic_type, PD->getName(), paramInterfaceTy); auto declLoc = decl->getLoc(); if (declLoc.isValid()) emitDiagnosticAt(decl, diag::generic_parameters_always_escaping); }; // If this is a situation when non-escaping parameter is passed // to the argument which represents generic parameter, there is // a tailored diagnostic for that. if (auto *DMT = paramInterfaceTy->getAs()) { diagnoseGenericParamFailure(DMT->getRootGenericParam()->getDecl()); return true; } if (auto *GP = paramInterfaceTy->getAs()) { diagnoseGenericParamFailure(GP->getDecl()); return true; } } // If there are no generic parameters involved, this could // only mean that parameter is expecting @escaping/@Sendable function // type. diagnostic = diag::passing_noattrfunc_to_attrfunc; } } else if (auto *AE = getAsExpr(getRawAnchor())) { if (auto *DRE = dyn_cast(AE->getSrc())) { PD = dyn_cast(DRE->getDecl()); diagnostic = diag::assigning_noattrfunc_to_attrfunc; } } if (!PD) return false; emitDiagnostic(diagnostic, attributeKind, PD->getName()); // Give a note and fix-it auto note = emitDiagnosticAt( PD, diag::noescape_parameter, attributeKind, PD->getName()); SourceLoc reprLoc; SourceLoc autoclosureEndLoc; if (auto *repr = PD->getTypeRepr()) { reprLoc = repr->getStartLoc(); if (auto *attrRepr = dyn_cast(repr)) { autoclosureEndLoc = Lexer::getLocForEndOfToken( getASTContext().SourceMgr, attrRepr->getAttrs().getLoc(TAK_autoclosure)); } } if (attributeKind == AttributeKind::Concurrent) { note.fixItInsert(reprLoc, "@Sendable "); } else if (!PD->isAutoClosure()) { note.fixItInsert(reprLoc, "@escaping "); } else { note.fixItInsertAfter(autoclosureEndLoc, " @escaping"); } return true; } ASTNode InvalidCoercionFailure::getAnchor() const { auto anchor = FailureDiagnostic::getAnchor(); if (auto *assignExpr = getAsExpr(anchor)) return assignExpr->getSrc(); return anchor; } bool InvalidCoercionFailure::diagnoseAsError() { auto fromType = getFromType(); auto toType = getToType(); emitDiagnostic(diag::cannot_coerce_to_type, fromType, toType); if (UseConditionalCast) { emitDiagnostic(diag::missing_optional_downcast) .highlight(getSourceRange()) .fixItReplace(getLoc(), "as?"); } else { emitDiagnostic(diag::missing_forced_downcast) .highlight(getSourceRange()) .fixItReplace(getLoc(), "as!"); } return true; } bool MissingAddressOfFailure::diagnoseAsError() { auto argTy = getFromType(); auto paramTy = getToType(); if (paramTy->getAnyPointerElementType()) { emitDiagnostic(diag::cannot_convert_argument_value, argTy, paramTy) .fixItInsert(getSourceRange().Start, "&"); } else { emitDiagnostic(diag::missing_address_of, argTy) .fixItInsert(getSourceRange().Start, "&"); } return true; } ASTNode MissingExplicitConversionFailure::getAnchor() const { auto anchor = FailureDiagnostic::getAnchor(); if (auto *assign = getAsExpr(anchor)) return assign->getSrc(); if (auto *paren = getAsExpr(anchor)) return paren->getSubExpr(); return anchor; } bool MissingExplicitConversionFailure::diagnoseAsError() { auto *DC = getDC(); auto *anchor = castToExpr(getAnchor()); auto fromType = getFromType(); auto toType = getToType(); if (!toType->hasTypeRepr()) return false; bool useAs = TypeChecker::isExplicitlyConvertibleTo(fromType, toType, DC); auto *expr = findParentExpr(anchor); if (!expr) expr = const_cast(anchor); // If we're performing pattern matching, // "as" means something completely different... if (auto binOpExpr = dyn_cast(expr)) { auto overloadedFn = dyn_cast(binOpExpr->getFn()); if (overloadedFn && !overloadedFn->getDecls().empty()) { ValueDecl *decl0 = overloadedFn->getDecls()[0]; if (decl0->getBaseName() == decl0->getASTContext().Id_MatchOperator) return false; } } bool needsParensInside = exprNeedsParensBeforeAddingAs(anchor); bool needsParensOutside = exprNeedsParensAfterAddingAs(anchor, expr); llvm::SmallString<2> insertBefore; llvm::SmallString<32> insertAfter; if (needsParensOutside) { insertBefore += "("; } if (needsParensInside) { insertBefore += "("; insertAfter += ")"; } insertAfter += useAs ? " as " : " as! "; insertAfter += toType->getWithoutParens()->getString(); if (needsParensOutside) insertAfter += ")"; auto diagnose = [&]() { if (useAs) { return emitDiagnostic(diag::missing_explicit_conversion, fromType, toType); } else { // Emit error diagnostic. emitDiagnostic(diag::cannot_coerce_to_type, fromType, toType); // Emit and return note suggesting as! where the fix-it will be placed. return emitDiagnostic(diag::missing_forced_downcast); } }; auto diag = diagnose(); if (!insertBefore.empty()) { diag.fixItInsert(getSourceRange().Start, insertBefore); } diag.fixItInsertAfter(getSourceRange().End, insertAfter); return true; } SourceRange MemberAccessOnOptionalBaseFailure::getSourceRange() const { if (auto componentPathElt = getLocator()->getLastElementAs()) { auto anchor = getAnchor(); auto keyPathExpr = castToExpr(anchor); if (componentPathElt->getIndex() == 0) { if (auto rootType = keyPathExpr->getRootType()) { return rootType->getSourceRange(); } else { return keyPathExpr->getComponents().front().getLoc(); } } else { auto componentIdx = componentPathElt->getIndex() - 1; auto component = keyPathExpr->getComponents()[componentIdx]; return component.getSourceRange(); } } return FailureDiagnostic::getSourceRange(); } bool MemberAccessOnOptionalBaseFailure::diagnoseAsError() { auto baseType = getMemberBaseType(); auto locator = getLocator(); bool resultIsOptional = ResultTypeIsOptional; // If we've resolved the member overload to one that returns an optional // type, then the result of the expression is optional (and we want to offer // only a '?' fixit) even though the constraint system didn't need to add any // additional optionality. auto overload = getOverloadChoiceIfAvailable(locator); if (overload && overload->openedType->getOptionalObjectType()) resultIsOptional = true; auto unwrappedBaseType = baseType->getOptionalObjectType(); if (!unwrappedBaseType) return false; auto sourceRange = getSourceRange(); auto componentPathElt = locator->getLastElementAs(); if (componentPathElt && componentPathElt->getIndex() == 0) { // For members where the base type is an optional key path root // let's emit a tailored note suggesting to use its unwrapped type. auto *keyPathExpr = castToExpr(getAnchor()); if (auto rootType = keyPathExpr->getRootType()) { emitDiagnostic(diag::optional_base_not_unwrapped, baseType, Member, unwrappedBaseType); emitDiagnostic(diag::optional_base_remove_optional_for_keypath_root, unwrappedBaseType) .fixItReplace(rootType->getSourceRange(), unwrappedBaseType.getString()); } else { emitDiagnostic(diag::invalid_optional_infered_keypath_root, baseType, Member, unwrappedBaseType); emitDiagnostic(diag::optional_key_path_root_base_chain, Member) .fixItInsert(sourceRange.End, "?."); emitDiagnostic(diag::optional_key_path_root_base_unwrap, Member) .fixItInsert(sourceRange.End, "!."); } } else { emitDiagnostic(diag::optional_base_not_unwrapped, baseType, Member, unwrappedBaseType); // FIXME: It would be nice to immediately offer "base?.member ?? defaultValue" // for non-optional results where that would be appropriate. For the moment // always offering "?" means that if the user chooses chaining, we'll end up // in MissingOptionalUnwrapFailure:diagnose() to offer a default value during // the next compile. emitDiagnostic(diag::optional_base_chain, Member) .fixItInsertAfter(sourceRange.End, "?"); if (!resultIsOptional) { emitDiagnostic(diag::unwrap_with_force_value) .fixItInsertAfter(sourceRange.End, "!"); } } return true; } void MissingOptionalUnwrapFailure::offerDefaultValueUnwrapFixIt( DeclContext *DC, const Expr *expr) const { assert(expr); auto *anchor = getAsExpr(getAnchor()); // If anchor is n explicit address-of, or expression which produces // an l-value (e.g. first argument of `+=` operator), let's not // suggest default value here because that would produce r-value type. if (!anchor || isa(anchor)) return; if (auto argApplyInfo = getFunctionArgApplyInfo(getLocator())) if (argApplyInfo->getParameterFlags().isInOut()) return; auto diag = emitDiagnosticAt(expr->getLoc(), diag::unwrap_with_default_value); // Figure out what we need to parenthesize. bool needsParensInside = exprNeedsParensBeforeAddingNilCoalescing(DC, const_cast(expr)); auto parentExpr = findParentExpr(anchor); if (parentExpr && isa(parentExpr)) parentExpr = findParentExpr(parentExpr); bool needsParensOutside = exprNeedsParensAfterAddingNilCoalescing( DC, const_cast(expr), parentExpr); llvm::SmallString<2> insertBefore; llvm::SmallString<32> insertAfter; if (needsParensOutside) { insertBefore += "("; } if (needsParensInside) { insertBefore += "("; insertAfter += ")"; } insertAfter += " ?? <" "#default value#" ">"; if (needsParensOutside) insertAfter += ")"; if (!insertBefore.empty()) { diag.fixItInsert(expr->getStartLoc(), insertBefore); } diag.fixItInsertAfter(expr->getEndLoc(), insertAfter); } // Suggest a force-unwrap. void MissingOptionalUnwrapFailure::offerForceUnwrapFixIt( const Expr *expr) const { auto diag = emitDiagnosticAt(expr->getLoc(), diag::unwrap_with_force_value); // If expr is optional as the result of an optional chain and this last // dot isn't a member returning optional, then offer to force the last // link in the chain, rather than an ugly parenthesized postfix force. if (auto optionalChain = dyn_cast(expr)) { if (auto dotExpr = dyn_cast(optionalChain->getSubExpr())) { auto bind = dyn_cast(dotExpr->getBase()); if (bind && !getType(dotExpr)->getOptionalObjectType()) { diag.fixItReplace(SourceRange(bind->getLoc()), "!"); return; } } } if (expr->canAppendPostfixExpression(true)) { diag.fixItInsertAfter(expr->getEndLoc(), "!"); } else { diag.fixItInsert(expr->getStartLoc(), "(") .fixItInsertAfter(expr->getEndLoc(), ")!"); } } // FIXME: This walks a partially-type checked function body, which // is not guaranteed to yield consistent results. We should come up // with another way of performing this analysis, for example by moving // it to a post-type checking pass in MiscDiagnostics. class VarDeclMultipleReferencesChecker : public ASTWalker { DeclContext *DC; VarDecl *varDecl; int count; std::pair walkToExprPre(Expr *E) override { if (auto *DRE = dyn_cast(E)) { if (DRE->getDecl() == varDecl) ++count; } // FIXME: We can see UnresolvedDeclRefExprs here because we have // not yet run preCheckExpression() on the entire function body // yet. // // We could consider pre-checking more eagerly. if (auto *UDRE = dyn_cast(E)) { auto name = UDRE->getName(); auto loc = UDRE->getLoc(); if (name.isSimpleName(varDecl->getName()) && loc.isValid()) { auto *otherDecl = ASTScope::lookupSingleLocalDecl(DC->getParentSourceFile(), name.getFullName(), loc); if (otherDecl == varDecl) ++count; } } return { true, E }; } public: VarDeclMultipleReferencesChecker(DeclContext *DC, VarDecl *varDecl) : DC(DC), varDecl(varDecl),count(0) {} int referencesCount() { return count; } }; bool DroppedGlobalActorFunctionAttr::diagnoseAsError() { auto fromFnType = getFromType()->getAs(); if (!fromFnType) return false; Type fromGlobalActor = fromFnType->getGlobalActor(); if (!fromGlobalActor) return false; emitDiagnostic( diag::converting_func_loses_global_actor, getFromType(), getToType(), fromGlobalActor); return true; } bool MissingOptionalUnwrapFailure::diagnoseAsError() { if (!getUnwrappedType()->isBool()) { if (diagnoseConversionToBool()) return true; } auto *anchor = castToExpr(getAnchor()); if (auto assignExpr = dyn_cast(anchor)) anchor = assignExpr->getSrc(); auto *unwrappedExpr = anchor->getValueProvidingExpr(); if (auto *tryExpr = dyn_cast(unwrappedExpr)) { bool isSwift5OrGreater = getASTContext().isSwiftVersionAtLeast(5); auto subExprType = getType(tryExpr->getSubExpr()); bool subExpressionIsOptional = (bool)subExprType->getOptionalObjectType(); if (isSwift5OrGreater && subExpressionIsOptional) { // Using 'try!' won't change the type for a 'try?' with an optional // sub-expr under Swift 5+, so just report that a missing unwrap can't be // handled here. return false; } emitDiagnosticAt(tryExpr->getTryLoc(), diag::missing_unwrap_optional_try, getType(anchor)) .fixItReplace({tryExpr->getTryLoc(), tryExpr->getQuestionLoc()}, "try!"); return true; } auto baseType = getBaseType(); auto unwrappedType = getUnwrappedType(); assert(!baseType->hasTypeVariable() && "Base type must not be a type variable"); assert(!baseType->isPlaceholder() && "Base type must not be a type placeholder"); assert(!unwrappedType->hasTypeVariable() && "Unwrapped type must not be a type variable"); assert(!unwrappedType->isPlaceholder() && "Unwrapped type must not be a type placeholder"); if (!baseType->getOptionalObjectType()) return false; emitDiagnosticAt(unwrappedExpr->getLoc(), diag::optional_not_unwrapped, baseType, unwrappedType); // If the expression we're unwrapping is the only reference to a // local variable whose type isn't explicit in the source, then // offer unwrapping fixits on the initializer as well. if (auto declRef = dyn_cast(unwrappedExpr)) { if (auto varDecl = dyn_cast(declRef->getDecl())) { bool singleUse = false; AbstractFunctionDecl *AFD = nullptr; if ((AFD = dyn_cast(varDecl->getDeclContext()))) { auto checker = VarDeclMultipleReferencesChecker(getDC(), varDecl); AFD->getBody()->walk(checker); singleUse = checker.referencesCount() == 1; } PatternBindingDecl *binding = varDecl->getParentPatternBinding(); if (singleUse && binding && binding->getNumPatternEntries() == 1 && varDecl->getTypeSourceRangeForDiagnostics().isInvalid()) { auto *initializer = varDecl->getParentInitializer(); if (!initializer) return true; if (auto declRefExpr = dyn_cast(initializer)) { if (declRefExpr->getDecl()->isImplicitlyUnwrappedOptional()) { emitDiagnosticAt(declRefExpr->getLoc(), diag::unwrap_iuo_initializer, baseType); } } auto fnTy = AFD->getInterfaceType()->castTo(); bool voidReturn = fnTy->getResult()->isEqual(TupleType::getEmpty(getASTContext())); auto diag = emitDiagnosticAt(varDecl->getLoc(), diag::unwrap_with_guard); diag.fixItInsert(binding->getStartLoc(), "guard "); if (voidReturn) { diag.fixItInsertAfter(binding->getEndLoc(), " else { return }"); } else { diag.fixItInsertAfter(binding->getEndLoc(), " else { return <" "#default value#" "> }"); } diag.flush(); offerDefaultValueUnwrapFixIt(varDecl->getDeclContext(), initializer); offerForceUnwrapFixIt(initializer); } } } offerDefaultValueUnwrapFixIt(getDC(), unwrappedExpr); offerForceUnwrapFixIt(unwrappedExpr); return true; } bool RValueTreatedAsLValueFailure::diagnoseAsError() { Diag subElementDiagID; Diag rvalueDiagID = diag::assignment_lhs_not_lvalue; auto diagExpr = castToExpr(getRawAnchor()); SourceLoc loc = diagExpr->getLoc(); // Assignment is not allowed inside of a condition, // so let's not diagnose immutability, because // most likely the problem is related to use of `=` itself. if (getContextualTypePurpose(diagExpr) == CTP_Condition) return false; // If the failure happened at the end of an unresolved member chain, it should // be diagnosed instead as though it happened at the last element. if (auto chainExpr = dyn_cast(diagExpr)) diagExpr = chainExpr->getSubExpr(); if (auto assignExpr = dyn_cast(diagExpr)) { // Let's check whether this is an attempt to assign // variable or property to itself. if (TypeChecker::diagnoseSelfAssignment(assignExpr)) return true; diagExpr = assignExpr->getDest(); } if (auto callExpr = dyn_cast(diagExpr)) { Expr *argExpr = callExpr->getArg(); loc = callExpr->getFn()->getLoc(); auto *locator = getLocator(); // `argument attribute` is used for identification purposes // only, so it could be looked through in this situation. if (locator->isLastElement()) { auto path = locator->getPath(); locator = getConstraintLocator(getRawAnchor(), path.drop_back()); } if (isa(callExpr) || isa(callExpr)) { subElementDiagID = diag::cannot_apply_lvalue_unop_to_subelement; rvalueDiagID = diag::cannot_apply_lvalue_unop_to_rvalue; diagExpr = argExpr; } else if (isa(callExpr)) { subElementDiagID = diag::cannot_apply_lvalue_binop_to_subelement; rvalueDiagID = diag::cannot_apply_lvalue_binop_to_rvalue; diagExpr = castToExpr(simplifyLocatorToAnchor(locator)); } else if (auto argElt = locator ->getLastElementAs()) { subElementDiagID = diag::cannot_pass_rvalue_inout_subelement; rvalueDiagID = diag::cannot_pass_rvalue_inout; if (auto argTuple = dyn_cast(argExpr)) diagExpr = argTuple->getElement(argElt->getArgIdx()); else if (auto parens = dyn_cast(argExpr)) diagExpr = parens->getSubExpr(); } else { subElementDiagID = diag::assignment_lhs_is_apply_expression; } } else if (auto inoutExpr = dyn_cast(diagExpr)) { if (auto *parentExpr = findParentExpr(inoutExpr)) { if (auto *call = dyn_cast_or_null(findParentExpr(parentExpr))) { // Since this `inout` expression is an argument to a call/operator // let's figure out whether this is an impliict conversion from // array to an unsafe pointer type and diagnose it. unsigned argIdx = 0; if (auto *TE = dyn_cast(parentExpr)) { for (unsigned n = TE->getNumElements(); argIdx != n; ++argIdx) { if (TE->getElement(argIdx) == inoutExpr) break; } } auto *argLoc = getConstraintLocator( call, {ConstraintLocator::ApplyArgument, LocatorPathElt::ApplyArgToParam(argIdx, argIdx, ParameterTypeFlags())}); if (auto info = getFunctionArgApplyInfo(argLoc)) { auto paramType = info->getParamType(); auto argType = getType(inoutExpr)->getWithoutSpecifierType(); PointerTypeKind ptr; if (isArrayType(argType) && paramType->getAnyPointerElementType(ptr) && (ptr == PTK_UnsafePointer || ptr == PTK_UnsafeRawPointer)) { emitDiagnosticAt(inoutExpr->getLoc(), diag::extra_address_of_unsafepointer, paramType) .highlight(inoutExpr->getSourceRange()) .fixItRemove(inoutExpr->getStartLoc()); return true; } } } } subElementDiagID = diag::cannot_pass_rvalue_inout_subelement; rvalueDiagID = diag::cannot_pass_rvalue_inout; diagExpr = inoutExpr->getSubExpr(); } else if (isa(diagExpr)) { subElementDiagID = diag::assignment_lhs_is_immutable_variable; } else if (isa(diagExpr)) { subElementDiagID = diag::assignment_bang_has_immutable_subcomponent; } else if (isa(diagExpr)) { subElementDiagID = diag::assignment_lhs_is_immutable_property; } else if (auto member = dyn_cast(diagExpr)) { subElementDiagID = diag::assignment_lhs_is_immutable_property; if (auto *ctor = dyn_cast(getDC())) { if (auto *baseRef = dyn_cast(member->getBase())) { if (baseRef->getDecl() == ctor->getImplicitSelfDecl() && ctor->getDelegatingOrChainedInitKind().initKind == BodyInitKind::Delegating) { emitDiagnosticAt(loc, diag::assignment_let_property_delegating_init, member->getName()); if (auto overload = getOverloadChoiceIfAvailable( getConstraintLocator(member, ConstraintLocator::Member))) { if (auto *ref = overload->choice.getDeclOrNull()) emitDiagnosticAt(ref, diag::decl_declared_here, ref->getName()); } return true; } } } if (auto resolvedOverload = getOverloadChoiceIfAvailable(getLocator())) { if (resolvedOverload->choice.getKind() == OverloadChoiceKind::DynamicMemberLookup) subElementDiagID = diag::assignment_dynamic_property_has_immutable_base; if (resolvedOverload->choice.getKind() == OverloadChoiceKind::KeyPathDynamicMemberLookup) { if (!getType(member->getBase(), /*wantRValue=*/false)->hasLValueType()) subElementDiagID = diag::assignment_dynamic_property_has_immutable_base; } } } else if (isa(diagExpr)) { subElementDiagID = diag::assignment_subscript_has_immutable_base; } else if (auto *UME = dyn_cast(diagExpr)) { subElementDiagID = diag::assignment_lhs_is_immutable_property; } else { subElementDiagID = diag::assignment_lhs_is_immutable_variable; } AssignmentFailure failure(diagExpr, getSolution(), loc, subElementDiagID, rvalueDiagID); return failure.diagnose(); } bool RValueTreatedAsLValueFailure::diagnoseAsNote() { auto overload = getCalleeOverloadChoiceIfAvailable(getLocator()); if (!(overload && overload->choice.isDecl())) return false; auto *decl = overload->choice.getDecl(); emitDiagnosticAt(decl, diag::candidate_is_not_assignable, decl->getDescriptiveKind(), decl->getName()); return true; } static VarDecl *findSimpleReferencedVarDecl(const Expr *E) { if (auto *LE = dyn_cast(E)) E = LE->getSubExpr(); if (auto *DRE = dyn_cast(E)) return dyn_cast(DRE->getDecl()); return nullptr; } static std::pair findReferencedVarDecl(const Expr *E) { E = E->getValueProvidingExpr(); if (auto *LE = dyn_cast(E)) return findReferencedVarDecl(LE->getSubExpr()); if (auto *AE = dyn_cast(E)) return findReferencedVarDecl(AE->getDest()); if (auto *D = findSimpleReferencedVarDecl(E)) return std::make_pair(nullptr, D); if (auto *MRE = dyn_cast(E)) { if (auto *BaseDecl = findSimpleReferencedVarDecl(MRE->getBase())) return std::make_pair(BaseDecl, cast(MRE->getMember().getDecl())); } return std::make_pair(nullptr, nullptr); } bool TypeChecker::diagnoseSelfAssignment(const Expr *expr) { auto *assignExpr = dyn_cast(expr); if (!assignExpr) return false; auto *dstExpr = assignExpr->getDest(); auto *srcExpr = assignExpr->getSrc(); auto dstDecl = findReferencedVarDecl(dstExpr); auto srcDecl = findReferencedVarDecl(srcExpr); if (dstDecl.second && dstDecl.second->hasStorage() && dstDecl == srcDecl) { auto &DE = dstDecl.second->getASTContext().Diags; DE.diagnose(expr->getLoc(), dstDecl.first ? diag::self_assignment_prop : diag::self_assignment_var) .highlight(dstExpr->getSourceRange()) .highlight(srcExpr->getSourceRange()); return true; } return false; } bool TrailingClosureAmbiguityFailure::diagnoseAsNote() { auto *anchor = castToExpr(getAnchor()); const auto *expr = findParentExpr(anchor); auto *callExpr = dyn_cast_or_null(expr); if (!callExpr) return false; if (!callExpr->hasTrailingClosure()) return false; if (callExpr->getFn() != anchor) return false; llvm::SmallMapVector choicesByLabel; for (const auto &choice : Choices) { auto *callee = dyn_cast(choice.getDecl()); if (!callee) return false; const ParameterList *paramList = callee->getParameters(); const ParamDecl *param = paramList->getArray().back(); // Sanity-check that the trailing closure corresponds to this parameter. if (!param->hasInterfaceType() || !param->getInterfaceType()->is()) return false; Identifier trailingClosureLabel = param->getArgumentName(); auto &choiceForLabel = choicesByLabel[trailingClosureLabel]; // FIXME: Cargo-culted from diagnoseAmbiguity: apparently the same decl can // appear more than once? if (choiceForLabel == callee) continue; // If just providing the trailing closure label won't solve the ambiguity, // don't bother offering the fix-it. if (choiceForLabel != nullptr) return false; choiceForLabel = callee; } // If we got here, then all of the choices have unique labels. Offer them in // order. for (const auto &choicePair : choicesByLabel) { auto diag = emitDiagnosticAt( expr->getLoc(), diag::ambiguous_because_of_trailing_closure, choicePair.first.empty(), choicePair.second->getName()); swift::fixItEncloseTrailingClosure(getASTContext(), diag, callExpr, choicePair.first); } return true; } AssignmentFailure::AssignmentFailure(Expr *destExpr, const Solution &solution, SourceLoc diagnosticLoc) : FailureDiagnostic(solution, destExpr), DestExpr(destExpr), Loc(diagnosticLoc), DeclDiagnostic(findDeclDiagonstic(getASTContext(), destExpr)), TypeDiagnostic(diag::assignment_lhs_not_lvalue) {} bool AssignmentFailure::diagnoseAsError() { auto *DC = getDC(); // Walk through the destination expression, resolving what the problem is. If // we find a node in the lvalue path that is problematic, this returns it. Expr *immutableExpr; Optional choice; std::tie(immutableExpr, choice) = resolveImmutableBase(DestExpr); // Attempt diagnostics based on the overload choice. if (choice.hasValue()) { auto getKeyPathArgument = [](SubscriptExpr *expr) { auto *TE = dyn_cast(expr->getIndex()); assert(TE->getNumElements() == 1); assert(TE->getElementName(0).str() == "keyPath"); return TE->getElement(0); }; if (!choice->isDecl()) { if (choice->getKind() == OverloadChoiceKind::KeyPathApplication && !isa(immutableExpr)) { std::string message = "key path is read-only"; if (auto *SE = dyn_cast(immutableExpr)) { if (auto *DRE = dyn_cast(getKeyPathArgument(SE))) { auto identifier = DRE->getDecl()->getBaseIdentifier(); message = "'" + identifier.str().str() + "' is a read-only key path"; } } emitDiagnosticAt(Loc, DeclDiagnostic, message) .highlight(immutableExpr->getSourceRange()); return true; } return false; } // Otherwise, we cannot resolve this because the available setter candidates // are all mutating and the base must be mutating. If we dug out a // problematic decl, we can produce a nice tailored diagnostic. if (auto *VD = dyn_cast(choice->getDecl())) { std::string message = "'"; message += VD->getName().str().str(); message += "'"; auto type = getType(immutableExpr); if (isKnownKeyPathType(type)) message += " is read-only"; else if (VD->isCaptureList()) message += " is an immutable capture"; else if (VD->isImplicit()) message += " is immutable"; else if (VD->isLet()) message += " is a 'let' constant"; else if (!VD->isSettable(DC)) message += " is a get-only property"; else if (!VD->isSetterAccessibleFrom(DC)) message += " setter is inaccessible"; else { message += " is immutable"; } emitDiagnosticAt(Loc, DeclDiagnostic, message) .highlight(immutableExpr->getSourceRange()); // If there is a masked property of the same type, emit a // note to fixit prepend a 'self.' or 'Type.'. if (auto typeContext = DC->getInnermostTypeContext()) { SmallVector results; DC->lookupQualified(typeContext->getSelfNominalTypeDecl(), VD->createNameRef(), NL_QualifiedDefault, results); auto foundProperty = llvm::find_if(results, [&](ValueDecl *decl) { // We're looking for a settable property that is the same type as the // var we found. auto *var = dyn_cast(decl); if (!var || var == VD) return false; if (!var->isSettable(DC) || !var->isSetterAccessibleFrom(DC)) return false; if (!var->getType()->isEqual(VD->getType())) return false; // Don't suggest a property if we're in one of its accessors. auto *methodDC = DC->getInnermostMethodContext(); if (auto *AD = dyn_cast_or_null(methodDC)) if (AD->getStorage() == var) return false; return true; }); if (foundProperty != results.end()) { auto startLoc = immutableExpr->getStartLoc(); auto *property = *foundProperty; auto selfTy = typeContext->getSelfTypeInContext(); // If we found an instance property, suggest inserting "self.", // otherwise suggest "Type." for a static property. std::string fixItText; if (property->isInstanceMember()) { fixItText = "self."; } else { fixItText = selfTy->getString() + "."; } emitDiagnosticAt(startLoc, diag::masked_mutable_property, fixItText, property->getDescriptiveKind(), selfTy) .fixItInsert(startLoc, fixItText); } } // If this is a simple variable marked with a 'let', emit a note to fixit // hint it to 'var'. VD->emitLetToVarNoteIfSimple(DC); return true; } // If the underlying expression was a read-only subscript, diagnose that. if (auto *SD = dyn_cast_or_null(choice->getDecl())) { StringRef message; if (!SD->supportsMutation()) message = "subscript is get-only"; else if (!SD->isSetterAccessibleFrom(DC)) message = "subscript setter is inaccessible"; else message = "subscript is immutable"; emitDiagnosticAt(Loc, DeclDiagnostic, message) .highlight(immutableExpr->getSourceRange()); return true; } // If we're trying to set an unapplied method, say that. if (auto *VD = choice->getDecl()) { std::string message = "'"; message += VD->getBaseIdentifier().str(); message += "'"; auto diagID = DeclDiagnostic; if (auto *AFD = dyn_cast(VD)) { if (AFD->hasImplicitSelfDecl()) { message += " is a method"; diagID = diag::assignment_lhs_is_immutable_variable; } else { message += " is a function"; } } else message += " is not settable"; emitDiagnosticAt(Loc, diagID, message) .highlight(immutableExpr->getSourceRange()); return true; } } // Fall back to producing diagnostics based on the expression since we // couldn't determine anything from the OverloadChoice. // If a keypath was the problem but wasn't resolved into a vardecl // it is ambiguous or unable to be used for setting. if (auto *KPE = dyn_cast_or_null(immutableExpr)) { emitDiagnosticAt(Loc, DeclDiagnostic, "immutable key path") .highlight(KPE->getSourceRange()); return true; } if (auto LE = dyn_cast(immutableExpr)) { emitDiagnosticAt(Loc, DeclDiagnostic, "literals are not mutable") .highlight(LE->getSourceRange()); return true; } // If the expression is the result of a call, it is an rvalue, not a mutable // lvalue. if (auto *AE = dyn_cast(immutableExpr)) { // Handle literals, which are a call to the conversion function. auto argsTuple = dyn_cast(AE->getArg()->getSemanticsProvidingExpr()); if (isa(AE) && AE->isImplicit() && argsTuple && argsTuple->getNumElements() == 1) { if (auto LE = dyn_cast( argsTuple->getElement(0)->getSemanticsProvidingExpr())) { emitDiagnosticAt(Loc, DeclDiagnostic, "literals are not mutable") .highlight(LE->getSourceRange()); return true; } } std::string name = "call"; if (isa(AE) || isa(AE)) name = "unary operator"; else if (isa(AE)) name = "binary operator"; else if (isa(AE)) name = "function call"; else if (isa(AE) || isa(AE)) name = "method call"; if (auto *DRE = dyn_cast(AE->getFn()->getValueProvidingExpr())) name = std::string("'") + DRE->getDecl()->getBaseIdentifier().str().str() + "'"; emitDiagnosticAt(Loc, DeclDiagnostic, name + " returns immutable value") .highlight(AE->getSourceRange()); return true; } if (auto contextualType = getContextualType(immutableExpr)) { Type neededType = contextualType->getInOutObjectType(); Type actualType = getType(immutableExpr)->getInOutObjectType(); if (!neededType->isEqual(actualType)) { if (DeclDiagnostic.ID != diag::cannot_pass_rvalue_inout_subelement.ID) { emitDiagnosticAt(Loc, DeclDiagnostic, "implicit conversion from '" + actualType->getString() + "' to '" + neededType->getString() + "' requires a temporary") .highlight(immutableExpr->getSourceRange()); } return true; } } if (auto IE = dyn_cast(immutableExpr)) { emitDiagnosticAt(Loc, DeclDiagnostic, "result of conditional operator '? :' is never mutable") .highlight(IE->getQuestionLoc()) .highlight(IE->getColonLoc()); return true; } emitDiagnosticAt(Loc, TypeDiagnostic, getType(DestExpr)) .highlight(immutableExpr->getSourceRange()); return true; } std::pair> AssignmentFailure::resolveImmutableBase(Expr *expr) const { auto *DC = getDC(); expr = expr->getValueProvidingExpr(); auto isImmutable = [&DC](ValueDecl *decl) { if (auto *storage = dyn_cast(decl)) return !storage->isSettable(nullptr) || !storage->isSetterAccessibleFrom(DC); // If this is not something which could possibly be mutable, // then it's immutable. return true; }; // Provide specific diagnostics for assignment to subscripts whose base expr // is known to be an rvalue. if (auto *SE = dyn_cast(expr)) { // If we found a decl for the subscript, check to see if it is a set-only // subscript decl. if (SE->hasDecl()) { const auto &declRef = SE->getDecl(); if (auto *subscript = dyn_cast_or_null(declRef.getDecl())) { if (isImmutable(subscript)) return {expr, OverloadChoice(getType(SE->getBase()), subscript, FunctionRefKind::DoubleApply)}; } } Optional member = getMemberRef( getConstraintLocator(SE, ConstraintLocator::SubscriptMember)); // If it isn't settable, return it. if (member) { if (member->isDecl() && isImmutable(member->getDecl())) return {expr, member}; // We still have a choice, the choice is not a decl if (!member->isDecl()) { // This must be a keypath application assert(member->getKind() == OverloadChoiceKind::KeyPathApplication); auto *argType = getType(SE->getIndex())->castTo(); assert(argType->getNumElements() == 1); auto indexType = resolveType(argType->getElementType(0)); if (auto bgt = indexType->getAs()) { // In Swift versions lower than 5, this check will fail as read only // key paths can masquerade as writable for compatibilty reasons. // This is fine as in this case we just fall back on old diagnostics. auto &ctx = getASTContext(); if (bgt->getDecl() == ctx.getKeyPathDecl() || bgt->getDecl() == ctx.getPartialKeyPathDecl()) { return {expr, member}; } } } } // If it is settable, then the base must be the problem, recurse. return resolveImmutableBase(SE->getBase()); } // Look through property references. if (auto *UDE = dyn_cast(expr)) { // If we found a decl for the UDE, check it. auto loc = getConstraintLocator(UDE, ConstraintLocator::Member); auto member = getMemberRef(loc); // If we can resolve a member, we can determine whether it is settable in // this context. if (member && member->isDecl() && isImmutable(member->getDecl())) return {expr, member}; // If we weren't able to resolve a member or if it is mutable, then the // problem must be with the base, recurse. return resolveImmutableBase(UDE->getBase()); } if (auto *MRE = dyn_cast(expr)) { // If the member isn't settable, then it is the problem: return it. if (auto member = dyn_cast(MRE->getMember().getDecl())) if (isImmutable(member)) return {expr, OverloadChoice(getType(MRE->getBase()), member, FunctionRefKind::SingleApply)}; // If we weren't able to resolve a member or if it is mutable, then the // problem must be with the base, recurse. return resolveImmutableBase(MRE->getBase()); } if (auto *UME = dyn_cast(expr)) { auto loc = getConstraintLocator(UME, ConstraintLocator::UnresolvedMember); auto member = getMemberRef(loc); // If we can resolve a member, we can determine whether it is settable in // this context. if (member && member->isDecl() && isImmutable(member->getDecl())) return {expr, member}; else return {expr, None}; } if (auto *DRE = dyn_cast(expr)) return {expr, OverloadChoice(Type(), DRE->getDecl(), FunctionRefKind::Unapplied)}; // Look through x! if (auto *FVE = dyn_cast(expr)) return resolveImmutableBase(FVE->getSubExpr()); // Look through x? if (auto *BOE = dyn_cast(expr)) return resolveImmutableBase(BOE->getSubExpr()); // Look through implicit conversions if (auto *ICE = dyn_cast(expr)) if (!isa(ICE->getSubExpr())) return resolveImmutableBase(ICE->getSubExpr()); if (auto *SAE = dyn_cast(expr)) return resolveImmutableBase(SAE->getFn()); return {expr, None}; } Optional AssignmentFailure::getMemberRef(ConstraintLocator *locator) const { auto member = getOverloadChoiceIfAvailable(locator); if (!member) return None; if (!member->choice.isDecl()) return member->choice; auto *DC = getDC(); auto *decl = member->choice.getDecl(); if (isa(decl) && isValidDynamicMemberLookupSubscript(cast(decl), DC)) { auto *subscript = cast(decl); // If this is a keypath dynamic member lookup, we have to // adjust the locator to find member referred by it. if (isValidKeyPathDynamicMemberLookup(subscript)) { // Type has a following format: // `(Self) -> (dynamicMember: {Writable}KeyPath) -> U` auto *fullType = member->openedFullType->castTo(); auto *fnType = fullType->getResult()->castTo(); auto paramTy = fnType->getParams()[0].getPlainType(); auto keyPath = paramTy->getAnyNominal(); auto memberLoc = getConstraintLocator( locator, LocatorPathElt::KeyPathDynamicMember(keyPath)); auto memberRef = getOverloadChoiceIfAvailable(memberLoc); return memberRef ? Optional(memberRef->choice) : None; } // If this is a string based dynamic lookup, there is no member declaration. return None; } return member->choice; } Diag AssignmentFailure::findDeclDiagonstic(ASTContext &ctx, const Expr *destExpr) { if (isa(destExpr) || isa(destExpr)) return diag::assignment_lhs_is_apply_expression; if (isa(destExpr) || isa(destExpr)) return diag::assignment_lhs_is_immutable_property; if (auto *subscript = dyn_cast(destExpr)) { auto diagID = diag::assignment_subscript_has_immutable_base; // If the destination is a subscript with a 'dynamicLookup:' label and if // the tuple is implicit, then this was actually a @dynamicMemberLookup // access. Emit a more specific diagnostic. if (subscript->getIndex()->isImplicit() && subscript->getArgumentLabels().size() == 1 && subscript->getArgumentLabels().front() == ctx.Id_dynamicMember) diagID = diag::assignment_dynamic_property_has_immutable_base; return diagID; } return diag::assignment_lhs_is_immutable_variable; } bool ContextualFailure::diagnoseAsError() { auto anchor = getAnchor(); auto path = getLocator()->getPath(); if (CTP == CTP_ReturnSingleExpr || CTP == CTP_ReturnStmt) { // Special case the "conversion to void". if (getToType()->isVoid()) { emitDiagnostic(diag::cannot_return_value_from_void_func) .highlight(getSourceRange()); return true; } } if (diagnoseConversionToNil()) return true; if (path.empty()) { if (auto *KPE = getAsExpr(anchor)) { emitDiagnosticAt(KPE->getLoc(), diag::expr_smart_keypath_value_covert_to_contextual_type, getFromType(), getToType()); return true; } if (diagnoseCoercionToUnrelatedType()) return true; if (isExpr(anchor)) { emitDiagnostic(diag::cannot_convert_initializer_value, getFromType(), getToType()); return true; } if (isExpr(anchor)) { auto diagnostic = emitDiagnostic(diag::cannot_convert_assign, getFromType(), getToType()); tryIntegerCastFixIts(diagnostic); return true; } return false; } if (diagnoseMissingFunctionCall()) return true; // Special case of some common conversions involving Swift.String // indexes, catching cases where people attempt to index them with an integer. if (isIntegerToStringIndexConversion()) { emitDiagnostic(diag::string_index_not_integer, getFromType()) .highlight(getSourceRange()); emitDiagnostic(diag::string_index_not_integer_note); return true; } auto fromType = getFromType(); auto toType = getToType(); Diag diagnostic; switch (path.back().getKind()) { case ConstraintLocator::ClosureBody: case ConstraintLocator::ClosureResult: { auto *closure = castToExpr(getRawAnchor()); if (closure->hasExplicitResultType() && closure->getExplicitResultTypeRepr()) { auto resultRepr = closure->getExplicitResultTypeRepr(); emitDiagnosticAt(resultRepr->getStartLoc(), diag::incorrect_explicit_closure_result, fromType, toType) .fixItReplace(resultRepr->getSourceRange(), toType.getString()); return true; } diagnostic = diag::cannot_convert_closure_result; break; } case ConstraintLocator::Condition: { // Tailored diagnostics for optional or assignment use // in condition expression. if (diagnoseConversionToBool()) return true; diagnostic = diag::cannot_convert_condition_value; break; } case ConstraintLocator::InstanceType: { if (diagnoseCoercionToUnrelatedType()) return true; break; } case ConstraintLocator::TernaryBranch: { auto *ifExpr = castToExpr(getRawAnchor()); fromType = getType(ifExpr->getThenExpr()); toType = getType(ifExpr->getElseExpr()); diagnostic = diag::if_expr_cases_mismatch; break; } case ConstraintLocator::ContextualType: { if (diagnoseConversionToBool()) return true; if (diagnoseThrowsTypeMismatch()) return true; if (diagnoseYieldByReferenceMismatch()) return true; if (isExpr(anchor) || isExpr(anchor)) { auto objectType = fromType->getOptionalObjectType(); if (objectType->isEqual(toType)) { MissingOptionalUnwrapFailure failure(getSolution(), getType(anchor), toType, getConstraintLocator(anchor)); if (failure.diagnoseAsError()) return true; } } if (CTP == CTP_ForEachStmt) { if (fromType->isAnyExistentialType()) { emitDiagnostic(diag::type_cannot_conform, /*isExistentialType=*/true, fromType, fromType->isEqual(toType), toType); emitDiagnostic(diag::only_concrete_types_conform_to_protocols); return true; } emitDiagnostic( diag::foreach_sequence_does_not_conform_to_expected_protocol, fromType, toType, bool(fromType->getOptionalObjectType())) .highlight(getSourceRange()); return true; } if (auto *call = getAsExpr(anchor)) { if (isa(call->getFn())) CTP = CTP_ClosureResult; } if (auto msg = getDiagnosticFor(CTP, toType)) { diagnostic = *msg; break; } return false; } case ConstraintLocator::UnresolvedMemberChainResult: { auto &solution = getSolution(); auto overload = getCalleeOverloadChoiceIfAvailable(getConstraintLocator(anchor)); if (!(overload && overload->choice.isDecl())) return false; auto *choice = overload->choice.getDecl(); auto fnType = fromType->getAs(); if (!fnType) { emitDiagnostic(diag::expected_result_in_contextual_member, choice->getName(), fromType, toType); return true; } // If member type is a function and contextual type matches // its result type, most likely problem is related to a // missing call e.g.: // // struct S { // static func foo() -> S {} // } // // let _: S = .foo auto params = fnType->getParams(); ParameterListInfo info( params, choice, hasAppliedSelf(overload->choice, [&solution](Type type) { return solution.simplifyType(type); })); auto numMissingArgs = llvm::count_if( indices(params), [&info](const unsigned paramIdx) -> bool { return !info.hasDefaultArgument(paramIdx); }); if (numMissingArgs == 0 || numMissingArgs > 1) { auto applyFixIt = [&](InFlightDiagnostic &diagnostic) { // If there are no parameters we can suggest a fix-it // to form an explicit call. if (numMissingArgs == 0) diagnostic.fixItInsertAfter(getSourceRange().End, "()"); }; if (fnType->getResult()->isEqual(toType)) { auto diag = emitDiagnostic( diag::expected_parens_in_contextual_member_type, choice->getName(), fnType->getResult()); applyFixIt(diag); } else { auto diag = emitDiagnostic(diag::expected_parens_in_contextual_member, choice->getName()); applyFixIt(diag); } } else { emitDiagnostic(diag::expected_argument_in_contextual_member, choice->getName(), params.front().getPlainType()); } return true; } case ConstraintLocator::ResultBuilderBodyResult: { diagnostic = *getDiagnosticFor(CTP_Initialization, toType); break; } default: return false; } auto diag = emitDiagnostic(diagnostic, fromType, toType); diag.highlight(getSourceRange()); (void)tryFixIts(diag); return true; } bool ContextualFailure::diagnoseAsNote() { auto overload = getCalleeOverloadChoiceIfAvailable(getLocator()); if (!(overload && overload->choice.isDecl())) return false; auto *decl = overload->choice.getDecl(); emitDiagnosticAt(decl, diag::found_candidate_type, getFromType()); return true; } static Optional> getContextualNilDiagnostic(ContextualTypePurpose CTP) { switch (CTP) { case CTP_Unused: case CTP_CannotFail: llvm_unreachable("These contextual type purposes cannot fail with a " "conversion type specified!"); case CTP_CalleeResult: llvm_unreachable("CTP_CalleeResult does not actually install a " "contextual type"); case CTP_Initialization: return diag::cannot_convert_initializer_value_nil; case CTP_ReturnSingleExpr: case CTP_ReturnStmt: return diag::cannot_convert_to_return_type_nil; case CTP_ThrowStmt: case CTP_ForEachStmt: case CTP_YieldByReference: case CTP_WrappedProperty: case CTP_ComposedPropertyWrapper: return None; case CTP_EnumCaseRawValue: return diag::cannot_convert_raw_initializer_value_nil; case CTP_DefaultParameter: case CTP_AutoclosureDefaultParameter: return diag::cannot_convert_default_arg_value_nil; case CTP_YieldByValue: return diag::cannot_convert_yield_value_nil; case CTP_CallArgument: return diag::cannot_convert_argument_value_nil; case CTP_ClosureResult: return diag::cannot_convert_closure_result_nil; case CTP_ArrayElement: return diag::cannot_convert_array_element_nil; case CTP_DictionaryKey: return diag::cannot_convert_dict_key_nil; case CTP_DictionaryValue: return diag::cannot_convert_dict_value_nil; case CTP_CoerceOperand: return diag::cannot_convert_coerce_nil; case CTP_AssignSource: return diag::cannot_convert_assign_nil; case CTP_SubscriptAssignSource: return diag::cannot_convert_subscript_assign_nil; case CTP_Condition: return diag::cannot_convert_condition_value_nil; } llvm_unreachable("Unhandled ContextualTypePurpose in switch"); } bool ContextualFailure::diagnoseConversionToNil() const { auto anchor = getAnchor(); if (!isExpr(anchor)) return false; auto *locator = getLocator(); Optional CTP; // Easy case were failure has been identified as contextual already. if (locator->isLastElement()) { CTP = getContextualTypePurpose(); } else { // Here we need to figure out where where `nil` is located. // It could be e.g. an argument to a subscript/call, assignment // source like `s[0] = nil` or an array element like `[nil]` or // `[nil: 42]` as a sub-expression to a larger one. auto *parentExpr = findParentExpr(getAsExpr(anchor)); // Looks like it's something similar to `let _ = nil`. if (!parentExpr) { emitDiagnostic(diag::unresolved_nil_literal); return true; } // Two choices here - whether it's a regular assignment // e.g. `let _: S = nil` or a subscript one e.g. `s[0] = nil`. if (auto *AE = dyn_cast(parentExpr)) { CTP = isa(AE->getDest()) ? CTP_SubscriptAssignSource : CTP_AssignSource; } else if (isa(parentExpr)) { CTP = CTP_ArrayElement; } else if (isa(parentExpr)) { CTP = CTP_ClosureResult; } else if (isa(parentExpr) || isa(parentExpr)) { auto *enclosingExpr = findParentExpr(parentExpr); if (!enclosingExpr) { // If there is no enclosing expression it's something like // `(nil)` or `(a: nil)` which can't be inferred without a // contextual type. emitDiagnostic(diag::unresolved_nil_literal); return true; } if (auto *TE = dyn_cast(parentExpr)) { // In case of dictionary e.g. `[42: nil]` we need to figure // out whether nil is a "key" or a "value". if (isa(enclosingExpr)) { assert(TE->getNumElements() == 2); CTP = TE->getElement(0) == castToExpr(anchor) ? CTP_DictionaryKey : CTP_DictionaryValue; } else { // Can't initialize one of the tuple elements with `nil`. CTP = CTP_Initialization; } } // `nil` is passed as an argument to a parameter which doesn't // expect it e.g. `foo(a: nil)`, `s[x: nil]` or `\S.[x: nil]`. // FIXME: Find a more robust way of checking this. if (isa(enclosingExpr) || isa(enclosingExpr) || isa(enclosingExpr)) CTP = CTP_CallArgument; } else if (isa(parentExpr)) { // `nil` is passed as a left-hand side of the coercion // operator e.g. `nil as Foo` CTP = CTP_CoerceOperand; } else { // Otherwise let's produce a generic `nil` conversion diagnostic. emitDiagnostic(diag::cannot_use_nil_with_this_type, getToType()); return true; } } if (!CTP) return false; if (CTP == CTP_ThrowStmt) { emitDiagnostic(diag::cannot_throw_nil); return true; } auto diagnostic = getContextualNilDiagnostic(*CTP); if (!diagnostic) return false; emitDiagnostic(*diagnostic, getToType()); if (CTP == CTP_Initialization) { auto *patternTR = getContextualTypeLoc(getRawAnchor()).getTypeRepr(); if (!patternTR) return true; auto diag = emitDiagnosticAt(patternTR->getLoc(), diag::note_make_optional, OptionalType::get(getToType())); if (patternTR->isSimple()) { diag.fixItInsertAfter(patternTR->getEndLoc(), "?"); } else { diag.fixItInsert(patternTR->getStartLoc(), "("); diag.fixItInsertAfter(patternTR->getEndLoc(), ")?"); } } return true; } void ContextualFailure::tryFixIts(InFlightDiagnostic &diagnostic) const { auto *locator = getLocator(); // Can't apply any of the fix-its below if this failure // is related to `inout` argument. if (locator->isLastElement()) return; if (trySequenceSubsequenceFixIts(diagnostic)) return; if (tryIntegerCastFixIts(diagnostic)) return; if (tryProtocolConformanceFixIt(diagnostic)) return; if (tryTypeCoercionFixIt(diagnostic)) return; } bool ContextualFailure::diagnoseMissingFunctionCall() const { if (getLocator() ->isLastElement()) return false; auto *srcFT = getFromType()->getAs(); if (!srcFT || !(srcFT->getParams().empty() || getLocator()->isLastElement())) return false; auto toType = getToType(); if (toType->is() || !TypeChecker::isConvertibleTo(srcFT->getResult(), toType, getDC())) return false; // Diagnose cases where the pattern tried to match associated values but // the case we found had none. if (auto match = getLocator()->getLastElementAs()) { if (auto enumElementPattern = dyn_cast(match->getPattern())) { emitDiagnosticAt(enumElementPattern->getNameLoc(), diag::enum_element_pattern_assoc_values_mismatch, enumElementPattern->getName()); emitDiagnosticAt(enumElementPattern->getNameLoc(), diag::enum_element_pattern_assoc_values_remove) .fixItRemove(enumElementPattern->getSubPattern()->getSourceRange()); return true; } } emitDiagnostic(diag::missing_nullary_call, srcFT->getResult()) .highlight(getSourceRange()) .fixItInsertAfter(getSourceRange().End, "()"); tryComputedPropertyFixIts(); return true; } bool ContextualFailure::diagnoseCoercionToUnrelatedType() const { auto anchor = getAnchor(); if (auto *coerceExpr = getAsExpr(anchor)) { const auto fromType = getType(coerceExpr->getSubExpr()); const auto toType = getType(coerceExpr->getCastTypeRepr()); auto diagnostic = getDiagnosticFor(CTP_CoerceOperand, toType); auto diag = emitDiagnostic(*diagnostic, fromType, toType); diag.highlight(getSourceRange()); (void)tryFixIts(diag); return true; } return false; } bool ContextualFailure::diagnoseConversionToBool() const { auto toType = getToType(); if (!toType->isBool()) return false; auto *anchor = castToExpr(getAnchor()); // Check for "=" converting to Bool. The user probably meant ==. if (auto *AE = dyn_cast(anchor->getValueProvidingExpr())) { emitDiagnosticAt(AE->getEqualLoc(), diag::use_of_equal_instead_of_equality) .fixItReplace(AE->getEqualLoc(), "==") .highlight(AE->getDest()->getLoc()) .highlight(AE->getSrc()->getLoc()); return true; } // Determine if the boolean negation operator was applied to the anchor. This // upwards traversal of the AST is somewhat fragile, but enables much better // diagnostics if someone attempts to use an optional or integer as a boolean // condition. SourceLoc notOperatorLoc; if (Expr *parent = findParentExpr(anchor)) { if (isa(parent) && parent->isImplicit()) { if ((parent = findParentExpr(parent))) { auto parentOperatorApplication = dyn_cast(parent); if (parentOperatorApplication) { auto operatorRefExpr = dyn_cast(parentOperatorApplication->getFn()); if (operatorRefExpr && operatorRefExpr->getDecl()->getBaseName() == getASTContext().Id_NegationOperator) { notOperatorLoc = operatorRefExpr->getLoc(); } } } } } // If we're trying to convert something from optional type to Bool, then a // comparison against nil was probably expected. auto fromType = getFromType(); if (fromType->getOptionalObjectType()) { StringRef prefix = "(("; StringRef suffix; if (notOperatorLoc.isValid()) suffix = ") == nil)"; else suffix = ") != nil)"; // Check if we need the inner parentheses. // Technically we only need them if there's something in 'expr' with // lower precedence than '!=', but the code actually comes out nicer // in most cases with parens on anything non-trivial. if (anchor->canAppendPostfixExpression()) { prefix = prefix.drop_back(); suffix = suffix.drop_front(); } // FIXME: The outer parentheses may be superfluous too. emitDiagnostic(diag::optional_used_as_boolean, fromType, notOperatorLoc.isValid()) .fixItInsert(getSourceRange().Start, prefix) .fixItInsertAfter(getSourceRange().End, suffix) .fixItRemove(notOperatorLoc); return true; } // If we're trying to convert something from optional type to an integer, then // a comparison against nil was probably expected. if (conformsToKnownProtocol(fromType, KnownProtocolKind::BinaryInteger) && conformsToKnownProtocol(fromType, KnownProtocolKind::ExpressibleByIntegerLiteral)) { StringRef prefix = "(("; StringRef suffix; if (notOperatorLoc.isValid()) suffix = ") == 0)"; else suffix = ") != 0)"; // Check if we need the inner parentheses. // Technically we only need them if there's something in 'expr' with // lower precedence than '!=', but the code actually comes out nicer // in most cases with parens on anything non-trivial. if (anchor->canAppendPostfixExpression()) { prefix = prefix.drop_back(); suffix = suffix.drop_front(); } // FIXME: The outer parentheses may be superfluous too. emitDiagnostic(diag::integer_used_as_boolean, fromType, notOperatorLoc.isValid()) .fixItInsert(getSourceRange().Start, prefix) .fixItInsertAfter(getSourceRange().End, suffix) .fixItRemove(notOperatorLoc); return true; } return false; } bool ContextualFailure::diagnoseThrowsTypeMismatch() const { // If this is conversion failure due to a return statement with an argument // that cannot be coerced to the result type of the function, emit a // specific error. if (CTP != CTP_ThrowStmt) return false; auto anchor = getAnchor(); // If we tried to throw the error code of an error type, suggest object // construction. auto &Ctx = getASTContext(); if (auto errorCodeProtocol = Ctx.getProtocol(KnownProtocolKind::ErrorCodeProtocol)) { Type errorCodeType = getFromType(); auto conformance = TypeChecker::conformsToProtocol( errorCodeType, errorCodeProtocol, getDC()); if (conformance) { Type errorType = conformance .getTypeWitnessByName(errorCodeType, getASTContext().Id_ErrorType) ->getCanonicalType(); if (errorType) { auto diagnostic = emitDiagnostic(diag::cannot_throw_error_code, errorCodeType, errorType); if (auto *UDE = getAsExpr(anchor)) { diagnostic.fixItInsert(UDE->getDotLoc(), "("); diagnostic.fixItInsertAfter(UDE->getEndLoc(), ")"); } return true; } } } // The conversion destination of throw is always ErrorType (at the moment) // if this ever expands, this should be a specific form like () is for // return. emitDiagnostic(diag::cannot_convert_thrown_type, getFromType()) .highlight(getSourceRange()); return true; } bool ContextualFailure::diagnoseYieldByReferenceMismatch() const { if (CTP != CTP_YieldByReference) return false; auto anchor = getAnchor(); auto exprType = getType(anchor, /*wantRValue=*/false); auto contextualType = getToType(); if (auto exprLV = exprType->getAs()) { emitDiagnostic(diag::cannot_yield_wrong_type_by_reference, exprLV->getObjectType(), contextualType); } else if (exprType->isEqual(contextualType)) { emitDiagnostic(diag::cannot_yield_rvalue_by_reference_same_type, exprType); } else { emitDiagnostic(diag::cannot_yield_rvalue_by_reference, exprType, contextualType); } return true; } bool ContextualFailure::tryIntegerCastFixIts( InFlightDiagnostic &diagnostic) const { auto fromType = getFromType(); auto toType = getToType(); auto anchor = getAnchor(); auto exprRange = getSourceRange(); if (auto *assignment = getAsExpr(anchor)) { toType = toType->lookThroughAllOptionalTypes(); anchor = assignment->getSrc(); exprRange = assignment->getSrc()->getSourceRange(); } if (!isIntegerType(fromType) || !isIntegerType(toType)) return false; auto getInnerCastedExpr = [&](const Expr *expr) -> Expr * { if (auto *CE = dyn_cast(expr)) return CE->getSubExpr(); auto *CE = dyn_cast(expr); if (!CE) return nullptr; if (!isa(CE->getFn())) return nullptr; auto *parenE = dyn_cast(CE->getArg()); if (!parenE) return nullptr; return parenE->getSubExpr(); }; if (auto *expr = getAsExpr(anchor)) { if (Expr *innerE = getInnerCastedExpr(expr)) { Type innerTy = getType(innerE); if (TypeChecker::isConvertibleTo(innerTy, toType, getDC())) { // Remove the unnecessary cast. diagnostic.fixItRemoveChars(getLoc(), innerE->getStartLoc()) .fixItRemove(getSourceRange().End); return true; } } } // Add a wrapping integer cast. std::string convWrapBefore = toType.getString(); convWrapBefore += "("; std::string convWrapAfter = ")"; diagnostic.fixItInsert(exprRange.Start, convWrapBefore); diagnostic.fixItInsertAfter(exprRange.End, convWrapAfter); return true; } bool ContextualFailure::trySequenceSubsequenceFixIts( InFlightDiagnostic &diagnostic) const { if (!getASTContext().getStdlibModule()) return false; auto String = getASTContext().getStringDecl()->getDeclaredInterfaceType(); auto Substring = getASTContext().getSubstringDecl()->getDeclaredInterfaceType(); // Substring -> String conversion // Wrap in String.init if (getFromType()->isEqual(Substring)) { if (getToType()->isEqual(String)) { auto *anchor = castToExpr(getAnchor())->getSemanticsProvidingExpr(); if (auto *CE = dyn_cast(anchor)) { anchor = CE->getSubExpr(); } if (auto *call = dyn_cast(anchor)) { auto *fnExpr = call->getFn(); if (auto *closure = dyn_cast(fnExpr)) { if (closure->hasSingleExpressionBody()) anchor = closure->getSingleExpressionBody(); } } auto range = anchor->getSourceRange(); diagnostic.fixItInsert(range.Start, "String("); diagnostic.fixItInsertAfter(range.End, ")"); return true; } } return false; } bool ContextualFailure::tryTypeCoercionFixIt( InFlightDiagnostic &diagnostic) const { auto fromType = getFromType(); auto toType = getToType(); // Look through optional types; casts can add them, but can't remove extra // ones. bool bothOptional = fromType->getOptionalObjectType() && toType->getOptionalObjectType(); if (bothOptional) fromType = fromType->getOptionalObjectType(); toType = toType->lookThroughAllOptionalTypes(); if (!toType->hasTypeRepr()) return false; CheckedCastKind Kind = TypeChecker::typeCheckCheckedCast(fromType, toType, CheckedCastContextKind::None, getDC(), SourceLoc(), nullptr, SourceRange()); if (Kind != CheckedCastKind::Unresolved) { bool canUseAs = Kind == CheckedCastKind::Coercion || Kind == CheckedCastKind::BridgingCoercion; if (bothOptional && canUseAs) toType = OptionalType::get(toType); diagnostic.fixItInsert(Lexer::getLocForEndOfToken(getASTContext().SourceMgr, getSourceRange().End), diag::insert_type_coercion, canUseAs, toType); return true; } return false; } bool ContextualFailure::tryProtocolConformanceFixIt( InFlightDiagnostic &diagnostic) const { auto innermostTyCtx = getDC()->getInnermostTypeContext(); if (!innermostTyCtx) return false; auto nominal = innermostTyCtx->getSelfNominalTypeDecl(); if (!nominal) return false; auto fromType = getFromType(); // We need to get rid of optionals and parens as it's not relevant when // printing the diagnostic and the fix-it. auto unwrappedToType = getToType()->lookThroughAllOptionalTypes()->getWithoutParens(); // If the protocol requires a class & we don't have one (maybe the context // is a struct), then bail out instead of offering a broken fix-it later on. auto requiresClass = false; ExistentialLayout layout; if (unwrappedToType->isExistentialType()) { layout = unwrappedToType->getExistentialLayout(); requiresClass = layout.requiresClass(); } if (requiresClass && !fromType->is()) { return false; } // We can only offer a fix-it if we're assigning to a protocol type and // the type we're assigning is the same as the innermost type context. bool shouldOfferFixIt = nominal->getSelfTypeInContext()->isEqual(fromType) && unwrappedToType->isExistentialType(); if (!shouldOfferFixIt) return false; diagnostic.flush(); // Let's build a list of protocols that the context does not conform to. SmallVector missingProtoTypeStrings; SmallVector missingProtocols; for (auto protocol : layout.getProtocols()) { if (!TypeChecker::conformsToProtocol(fromType, protocol->getDecl(), getDC())) { missingProtoTypeStrings.push_back(protocol->getString()); missingProtocols.push_back(protocol->getDecl()); } } // If we have a protocol composition type and we don't conform to all // the protocols of the composition, then store the composition directly. // This is because we need to append 'Foo & Bar' instead of 'Foo, Bar' in // order to match the written type. if (auto compositionTy = unwrappedToType->getAs()) { if (compositionTy->getMembers().size() == missingProtoTypeStrings.size()) { missingProtoTypeStrings = {compositionTy->getString()}; } } assert(!missingProtoTypeStrings.empty() && "type already conforms to all the protocols?"); // Combine all protocol names together, separated by commas. std::string protoString = llvm::join(missingProtoTypeStrings, ", "); // Emit a diagnostic to inform the user that they need to conform to the // missing protocols. auto conformanceDiag = emitDiagnostic(diag::assign_protocol_conformance_fix_it, unwrappedToType, nominal->getDescriptiveKind(), fromType); if (nominal->getInherited().size() > 0) { auto lastInherited = nominal->getInherited().back().getLoc(); auto lastInheritedEndLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr, lastInherited); conformanceDiag.fixItInsert(lastInheritedEndLoc, ", " + protoString); } else { auto nameEndLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr, nominal->getNameLoc()); conformanceDiag.fixItInsert(nameEndLoc, ": " + protoString); } // Emit fix-its to insert requirement stubs if we're in editor mode. if (!getASTContext().LangOpts.DiagnosticsEditorMode) { return true; } { llvm::SmallString<128> Text; llvm::raw_svector_ostream SS(Text); llvm::SetVector missingWitnesses; for (auto protocol : missingProtocols) { auto conformance = NormalProtocolConformance( nominal->getDeclaredType(), protocol, SourceLoc(), nominal, ProtocolConformanceState::Incomplete); ConformanceChecker checker(getASTContext(), &conformance, missingWitnesses); checker.resolveValueWitnesses(); checker.resolveTypeWitnesses(); } for (auto decl : missingWitnesses) { swift::printRequirementStub(decl.requirement, nominal, nominal->getDeclaredType(), nominal->getStartLoc(), SS); } if (!Text.empty()) { conformanceDiag.fixItInsertAfter(nominal->getBraces().Start, Text.str()); } } return true; } void ContextualFailure::tryComputedPropertyFixIts() const { if (!isExpr(getAnchor())) return; // It is possible that we're looking at a stored property being // initialized with a closure. Something like: // // var foo: Int = { return 0 } // // Let's offer another fix-it to remove the '=' to turn the stored // property into a computed property. If the variable is immutable, then // replace the 'let' with a 'var'. PatternBindingDecl *PBD = nullptr; if (auto TLCD = dyn_cast(getDC())) { if (TLCD->getBody()->isImplicit()) { if (auto decl = TLCD->getBody()->getFirstElement().dyn_cast()) { if (auto binding = dyn_cast(decl)) { PBD = binding; } } } } else if (auto PBI = dyn_cast(getDC())) { PBD = PBI->getBinding(); } if (PBD) { if (auto VD = PBD->getSingleVar()) { const auto i = PBD->getPatternEntryIndexForVarDecl(VD); auto *initExpr = PBD->getInit(i); if (!VD->isStatic() && !VD->getAttrs().getAttribute() && initExpr && isa(initExpr)) { auto diag = emitDiagnostic(diag::extension_stored_property_fixit, VD->getName()); diag.fixItRemove(PBD->getEqualLoc(i)); if (VD->isLet()) { diag.fixItReplace(PBD->getStartLoc(), getTokenText(tok::kw_var)); } if (auto lazyAttr = VD->getAttrs().getAttribute()) { diag.fixItRemove(lazyAttr->getRange()); } } } } } bool ContextualFailure::isIntegerToStringIndexConversion() const { auto kind = KnownProtocolKind::ExpressibleByIntegerLiteral; auto fromType = getFromType(); auto toType = getToType()->getCanonicalType(); return (conformsToKnownProtocol(fromType, kind) && toType.getString() == "String.CharacterView.Index"); } Optional> ContextualFailure::getDiagnosticFor(ContextualTypePurpose context, Type contextualType) { auto forProtocol = contextualType->isExistentialType(); switch (context) { case CTP_Initialization: { if (contextualType->isAnyObject()) return diag::cannot_convert_initializer_value_anyobject; return forProtocol ? diag::cannot_convert_initializer_value_protocol : diag::cannot_convert_initializer_value; } case CTP_ReturnStmt: case CTP_ReturnSingleExpr: { if (contextualType->isAnyObject()) return diag::cannot_convert_return_type_to_anyobject; return forProtocol ? diag::cannot_convert_to_return_type_protocol : diag::cannot_convert_to_return_type; } case CTP_EnumCaseRawValue: return diag::cannot_convert_raw_initializer_value; case CTP_DefaultParameter: case CTP_AutoclosureDefaultParameter: return forProtocol ? diag::cannot_convert_default_arg_value_protocol : diag::cannot_convert_default_arg_value; case CTP_YieldByValue: return forProtocol ? diag::cannot_convert_yield_value_protocol : diag::cannot_convert_yield_value; case CTP_CallArgument: { if (contextualType->isAnyObject()) return diag::cannot_convert_argument_value_anyobject; return forProtocol ? diag::cannot_convert_argument_value_protocol : diag::cannot_convert_argument_value; } case CTP_ClosureResult: return forProtocol ? diag::cannot_convert_closure_result_protocol : diag::cannot_convert_closure_result; case CTP_ArrayElement: return forProtocol ? diag::cannot_convert_array_element_protocol : diag::cannot_convert_array_element; case CTP_DictionaryKey: return forProtocol ? diag::cannot_convert_dict_key_protocol : diag::cannot_convert_dict_key; case CTP_DictionaryValue: return forProtocol ? diag::cannot_convert_dict_value_protocol : diag::cannot_convert_dict_value; case CTP_CoerceOperand: return forProtocol ? diag::cannot_convert_coerce_protocol : diag::cannot_convert_coerce; case CTP_AssignSource: { if (contextualType->isAnyObject()) return diag::cannot_convert_assign_anyobject; return forProtocol ? diag::cannot_convert_assign_protocol : diag::cannot_convert_assign; } case CTP_SubscriptAssignSource: return forProtocol ? diag::cannot_convert_subscript_assign_protocol : diag::cannot_convert_subscript_assign; case CTP_Condition: return diag::cannot_convert_condition_value; case CTP_WrappedProperty: return diag::wrapped_value_mismatch; case CTP_ComposedPropertyWrapper: return diag::composed_property_wrapper_mismatch; case CTP_ThrowStmt: case CTP_ForEachStmt: case CTP_Unused: case CTP_CannotFail: case CTP_YieldByReference: case CTP_CalleeResult: break; } return None; } bool TupleContextualFailure::diagnoseAsError() { Diag diagnostic; auto purpose = getContextualTypePurpose(); if (isNumElementsMismatch()) diagnostic = diag::tuple_types_not_convertible_nelts; else if ((purpose == CTP_Initialization) && !getContextualType(getAnchor())) diagnostic = diag::tuple_types_not_convertible; else if (auto diag = getDiagnosticFor(purpose, getToType())) diagnostic = *diag; else return false; emitDiagnostic(diagnostic, getFromType(), getToType()); return true; } bool FunctionTypeMismatch::diagnoseAsError() { auto purpose = getContextualTypePurpose(); auto diagnostic = getDiagnosticFor(purpose, getToType()); if (!diagnostic) return false; emitDiagnostic(*diagnostic, getFromType(), getToType()); return true; } bool AutoClosureForwardingFailure::diagnoseAsError() { auto argRange = getSourceRange(); emitDiagnostic(diag::invalid_autoclosure_forwarding) .highlight(argRange) .fixItInsertAfter(argRange.End, "()"); return true; } bool AutoClosurePointerConversionFailure::diagnoseAsError() { auto diagnostic = diag::invalid_autoclosure_pointer_conversion; emitDiagnostic(diagnostic, getFromType(), getToType()) .highlight(getSourceRange()); return true; } bool NonOptionalUnwrapFailure::diagnoseAsError() { auto anchor = getAnchor(); auto diagnostic = diag::invalid_optional_chain; if (isExpr(anchor)) diagnostic = diag::invalid_force_unwrap; auto range = getSourceRange(); emitDiagnostic(diagnostic, BaseType).highlight(range).fixItRemove(range.End); return true; } ASTNode MissingCallFailure::getAnchor() const { auto anchor = FailureDiagnostic::getAnchor(); if (auto *FVE = getAsExpr(anchor)) return FVE->getSubExpr(); return anchor; } bool MissingCallFailure::diagnoseAsError() { auto anchor = getAnchor(); SourceLoc insertLoc = getSourceRange().End; // Calls are not yet supported by key path, but it // is useful to record this fix to diagnose chaining // where one of the key path components is a method // reference. if (isExpr(anchor)) return false; auto path = getLocator()->getPath(); if (!path.empty()) { const auto &last = path.back(); switch (last.getKind()) { case ConstraintLocator::ContextualType: case ConstraintLocator::ApplyArgToParam: { auto fnType = getType(anchor)->castTo(); emitDiagnostic(diag::missing_nullary_call, fnType->getResult()) .fixItInsertAfter(insertLoc, "()"); return true; } case ConstraintLocator::FunctionResult: { path = path.drop_back(); if (path.back().getKind() != ConstraintLocator::AutoclosureResult) break; LLVM_FALLTHROUGH; } case ConstraintLocator::AutoclosureResult: { auto loc = getConstraintLocator(getRawAnchor(), path.drop_back()); AutoClosureForwardingFailure failure(getSolution(), loc); return failure.diagnoseAsError(); } default: break; } } if (auto *DRE = getAsExpr(anchor)) { emitDiagnostic(diag::did_not_call_function, DRE->getDecl()->getBaseIdentifier()) .fixItInsertAfter(insertLoc, "()"); return true; } if (auto *UDE = getAsExpr(anchor)) { emitDiagnostic(diag::did_not_call_method, UDE->getName().getBaseIdentifier()) .fixItInsertAfter(insertLoc, "()"); return true; } if (auto *DSCE = getAsExpr(anchor)) { if (auto *DRE = dyn_cast(DSCE->getFn())) { emitDiagnostic(diag::did_not_call_method, DRE->getDecl()->getBaseIdentifier()) .fixItInsertAfter(insertLoc, "()"); return true; } } if (auto *AE = getAsExpr(anchor)) { auto *srcExpr = AE->getSrc(); if (auto *fnType = getType(srcExpr)->getAs()) { emitDiagnosticAt(srcExpr->getLoc(), diag::missing_nullary_call, fnType->getResult()) .highlight(srcExpr->getSourceRange()) .fixItInsertAfter(srcExpr->getEndLoc(), "()"); return true; } } emitDiagnostic(diag::did_not_call_function_value) .fixItInsertAfter(insertLoc, "()"); return true; } bool ExtraneousPropertyWrapperUnwrapFailure::diagnoseAsError() { auto newPrefix = usingProjection() ? "$" : "_"; if (auto *member = getReferencedMember()) { emitDiagnostic(diag::incorrect_property_wrapper_reference_member, member->getDescriptiveKind(), member->getName(), false, getToType()) .fixItInsert(getLoc(), newPrefix); return true; } emitDiagnostic(diag::incorrect_property_wrapper_reference, getPropertyName(), getFromType(), getToType(), false) .fixItInsert(getLoc(), newPrefix); return true; } bool MissingPropertyWrapperUnwrapFailure::diagnoseAsError() { auto endLoc = getLoc().getAdvancedLoc(1); if (auto *member = getReferencedMember()) { emitDiagnostic(diag::incorrect_property_wrapper_reference_member, member->getDescriptiveKind(), member->getName(), true, getToType()) .fixItRemoveChars(getLoc(), endLoc); return true; } emitDiagnostic(diag::incorrect_property_wrapper_reference, getPropertyName(), getFromType(), getToType(), true) .fixItRemoveChars(getLoc(), endLoc); return true; } bool InvalidPropertyWrapperType::diagnoseAsError() { // The property wrapper constraint is currently only used for // implicit property wrappers on closure parameters. auto *wrappedVar = getAsDecl(getAnchor()); assert(wrappedVar->hasImplicitPropertyWrapper()); emitDiagnostic(diag::invalid_implicit_property_wrapper, wrapperType); return true; } bool InvalidProjectedValueArgument::diagnoseAsError() { emitDiagnostic(diag::invalid_projection_argument, param->hasImplicitPropertyWrapper()); if (!param->hasAttachedPropertyWrapper()) { param->diagnose(diag::property_wrapper_param_no_wrapper, param->getName()); } else if (!param->hasImplicitPropertyWrapper() && param->getAttachedPropertyWrappers().front()->getArg()) { param->diagnose(diag::property_wrapper_param_attr_arg); } else { Type backingType; if (param->hasImplicitPropertyWrapper()) { backingType = getType(param->getPropertyWrapperBackingProperty()); } else { backingType = param->getPropertyWrapperBackingPropertyType(); } param->diagnose(diag::property_wrapper_no_init_projected_value, backingType); } return true; } bool SubscriptMisuseFailure::diagnoseAsError() { auto *locator = getLocator(); auto &sourceMgr = getASTContext().SourceMgr; auto *memberExpr = castToExpr(getRawAnchor()); auto memberRange = getSourceRange(); { auto rawAnchor = getRawAnchor(); auto path = locator->getPath(); simplifyLocator(rawAnchor, path, memberRange); } auto nameLoc = DeclNameLoc(memberRange.Start); auto diag = emitDiagnostic(diag::could_not_find_subscript_member_did_you_mean, getType(getAnchor())); diag.highlight(memberRange).highlight(nameLoc.getSourceRange()); if (auto *parentExpr = dyn_cast_or_null(findParentExpr(memberExpr))) { auto *argExpr = parentExpr->getArg(); auto toCharSourceRange = Lexer::getCharSourceRangeFromSourceRange; auto lastArgSymbol = toCharSourceRange(sourceMgr, argExpr->getEndLoc()); diag.fixItReplace(SourceRange(argExpr->getStartLoc()), getTokenText(tok::l_square)); diag.fixItRemove(nameLoc.getSourceRange()); diag.fixItRemove(SourceRange(memberExpr->getDotLoc())); if (sourceMgr.extractText(lastArgSymbol) == getTokenText(tok::r_paren)) diag.fixItReplace(SourceRange(argExpr->getEndLoc()), getTokenText(tok::r_square)); else diag.fixItInsertAfter(argExpr->getEndLoc(), getTokenText(tok::r_square)); } else { diag.fixItReplace(SourceRange(memberExpr->getDotLoc(), memberExpr->getLoc()), "[<#index#>]"); } diag.flush(); if (auto overload = getOverloadChoiceIfAvailable(locator)) { emitDiagnosticAt(overload->choice.getDecl(), diag::kind_declared_here, DescriptiveDeclKind::Subscript); } return true; } bool SubscriptMisuseFailure::diagnoseAsNote() { if (auto overload = getOverloadChoiceIfAvailable(getLocator())) { emitDiagnosticAt(overload->choice.getDecl(), diag::found_candidate); return true; } return false; } /// When a user refers a enum case with a wrong member name, we try to find a /// enum element whose name differs from the wrong name only in convention; /// meaning their lower case counterparts are identical. /// - DeclName is valid when such a correct case is found; invalid otherwise. DeclName MissingMemberFailure::findCorrectEnumCaseName( Type Ty, TypoCorrectionResults &corrections, DeclNameRef memberName) { if (memberName.isSpecial() || !memberName.isSimpleName()) return DeclName(); if (!Ty->getEnumOrBoundGenericEnum()) return DeclName(); auto candidate = corrections.getUniqueCandidateMatching([&](ValueDecl *candidate) { return (isa(candidate) && candidate->getBaseIdentifier().str().equals_lower( memberName.getBaseIdentifier().str())); }); return (candidate ? candidate->getName() : DeclName()); } bool MissingMemberFailure::diagnoseAsError() { auto anchor = getRawAnchor(); auto memberBase = getAnchor(); if (diagnoseForDynamicCallable()) return true; if (diagnoseInLiteralCollectionContext()) return true; if (diagnoseForSubscriptMemberWithTupleBase()) return true; auto baseType = resolveType(getBaseType())->getWithoutSpecifierType(); DeclNameLoc nameLoc(::getLoc(anchor)); if (auto *UDE = getAsExpr(anchor)) { nameLoc = UDE->getNameLoc(); } else if (auto *UME = getAsExpr(anchor)) { nameLoc = UME->getNameLoc(); } auto emitBasicError = [&](Type baseType) { auto diagnostic = diag::could_not_find_value_member; if (auto *metatype = baseType->getAs()) { baseType = metatype->getInstanceType(); diagnostic = diag::could_not_find_type_member; } if (baseType->is()) diagnostic = diag::could_not_find_tuple_member; bool hasUnresolvedPattern = false; if (auto *E = getAsExpr(anchor)) { forEachExprInConstraintSystem(const_cast(E), [&](Expr *expr) { hasUnresolvedPattern |= isa(expr); return hasUnresolvedPattern ? nullptr : expr; }); } if (hasUnresolvedPattern && !baseType->getAs()) { emitDiagnostic(diag::cannot_match_unresolved_expr_pattern_with_value, baseType); return; } emitDiagnostic(diagnostic, baseType, getName()) .highlight(getSourceRange()) .highlight(nameLoc.getSourceRange()); }; TypoCorrectionResults corrections(getName(), nameLoc); auto tryTypoCorrection = [&] (Type type) { TypeChecker::performTypoCorrection(getDC(), DeclRefKind::Ordinary, type, defaultMemberLookupOptions, corrections); }; if (getName().getBaseName().getKind() == DeclBaseName::Kind::Subscript) { if (auto *metatype = baseType->getAs()) { emitDiagnostic(diag::could_not_find_type_member, metatype->getInstanceType(), getName()) .highlight(getSourceRange()); } else { emitDiagnostic(diag::could_not_find_value_subscript, baseType) .highlight(getSourceRange()); } } else if (getName().getBaseName() == "deinit") { // Specialised diagnostic if trying to access deinitialisers emitDiagnostic(diag::destructor_not_accessible).highlight(getSourceRange()); } else if (auto metatypeTy = baseType->getAs()) { auto instanceTy = metatypeTy->getInstanceType(); tryTypoCorrection(baseType); if (DeclName rightName = findCorrectEnumCaseName(instanceTy, corrections, getName())) { emitDiagnostic(diag::could_not_find_enum_case, instanceTy, getName(), rightName) .fixItReplace(nameLoc.getBaseNameLoc(), rightName.getBaseIdentifier().str()); return true; } if (auto correction = corrections.claimUniqueCorrection()) { auto diagnostic = emitDiagnostic(diag::could_not_find_type_member_corrected, instanceTy, getName(), correction->CorrectedName); diagnostic.highlight(getSourceRange()) .highlight(nameLoc.getSourceRange()); correction->addFixits(diagnostic); } else if (instanceTy->getAnyNominal() && getName().getBaseName() == DeclBaseName::createConstructor()) { auto &cs = getConstraintSystem(); auto result = cs.performMemberLookup( ConstraintKind::ValueMember, getName().withoutArgumentLabels(), metatypeTy, FunctionRefKind::DoubleApply, getLocator(), /*includeInaccessibleMembers=*/true); // If there are no `init` members at all produce a tailored // diagnostic for that, otherwise fallback to generic // "no such member" one. if (result.ViableCandidates.empty() && result.UnviableCandidates.empty()) { emitDiagnostic(diag::no_accessible_initializers, instanceTy) .highlight(getSourceRange()); } else { emitBasicError(baseType); } } else { emitBasicError(baseType); } } else if (auto moduleTy = baseType->getAs()) { emitDiagnosticAt(::getLoc(memberBase), diag::no_member_of_module, moduleTy->getModule()->getName(), getName()) .highlight(getSourceRange()) .highlight(nameLoc.getSourceRange()); return true; } else { // Check for a few common cases that can cause missing members. auto *ED = baseType->getEnumOrBoundGenericEnum(); if (ED && getName().isSimpleName("rawValue")) { auto loc = ED->getNameLoc(); if (loc.isValid()) { emitBasicError(baseType); emitDiagnosticAt(loc, diag::did_you_mean_raw_type); return true; } } else if (baseType->isAny()) { emitBasicError(baseType); auto range = getSourceRange(); emitDiagnostic(diag::any_as_anyobject_fixit) .fixItInsert(range.Start, "(") .fixItInsertAfter(range.End, " as AnyObject)"); return true; } tryTypoCorrection(baseType); // If locator points to the member found via key path dynamic member lookup, // we provide a custom diagnostic and emit typo corrections for the wrapper type too. if (getLocator()->isForKeyPathDynamicMemberLookup()) { auto memberBaseType = getType(memberBase)->getWithoutSpecifierType(); tryTypoCorrection(memberBaseType); if (auto correction = corrections.claimUniqueCorrection()) { auto diagnostic = emitDiagnostic( diag::could_not_find_value_dynamic_member_corrected, memberBaseType, baseType, getName(), correction->CorrectedName); diagnostic.highlight(getSourceRange()) .highlight(nameLoc.getSourceRange()); correction->addFixits(diagnostic); } else { auto diagnostic = emitDiagnostic(diag::could_not_find_value_dynamic_member, memberBaseType, baseType, getName()); diagnostic.highlight(getSourceRange()) .highlight(nameLoc.getSourceRange()); } } else { if (auto correction = corrections.claimUniqueCorrection()) { auto diagnostic = emitDiagnostic(diag::could_not_find_value_member_corrected, baseType, getName(), correction->CorrectedName); diagnostic.highlight(getSourceRange()) .highlight(nameLoc.getSourceRange()); correction->addFixits(diagnostic); } else { emitBasicError(baseType); } } } // Note all the correction candidates. corrections.noteAllCandidates(); return true; } bool MissingMemberFailure::diagnoseForDynamicCallable() const { auto *locator = getLocator(); if (!locator->isLastElement()) return false; auto memberName = getName(); auto arguments = memberName.getArgumentNames(); assert(arguments.size() == 1); auto &ctx = getASTContext(); if (arguments.front() == ctx.Id_withKeywordArguments) { emitDiagnostic(diag::missing_dynamic_callable_kwargs_method, getBaseType()); return true; } return false; } bool MissingMemberFailure::diagnoseInLiteralCollectionContext() const { auto *expr = castToExpr(getAnchor()); auto *parentExpr = findParentExpr(expr); auto &solution = getSolution(); if (!(parentExpr && isa(expr))) return false; if (!isa(parentExpr)) return false; parentExpr = findParentExpr(parentExpr); if (!parentExpr) return false; auto parentType = getType(parentExpr); if (!parentType->isKnownStdlibCollectionType() && !parentType->is()) return false; if (isa(parentExpr)) { parentExpr = findParentExpr(parentExpr); if (!parentExpr) return false; } if (auto *defaultableVar = getRawType(parentExpr)->getAs()) { if (solution.DefaultedConstraints.count( defaultableVar->getImpl().getLocator()) != 0) { emitDiagnostic(diag::unresolved_member_no_inference, getName()); return true; } } return false; } bool MissingMemberFailure::diagnoseForSubscriptMemberWithTupleBase() const { auto locator = getLocator(); auto baseType = resolveType(getBaseType())->getWithoutSpecifierType(); auto *SE = getAsExpr(locator->getAnchor()); if (!SE) return false; auto tupleType = baseType->getAs(); // For non-tuple type or empty tuples, let's fallback to the general // diagnostic logic. if (!tupleType || tupleType->getNumElements() == 0) return false; auto *index = SE->getIndex(); if (SE->getNumArguments() == 1) { auto *literal = dyn_cast(index->getSemanticsProvidingExpr()); llvm::Regex NumericRegex("^[0-9]+$"); // Literal expressions may have other types of representations e.g. 0x01, // 0b01. So let's make sure to only suggest this tailored literal fix-it for // number only literals. if (literal && NumericRegex.match(literal->getDigitsText())) { unsigned int literalValue = 0; literal->getDigitsText().getAsInteger(/*Radix=*/0, literalValue); // Verify if the literal value is within the bounds of tuple elements. if (!literal->isNegative() && literalValue < tupleType->getNumElements()) { llvm::SmallString<4> dotAccess; llvm::raw_svector_ostream OS(dotAccess); OS << "." << literalValue; emitDiagnostic( diag::could_not_find_subscript_member_tuple_did_you_mean_use_dot, baseType, literal->getDigitsText()) .fixItReplace(index->getSourceRange(), OS.str()); return true; } } // For subscript access on tuple base types where the subscript index is a // string literal expression which value matches a tuple element label, // let's suggest tuple label access. auto stringLiteral = dyn_cast(index->getSemanticsProvidingExpr()); if (stringLiteral && !stringLiteral->getValue().empty() && llvm::any_of(tupleType->getElements(), [&](TupleTypeElt element) { return element.getName().is(stringLiteral->getValue()); })) { llvm::SmallString<16> dotAccess; llvm::raw_svector_ostream OS(dotAccess); OS << "." << stringLiteral->getValue(); emitDiagnostic( diag::could_not_find_subscript_member_tuple_did_you_mean_use_dot, baseType, stringLiteral->getValue()) .fixItReplace(index->getSourceRange(), OS.str()); return true; } } emitDiagnostic(diag::could_not_find_subscript_member_tuple, baseType); return true; } bool UnintendedExtraGenericParamMemberFailure::diagnoseAsError() { MissingMemberFailure::diagnoseAsError(); auto baseType = resolveType(getBaseType())->getWithoutSpecifierType(); auto archetype = baseType->getMetatypeInstanceType()->castTo(); auto genericTy = archetype->mapTypeOutOfContext()->castTo(); SourceLoc loc = genericTy->getDecl()->getSourceRange().End; StringRef replacement; if (archetype->getConformsTo().size()) { loc = loc.getAdvancedLoc( archetype->getConformsTo().back()->getName().getLength()); replacement = " &"; } else { loc = loc.getAdvancedLoc(archetype->getName().getLength()); replacement = ":"; } emitDiagnosticAt(loc, diag::did_you_mean_generic_param_as_conformance, ParamName, archetype) .fixItReplaceChars(loc, loc.getAdvancedLoc(1), replacement); return true; } bool InvalidMemberRefOnExistential::diagnoseAsError() { auto anchor = getRawAnchor(); DeclNameLoc nameLoc; if (auto *UDE = getAsExpr(anchor)) { nameLoc = UDE->getNameLoc(); } else if (auto *UME = getAsExpr(anchor)) { nameLoc = UME->getNameLoc(); } emitDiagnostic(diag::could_not_use_member_on_existential, getBaseType(), getName()) .highlight(nameLoc.getSourceRange()) .highlight(getSourceRange()); return true; } bool AllowTypeOrInstanceMemberFailure::diagnoseAsError() { auto loc = getLoc(); auto *DC = getDC(); auto locator = getLocator(); if (loc.isInvalid()) { return true; } auto getRootExpr = [this](const Expr *childExpr) { auto *currExpr = const_cast(childExpr); while (auto parent = findParentExpr(currExpr)) currExpr = parent; return currExpr; }; auto anchor = getAnchor(); if (!anchor.is()) return false; Expr *expr = findParentExpr(castToExpr(anchor)); SourceRange baseRange = expr ? expr->getSourceRange() : SourceRange(); // If the base is an implicit self type reference, and we're in a // an initializer, then the user wrote something like: // // class Foo { let x = 1, y = x } // // which runs in type context, not instance context, or // // class Bar { // let otherwise = 1 // instance member // var x: Int // func init(x: Int =otherwise) { // default parameter // self.x = x // } // } // // in which an instance member is used as a default value for a // parameter. // // Produce a tailored diagnostic for these cases since this // comes up and is otherwise non-obvious what is going on. if (Name.isSimpleName(DeclBaseName::createConstructor()) && !BaseType->is()) { if (auto *ctorRef = getAsExpr(getRawAnchor())) { if (isa(ctorRef->getBase())) { emitDiagnostic(diag::super_initializer_not_in_initializer); return true; } auto isCallArgument = [this](Expr *expr) { auto argExpr = findParentExpr(expr); if (!argExpr) return false; auto possibleApplyExpr = findParentExpr(expr); return possibleApplyExpr && isa(possibleApplyExpr); }; auto *initCall = findParentExpr(findParentExpr(ctorRef)); auto isMutable = [&DC](ValueDecl *decl) { if (auto *storage = dyn_cast(decl)) return storage->isSettable(DC) && storage->isSetterAccessibleFrom(DC); return true; }; auto *baseLoc = getConstraintLocator(ctorRef->getBase()); if (auto selection = getCalleeOverloadChoiceIfAvailable(baseLoc)) { OverloadChoice choice = selection->choice; if (choice.isDecl() && isMutable(choice.getDecl()) && !isCallArgument(initCall) && getContextualTypePurpose(getRootExpr(ctorRef)) == CTP_Unused) { auto fixItLoc = ctorRef->getBase()->getSourceRange().End; emitDiagnostic(diag::init_not_instance_member_use_assignment) .fixItInsertAfter(fixItLoc, " = "); return true; } SourceRange fixItRng = ctorRef->getBase()->getSourceRange(); emitDiagnostic(diag::init_not_instance_member) .fixItInsert(fixItRng.Start, "type(of: ") .fixItInsertAfter(fixItRng.End, ")"); return true; } } } if (BaseType->is() && !Member->isStatic()) { auto instanceTy = BaseType; if (auto *AMT = instanceTy->getAs()) { instanceTy = AMT->getInstanceType(); } auto *DC = getDC(); if (DC->getContextKind() == DeclContextKind::Initializer) { auto *TypeDC = DC->getParent(); bool propertyInitializer = true; // If the parent context is not a type context, we expect it // to be a defaulted parameter in a function declaration. if (!TypeDC->isTypeContext()) { assert(TypeDC->getContextKind() == DeclContextKind::AbstractFunctionDecl && "Expected function decl context for initializer!"); TypeDC = TypeDC->getParent(); propertyInitializer = false; } assert(TypeDC->isTypeContext() && "Expected type decl context!"); if (TypeDC->getSelfNominalTypeDecl() == instanceTy->getAnyNominal()) { if (propertyInitializer) { emitDiagnostic(diag::instance_member_in_initializer, Name); return true; } else { emitDiagnostic(diag::instance_member_in_default_parameter, Name); return true; } } } if (auto *maybeCallExpr = getAsExpr(getRawAnchor())) { if (auto *UDE = dyn_cast(maybeCallExpr)) { maybeCallExpr = UDE->getBase(); } if (auto callExpr = dyn_cast(maybeCallExpr)) { auto fnExpr = callExpr->getFn(); auto fnType = getType(fnExpr)->getRValueType(); auto arg = callExpr->getArg(); if (fnType->is()) { emitDiagnosticAt(arg->getStartLoc(), diag::missing_init_on_metatype_initialization) .highlight(fnExpr->getSourceRange()); return true; } } } // Check whether the instance member is declared on parent context and if so // provide more specialized message. auto memberTypeContext = Member->getDeclContext()->getInnermostTypeContext(); auto currentTypeContext = getDC()->getInnermostTypeContext(); if (memberTypeContext && currentTypeContext && memberTypeContext->getSemanticDepth() < currentTypeContext->getSemanticDepth()) { emitDiagnostic(diag::could_not_use_instance_member_on_type, currentTypeContext->getDeclaredInterfaceType(), Name, memberTypeContext->getDeclaredInterfaceType(), true) .highlight(baseRange) .highlight(Member->getSourceRange()); return true; } if (auto *UDE = getAsExpr(getRawAnchor())) { auto *baseExpr = UDE->getBase(); if (isa(baseExpr)) { emitDiagnostic(diag::instance_member_use_on_type, instanceTy, Name) .highlight(getSourceRange()); return true; } } // Just emit a generic "instance member cannot be used" error emitDiagnostic(diag::could_not_use_instance_member_on_type, instanceTy, Name, instanceTy, false) .highlight(getSourceRange()); return true; } else { // If the base of the lookup is a protocol metatype, suggest // to replace the metatype with 'Self' // error saying the lookup cannot be on a protocol metatype Optional Diag; auto baseTy = BaseType; if (auto metatypeTy = baseTy->getAs()) { auto instanceTy = metatypeTy->getInstanceType(); // This will only happen if we have an unresolved dot expression // (.foo) where foo is a protocol member and the contextual type is // an optional protocol metatype. if (auto objectTy = instanceTy->getOptionalObjectType()) { instanceTy = objectTy; baseTy = MetatypeType::get(objectTy); } if (instanceTy->isExistentialType()) { // Give a customized message if we're accessing a member type // of a protocol -- otherwise a diagnostic talking about // static members doesn't make a whole lot of sense if (isa(Member)) { Diag.emplace( emitDiagnostic(diag::typealias_outside_of_protocol, Name)); } else if (isa(Member)) { Diag.emplace( emitDiagnostic(diag::assoc_type_outside_of_protocol, Name)); } else if (isa(Member)) { Diag.emplace( emitDiagnostic(diag::construct_protocol_by_name, instanceTy)); } else { Diag.emplace(emitDiagnostic( diag::could_not_use_type_member_on_protocol_metatype, baseTy, Name)); } Diag->highlight(baseRange).highlight(getSourceRange()); // See through function decl context if (auto parent = getDC()->getInnermostTypeContext()) { // If we are in a protocol extension of 'Proto' and we see // 'Proto.static', suggest 'Self.static' if (auto extensionContext = parent->getExtendedProtocolDecl()) { if (extensionContext->getDeclaredType()->isEqual(instanceTy)) { Diag->fixItReplace(getSourceRange(), "Self"); } } } return true; } } // If this is a reference to a static member by one of the key path // components, let's provide a tailored diagnostic and return because // that is unsupported so there is no fix-it. if (locator->isInKeyPathComponent()) { InvalidStaticMemberRefInKeyPath failure(getSolution(), Member, locator); return failure.diagnoseAsError(); } if (isa(Member)) { Diag.emplace( emitDiagnostic(diag::could_not_use_enum_element_on_instance, Name)); } else { Diag.emplace(emitDiagnostic(diag::could_not_use_type_member_on_instance, baseTy, Name)); } Diag->highlight(getSourceRange()); if (Name.isSimpleName(DeclBaseName::createConstructor()) && !baseTy->is()) { if (auto ctorRef = getAsExpr(getRawAnchor())) { SourceRange fixItRng = ctorRef->getNameLoc().getSourceRange(); Diag->fixItInsert(fixItRng.Start, "type(of: "); Diag->fixItInsertAfter(fixItRng.End, ")"); return true; } } // Determine the contextual type of the expression Type contextualType = getContextualType(getRawAnchor()); // Try to provide a fix-it that only contains a '.' if (contextualType && baseTy->isEqual(contextualType)) { Diag->fixItInsert(loc, "."); return true; } // Check if the expression is the matching operator ~=, most often used in // case statements. If so, try to provide a single dot fix-it const Expr *contextualTypeNode = getRootExpr(getAsExpr(getAnchor())); // The '~=' operator is an overloaded decl ref inside a binaryExpr if (auto binaryExpr = dyn_cast(contextualTypeNode)) { if (auto overloadedFn = dyn_cast(binaryExpr->getFn())) { if (!overloadedFn->getDecls().empty()) { // Fetch any declaration to check if the name is '~=' ValueDecl *decl0 = overloadedFn->getDecls()[0]; if (decl0->getBaseName() == decl0->getASTContext().Id_MatchOperator) { assert(binaryExpr->getArg()->getElements().size() == 2); // If the rhs of '~=' is the enum type, a single dot suffixes // since the type can be inferred Type secondArgType = getType(binaryExpr->getArg()->getElement(1)); if (secondArgType->isEqual(baseTy)) { Diag->fixItInsert(loc, "."); return true; } } } } } // Fall back to a fix-it with a full type qualifier Expr *baseExpr = nullptr; if (const auto *SE = getAsExpr(getRawAnchor())) baseExpr = SE->getBase(); else if (const auto UDE = getAsExpr(getRawAnchor())) baseExpr = UDE->getBase(); // An implicit 'self' reference base expression means we should // prepend with qualification. if (baseExpr && !baseExpr->isImplicit()) { Diag->fixItReplace(baseExpr->getSourceRange(), diag::replace_with_type, baseTy); } else { Diag->fixItInsert(loc, diag::insert_type_qualification, baseTy); } return true; } return false; } bool PartialApplicationFailure::diagnoseAsError() { auto *anchor = castToExpr(getRawAnchor()); RefKind kind = RefKind::MutatingMethod; // If this is initializer delegation chain, we have a tailored message. if (getOverloadChoiceIfAvailable( getConstraintLocator(anchor, ConstraintLocator::ConstructorMember))) { kind = anchor->getBase()->isSuperExpr() ? RefKind::SuperInit : RefKind::SelfInit; } else if (anchor->getBase()->isSuperExpr()) { kind = RefKind::SuperMethod; } auto diagnostic = CompatibilityWarning ? diag::partial_application_of_function_invalid_swift4 : diag::partial_application_of_function_invalid; emitDiagnosticAt(anchor->getNameLoc(), diagnostic, kind); return true; } bool InvalidDynamicInitOnMetatypeFailure::diagnoseAsError() { emitDiagnostic(diag::dynamic_construct_class, BaseType->getMetatypeInstanceType()) .highlight(BaseRange); emitDiagnosticAt(Init, diag::note_nonrequired_initializer, Init->isImplicit(), Init->getName()); return true; } bool InitOnProtocolMetatypeFailure::diagnoseAsError() { if (IsStaticallyDerived) { emitDiagnostic(diag::construct_protocol_by_name, BaseType->getMetatypeInstanceType()) .highlight(BaseRange); } else { emitDiagnostic(diag::construct_protocol_value, BaseType) .highlight(BaseRange); } return true; } SourceLoc ImplicitInitOnNonConstMetatypeFailure::getLoc() const { if (auto *apply = getAsExpr(getRawAnchor())) return apply->getArg()->getStartLoc(); return FailureDiagnostic::getLoc(); } bool ImplicitInitOnNonConstMetatypeFailure::diagnoseAsError() { emitDiagnostic(diag::missing_init_on_metatype_initialization) .fixItInsert(getLoc(), ".init"); return true; } ASTNode MissingArgumentsFailure::getAnchor() const { auto anchor = FailureDiagnostic::getAnchor(); if (auto *captureList = getAsExpr(anchor)) return captureList->getClosureBody(); return anchor; } bool MissingArgumentsFailure::diagnoseAsError() { auto *locator = getLocator(); if (!(locator->isLastElement() || locator->isLastElement() || locator->isLastElement() || locator->isLastElement() || locator->isLastElement())) return false; // If this is a misplaced `missng argument` situation, it would be // diagnosed by invalid conversion fix. if (isMisplacedMissingArgument(getSolution(), locator)) return false; auto anchor = getAnchor(); if (auto *closure = getAsExpr(anchor)) return diagnoseClosure(closure); // This is a situation where function type is passed as an argument // to a function type parameter and their argument arity is different. // // ``` // func foo(_: (Int) -> Void) {} // func bar() {} // // foo(bar) // `() -> Void` vs. `(Int) -> Void` // ``` if (locator->isLastElement()) { auto info = *(getFunctionArgApplyInfo(locator)); auto *argExpr = info.getArgExpr(); emitDiagnosticAt(argExpr->getLoc(), diag::cannot_convert_argument_value, info.getArgType(), info.getParamType()); // TODO: It would be great so somehow point out which arguments are missing. return true; } // Function type has fewer arguments than expected by context: // // ``` // func foo() {} // let _: (Int) -> Void = foo // ``` if (locator->isLastElement()) { emitDiagnostic(diag::cannot_convert_initializer_value, getType(anchor), resolveType(getContextualType(getAnchor()))); // TODO: It would be great so somehow point out which arguments are missing. return true; } if (diagnoseInvalidTupleDestructuring()) return true; if (SynthesizedArgs.size() == 1) return diagnoseSingleMissingArgument(); // At this point we know that this is a situation when // there are multiple arguments missing, so let's produce // a diagnostic which lists all of them and a fix-it // to add arguments at appropriate positions. SmallString<32> diagnostic; llvm::raw_svector_ostream arguments(diagnostic); interleave( SynthesizedArgs, [&](const SynthesizedArg &e) { const auto paramIdx = e.paramIdx; const auto &arg = e.param; if (arg.hasLabel()) { arguments << "'" << arg.getLabel().str() << "'"; } else { arguments << "#" << (paramIdx + 1); } }, [&] { arguments << ", "; }); auto diag = emitDiagnostic(diag::missing_arguments_in_call, arguments.str()); Expr *fnExpr = nullptr; Expr *argExpr = nullptr; unsigned numArguments = 0; Optional firstTrailingClosure = None; std::tie(fnExpr, argExpr, numArguments, firstTrailingClosure) = getCallInfo(getRawAnchor()); // TODO(diagnostics): We should be able to suggest this fix-it // unconditionally. if (argExpr && numArguments == 0) { SmallString<32> scratch; llvm::raw_svector_ostream fixIt(scratch); interleave( SynthesizedArgs, [&](const SynthesizedArg &arg) { forFixIt(fixIt, arg.param); }, [&] { fixIt << ", "; }); auto *tuple = cast(argExpr); diag.fixItInsertAfter(tuple->getLParenLoc(), fixIt.str()); } diag.flush(); if (auto selectedOverload = getCalleeOverloadChoiceIfAvailable(locator)) { if (auto *decl = selectedOverload->choice.getDeclOrNull()) { emitDiagnosticAt(decl, diag::decl_declared_here, decl->getName()); } } return true; } bool MissingArgumentsFailure::diagnoseAsNote() { auto *locator = getLocator(); if (auto overload = getCalleeOverloadChoiceIfAvailable(locator)) { auto *fn = resolveType(overload->openedType)->getAs(); auto loc = overload->choice.getDecl()->getLoc(); if (loc.isInvalid()) loc = getLoc(); emitDiagnosticAt(loc, diag::candidate_partial_match, fn->getParamListAsString(fn->getParams())); return true; } return false; } bool MissingArgumentsFailure::diagnoseSingleMissingArgument() const { auto &ctx = getASTContext(); auto anchor = getRawAnchor(); if (!(isExpr(anchor) || isExpr(anchor) || isExpr(anchor) || isExpr(anchor))) return false; if (SynthesizedArgs.size() != 1) return false; const auto &argument = SynthesizedArgs.front(); auto position = argument.paramIdx; auto label = argument.param.getLabel(); Expr *fnExpr = nullptr; Expr *argExpr = nullptr; unsigned numArgs = 0; Optional firstTrailingClosure = None; std::tie(fnExpr, argExpr, numArgs, firstTrailingClosure) = getCallInfo(anchor); if (!argExpr) { return false; } // Will the parameter accept a trailing closure? Type paramType = resolveType(argument.param.getPlainType()); bool paramAcceptsTrailingClosure = paramType ->lookThroughAllOptionalTypes()->is(); // Determine whether we're inserting as a trailing closure. bool insertingTrailingClosure = firstTrailingClosure && position > *firstTrailingClosure; SmallString<32> insertBuf; llvm::raw_svector_ostream insertText(insertBuf); if (insertingTrailingClosure) insertText << " "; else if (position != 0) insertText << ", "; forFixIt(insertText, argument.param); if (position == 0 && numArgs > 0 && (!firstTrailingClosure || position < *firstTrailingClosure)) insertText << ", "; SourceLoc insertLoc; if (position >= numArgs && insertingTrailingClosure) { // Add a trailing closure to the end. // fn { closure }: // fn {closure} label: [argMissing] // fn() { closure }: // fn() {closure} label: [argMissing] // fn(argX) { closure }: // fn(argX) { closure } label: [argMissing] insertLoc = Lexer::getLocForEndOfToken( ctx.SourceMgr, argExpr->getEndLoc()); } else if (auto *TE = dyn_cast(argExpr)) { // fn(argX, argY): // fn([argMissing, ]argX, argY) // fn(argX[, argMissing], argY) // fn(argX) { closure }: // fn([argMissing, ]argX) { closure } // fn(argX[, argMissing]) { closure } // fn(argX, argY): // fn(argX, argY[, argMissing]) if (numArgs == 0) { insertLoc = TE->getRParenLoc(); } else if (position != 0) { auto argPos = std::min(TE->getNumElements(), position) - 1; insertLoc = Lexer::getLocForEndOfToken( ctx.SourceMgr, TE->getElement(argPos)->getEndLoc()); } else { insertLoc = TE->getElementNameLoc(0); if (insertLoc.isInvalid()) insertLoc = TE->getElement(0)->getStartLoc(); } } else { auto *PE = cast(argExpr); if (PE->getRParenLoc().isValid()) { // fn(): // fn([argMissing]) // fn(argX): // fn(argX[, argMissing]) // fn([argMissing, ]argX) // fn() { closure }: // fn([argMissing]) {closure} if (position == 0) { insertLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, PE->getLParenLoc()); } else { insertLoc = Lexer::getLocForEndOfToken( ctx.SourceMgr, PE->getSubExpr()->getEndLoc()); } } else { // fn { closure }: // fn[(argMissing)] { closure } assert(!isExpr(anchor) && "bracket less subscript"); assert(firstTrailingClosure && "paren less ParenExpr without trailing closure"); insertBuf.insert(insertBuf.begin(), '('); insertBuf.insert(insertBuf.end(), ')'); insertLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, fnExpr->getEndLoc()); } } if (insertLoc.isInvalid()) return false; // If we are trying to insert a trailing closure but the parameter // corresponding to the missing argument doesn't support a trailing closure, // don't provide a Fix-It. // FIXME: It's possible to parenthesize and relabel the argument list to // accomodate this, but it's tricky. bool shouldEmitFixIt = !(insertingTrailingClosure && !paramAcceptsTrailingClosure); if (label.empty()) { auto diag = emitDiagnosticAt( insertLoc, diag::missing_argument_positional, position + 1); if (shouldEmitFixIt) diag.fixItInsert(insertLoc, insertText.str()); } else if (isPropertyWrapperInitialization()) { auto *TE = cast(fnExpr); emitDiagnosticAt(TE->getLoc(), diag::property_wrapper_missing_arg_init, label, resolveType(TE->getInstanceType())->getString()); } else { auto diag = emitDiagnosticAt( insertLoc, diag::missing_argument_named, label); if (shouldEmitFixIt) diag.fixItInsert(insertLoc, insertText.str()); } if (auto selectedOverload = getCalleeOverloadChoiceIfAvailable(getLocator())) { if (auto *decl = selectedOverload->choice.getDeclOrNull()) { emitDiagnosticAt(decl, diag::decl_declared_here, decl->getName()); } } return true; } bool MissingArgumentsFailure::diagnoseClosure(const ClosureExpr *closure) { FunctionType *funcType = nullptr; auto *locator = getLocator(); if (locator->isForContextualType()) { funcType = getContextualType(locator->getAnchor())->getAs(); } else if (auto info = getFunctionArgApplyInfo(locator)) { auto paramType = info->getParamType(); // Drop a single layer of optionality because argument could get injected // into optional and that doesn't contribute to the problem. if (auto objectType = paramType->getOptionalObjectType()) paramType = objectType; funcType = paramType->getAs(); } else if (locator->isLastElement() || locator->isLastElement()) { // Based on the locator we know this this is something like this: // `let _: () -> ((Int) -> Void) = { return {} }`. funcType = getType(getRawAnchor()) ->castTo() ->getResult() ->castTo(); } if (!funcType) return false; unsigned numSynthesized = SynthesizedArgs.size(); auto diff = funcType->getNumParams() - numSynthesized; // If the closure didn't specify any arguments and it is in a context that // needs some, produce a fixit to turn "{...}" into "{ _,_ in ...}". if (diff == 0) { auto diag = emitDiagnosticAt(closure->getStartLoc(), diag::closure_argument_list_missing, numSynthesized); std::string fixText; // Let's provide fixits for up to 10 args. if (funcType->getNumParams() <= 10) { fixText += " "; interleave( funcType->getParams(), [&fixText](const AnyFunctionType::Param ¶m) { if (param.hasLabel()) { fixText += param.getLabel().str(); } else if (param.hasInternalLabel()) { fixText += param.getInternalLabel().str(); } else { fixText += '_'; } }, [&fixText] { fixText += ','; }); fixText += " in "; } if (!fixText.empty()) { // Determine if there is already a space after the { in the closure to // make sure we introduce the right whitespace. auto afterBrace = closure->getStartLoc().getAdvancedLoc(1); auto text = getASTContext().SourceMgr.extractText({afterBrace, 1}); if (text.size() == 1 && text == " ") fixText = fixText.erase(fixText.size() - 1); else fixText = fixText.erase(0, 1); diag.fixItInsertAfter(closure->getStartLoc(), fixText); } return true; } auto params = closure->getParameters(); bool onlyAnonymousParams = std::all_of(params->begin(), params->end(), [](ParamDecl *param) { return !param->hasName(); }); auto diag = emitDiagnosticAt( params->getStartLoc(), diag::closure_argument_list_tuple, resolveType(funcType), funcType->getNumParams(), diff, diff == 1); // If the number of parameters is less than number of inferred // let's try to suggest a fix-it with the rest of the missing parameters. if (!closure->hasExplicitResultType() && closure->getInLoc().isValid()) { SmallString<32> fixIt; llvm::raw_svector_ostream OS(fixIt); OS << ","; for (unsigned i = 0; i != numSynthesized; ++i) { OS << ((onlyAnonymousParams) ? "_" : "<#arg#>"); OS << ((i == numSynthesized - 1) ? " " : ","); } diag.fixItInsertAfter(params->getEndLoc(), OS.str()); } return true; } bool MissingArgumentsFailure::diagnoseInvalidTupleDestructuring() const { auto *locator = getLocator(); if (!locator->isLastElement()) return false; if (SynthesizedArgs.size() < 2) return false; auto anchor = getAnchor(); Expr *argExpr = nullptr; // Something like `foo(x: (1, 2))` if (auto *TE = getAsExpr(anchor)) { if (TE->getNumElements() == 1) argExpr = TE->getElement(0); } else { // or `foo((1, 2))` argExpr = castToExpr(anchor)->getSubExpr(); } if (!(argExpr && getType(argExpr)->getRValueType()->is())) return false; auto selectedOverload = getCalleeOverloadChoiceIfAvailable(locator); if (!selectedOverload) return false; auto *decl = selectedOverload->choice.getDeclOrNull(); if (!decl) return false; auto name = decl->getBaseName(); auto diagnostic = emitDiagnostic(diag::cannot_convert_single_tuple_into_multiple_arguments, decl->getDescriptiveKind(), name, name.isSpecial(), SynthesizedArgs.size(), isa(argExpr)); // If argument is a literal tuple, let's suggest removal of parentheses. if (auto *TE = dyn_cast(argExpr)) { diagnostic.fixItRemove(TE->getLParenLoc()).fixItRemove(TE->getRParenLoc()); } diagnostic.flush(); // Add a note which points to the overload choice location. emitDiagnosticAt(decl, diag::decl_declared_here, decl->getName()); return true; } bool MissingArgumentsFailure::isPropertyWrapperInitialization() const { auto *call = getAsExpr(getRawAnchor()); if (!(call && call->isImplicit())) return false; auto TE = dyn_cast(call->getFn()); if (!TE) return false; auto instanceTy = TE->getInstanceType(); if (!instanceTy) return false; auto *NTD = resolveType(instanceTy)->getAnyNominal(); return NTD && NTD->getAttrs().hasAttribute(); } bool MissingArgumentsFailure::isMisplacedMissingArgument( const Solution &solution, ConstraintLocator *locator) { auto *calleeLocator = solution.getCalleeLocator(locator); auto overloadChoice = solution.getOverloadChoiceIfAvailable(calleeLocator); if (!overloadChoice) return false; auto *fnType = solution.simplifyType(overloadChoice->openedType)->getAs(); if (!(fnType && fnType->getNumParams() == 2)) return false; auto anchor = locator->getAnchor(); auto hasFixFor = [&](FixKind kind, ConstraintLocator *locator) -> bool { auto fix = llvm::find_if(solution.Fixes, [&](const ConstraintFix *fix) { return fix->getLocator() == locator; }); if (fix == solution.Fixes.end()) return false; return (*fix)->getKind() == kind; }; auto *callLocator = solution.getConstraintLocator(anchor, {ConstraintLocator::ApplyArgument}); auto argFlags = fnType->getParams()[0].getParameterFlags(); auto *argLoc = solution.getConstraintLocator( callLocator, LocatorPathElt::ApplyArgToParam(0, 0, argFlags)); if (!(hasFixFor(FixKind::AllowArgumentTypeMismatch, argLoc) && hasFixFor(FixKind::AddMissingArguments, callLocator))) return false; Expr *argExpr = nullptr; if (auto *call = getAsExpr(anchor)) { argExpr = call->getArg(); } else if (auto *subscript = getAsExpr(anchor)) { argExpr = subscript->getIndex(); } else { return false; } Expr *argument = nullptr; if (auto *PE = dyn_cast(argExpr)) { argument = PE->getSubExpr(); } else { auto *tuple = cast(argExpr); if (tuple->getNumElements() != 1) return false; argument = tuple->getElement(0); } auto argType = solution.simplifyType(solution.getType(argument)); auto paramType = fnType->getParams()[1].getPlainType(); return TypeChecker::isConvertibleTo(argType, paramType, solution.getDC()); } std::tuple> MissingArgumentsFailure::getCallInfo(ASTNode anchor) const { if (auto *call = getAsExpr(anchor)) { return std::make_tuple(call->getFn(), call->getArg(), call->getNumArguments(), call->getUnlabeledTrailingClosureIndex()); } else if (auto *SE = getAsExpr(anchor)) { return std::make_tuple(SE, SE->getIndex(), SE->getNumArguments(), SE->getUnlabeledTrailingClosureIndex()); } else if (auto *OLE = getAsExpr(anchor)) { return std::make_tuple(OLE, OLE->getArg(), OLE->getNumArguments(), OLE->getUnlabeledTrailingClosureIndex()); } return std::make_tuple(nullptr, nullptr, 0, None); } void MissingArgumentsFailure::forFixIt( llvm::raw_svector_ostream &out, const AnyFunctionType::Param &argument) const { if (argument.hasLabel()) out << argument.getLabel().str() << ": "; // Explode inout type. if (argument.isInOut()) out << "&"; auto resolvedType = resolveType(argument.getPlainType()); // @autoclosure; the type should be the result type. if (argument.isAutoClosure()) resolvedType = resolvedType->castTo()->getResult(); out << "<#" << resolvedType << "#>"; } SourceLoc ClosureParamDestructuringFailure::getLoc() const { auto *closure = castToExpr(getAnchor()); auto paramList = closure->getParameters(); return paramList->getStartLoc(); } SourceRange ClosureParamDestructuringFailure::getSourceRange() const { auto *closure = castToExpr(getAnchor()); auto paramList = closure->getParameters(); return paramList->getSourceRange(); } bool ClosureParamDestructuringFailure::diagnoseAsError() { auto *closure = castToExpr(getAnchor()); auto params = closure->getParameters(); // In case of implicit parameters e.g. $0, $1 we // can't really provide good fix-it because // structure of parameter type itself is unclear. for (auto *param : params->getArray()) { if (param->isImplicit()) { emitDiagnostic(diag::closure_tuple_parameter_destructuring_implicit, getParameterType()); return true; } } auto diag = emitDiagnostic(diag::closure_tuple_parameter_destructuring, getParameterType()); auto *closureBody = closure->getBody(); if (!closureBody) return true; auto &sourceMgr = getASTContext().SourceMgr; auto bodyStmts = closureBody->getElements(); SourceLoc bodyLoc; SourceLoc inLoc = closure->getInLoc(); // If location for `in` is unknown we can't proceed // since we'll not be able to figure out source line // to place the fix-it on. if (inLoc.isInvalid()) return true; // If the body is empty let's put the cursor // right after "in", otherwise make it start // location of the first statement in the body. if (bodyStmts.empty()) bodyLoc = Lexer::getLocForEndOfToken(sourceMgr, inLoc); else bodyLoc = bodyStmts.front().getStartLoc(); if (bodyLoc.isInvalid()) return true; SmallString<64> fixIt; llvm::raw_svector_ostream OS(fixIt); // If this is multi-line closure we'd have to insert new lines // in the suggested 'let' to keep the structure of the code intact, // otherwise just use ';' to keep everything on the same line. auto inLine = sourceMgr.getLineAndColumnInBuffer(inLoc).first; auto bodyLine = sourceMgr.getLineAndColumnInBuffer(bodyLoc).first; auto isMultiLineClosure = bodyLine > inLine; auto indent = bodyStmts.empty() ? "" : Lexer::getIndentationForLine(sourceMgr, bodyLoc); SmallString<16> parameter; llvm::raw_svector_ostream parameterOS(parameter); parameterOS << "("; interleave( params->getArray(), [&](const ParamDecl *param) { parameterOS << param->getNameStr(); }, [&] { parameterOS << ", "; }); parameterOS << ")"; // Check if there are any explicit types associated // with parameters, if there are, we'll have to add // type information to the replacement argument. bool explicitTypes = llvm::any_of(params->getArray(), [](const ParamDecl *param) { return param->getTypeRepr(); }); if (isMultiLineClosure) OS << '\n' << indent; // Let's form 'let : []? = arg' expression. OS << "let " << parameterOS.str() << " = arg" << (isMultiLineClosure ? "\n" + indent : "; "); SmallString<64> argName; llvm::raw_svector_ostream nameOS(argName); if (explicitTypes) { nameOS << "(arg: " << getParameterType()->getString() << ")"; } else { nameOS << "(arg)"; } if (closure->hasSingleExpressionBody()) { // Let's see if we need to add result type to the argument/fix-it: // - if the there is a result type associated with the closure; // - and it's not a void type; // - and it hasn't been explicitly written. auto resultType = resolveType(ContextualType->getResult()); auto hasResult = [](Type resultType) -> bool { return resultType && !resultType->isVoid(); }; auto isValidType = [](Type resultType) -> bool { return resultType && !resultType->hasUnresolvedType() && !resultType->hasTypeVariable(); }; // If there an expected result type but it hasn't been explicitly // provided, let's add it to the argument. if (hasResult(resultType) && !closure->hasExplicitResultType()) { nameOS << " -> "; if (isValidType(resultType)) nameOS << resultType->getString(); else nameOS << "<#Result#>"; } if (auto stmt = bodyStmts.front().get()) { // If the body is a single expression with implicit return. if (isa(stmt) && stmt->isImplicit()) { // And there is non-void expected result type, // because we add 'let' expression to the body // we need to make such 'return' explicit. if (hasResult(resultType)) OS << "return "; } } } diag.fixItReplace(getSourceRange(), nameOS.str()) .fixItInsert(bodyLoc, OS.str()); return true; } bool OutOfOrderArgumentFailure::diagnoseAsError() { auto anchor = getRawAnchor(); auto *argExpr = isExpr(anchor) ? castToExpr(anchor) : getArgumentListExprFor(getLocator()); if (!argExpr) return false; auto *tuple = cast(argExpr); Identifier first = tuple->getElementName(ArgIdx); Identifier second = tuple->getElementName(PrevArgIdx); // Build a mapping from arguments to parameters. SmallVector argBindings(tuple->getNumElements()); for (unsigned paramIdx = 0; paramIdx != Bindings.size(); ++paramIdx) { for (auto argIdx : Bindings[paramIdx]) argBindings[argIdx] = paramIdx; } auto argRange = [&](unsigned argIdx, Identifier label) -> SourceRange { auto range = tuple->getElement(argIdx)->getSourceRange(); if (!label.empty()) range.Start = tuple->getElementNameLoc(argIdx); unsigned paramIdx = argBindings[argIdx]; if (Bindings[paramIdx].size() > 1) range.End = tuple->getElement(Bindings[paramIdx].back())->getEndLoc(); return range; }; auto firstRange = argRange(ArgIdx, first); auto secondRange = argRange(PrevArgIdx, second); SourceLoc diagLoc = firstRange.Start; auto addFixIts = [&](InFlightDiagnostic diag) { // Don't add Fix-Its if one of the ranges is outside of the argument // list, which can happen when we're splicing together an argument list // from multiple sources. auto &SM = getASTContext().SourceMgr; auto argsRange = tuple->getSourceRange(); if (!SM.rangeContains(argsRange, firstRange) || !SM.rangeContains(argsRange, secondRange)) return; diag.highlight(firstRange).highlight(secondRange); // Move the misplaced argument by removing it from one location and // inserting it in another location. To maintain argument comma // separation, since the argument is always moving to an earlier index // the preceding comma and whitespace is removed and a new trailing // comma and space is inserted with the moved argument. auto text = SM.extractText( Lexer::getCharSourceRangeFromSourceRange(SM, firstRange)); SourceLoc removalStartLoc; // For the first argument, start is always next token after `(`. if (ArgIdx == 0) { removalStartLoc = tuple->getLParenLoc(); } else { // For all other arguments, start is the next token past // the previous argument. removalStartLoc = tuple->getElement(ArgIdx - 1)->getEndLoc(); } SourceRange removalRange{Lexer::getLocForEndOfToken(SM, removalStartLoc), firstRange.End}; // Move requires postfix comma only if argument is moved in-between // other arguments. bool requiresComma = !isExpr(anchor) && PrevArgIdx != tuple->getNumElements() - 1; diag.fixItRemove(removalRange); diag.fixItInsert(secondRange.Start, text.str() + (requiresComma ? ", " : "")); }; // There are 4 diagnostic messages variations depending on // labeled/unlabeled arguments. if (first.empty() && second.empty()) { addFixIts( emitDiagnosticAt(diagLoc, isExpr(anchor) ? diag::argument_out_of_order_binary_op : diag::argument_out_of_order_unnamed_unnamed, ArgIdx + 1, PrevArgIdx + 1)); } else if (first.empty() && !second.empty()) { addFixIts(emitDiagnosticAt(diagLoc, diag::argument_out_of_order_unnamed_named, ArgIdx + 1, second)); } else if (!first.empty() && second.empty()) { addFixIts(emitDiagnosticAt(diagLoc, diag::argument_out_of_order_named_unnamed, first, PrevArgIdx + 1)); } else { addFixIts(emitDiagnosticAt(diagLoc, diag::argument_out_of_order_named_named, first, second)); } return true; } bool ExtraneousArgumentsFailure::diagnoseAsError() { // Simplified anchor would point directly to the // argument in case of contextual mismatch. auto anchor = getAnchor(); if (auto *closure = getAsExpr(anchor)) { auto fnType = ContextualType; auto params = closure->getParameters(); auto diag = emitDiagnosticAt( params->getStartLoc(), diag::closure_argument_list_tuple, fnType, fnType->getNumParams(), params->size(), (params->size() == 1)); bool onlyAnonymousParams = std::all_of(params->begin(), params->end(), [](ParamDecl *param) { return !param->hasName(); }); // If closure expects no parameters but N was given, // and all of them are anonymous let's suggest removing them. if (fnType->getNumParams() == 0 && onlyAnonymousParams) { auto inLoc = closure->getInLoc(); auto &sourceMgr = getASTContext().SourceMgr; if (inLoc.isValid()) diag.fixItRemoveChars(params->getStartLoc(), Lexer::getLocForEndOfToken(sourceMgr, inLoc)); } return true; } if (isContextualMismatch()) { auto *locator = getLocator(); emitDiagnostic(locator->isLastElement() ? diag::cannot_convert_initializer_value : diag::cannot_convert_argument_value, getType(anchor), ContextualType); return true; } if (ExtraArgs.size() == 1) { return diagnoseSingleExtraArgument(); } if (ContextualType->getNumParams() == 0) { if (auto argExpr = getArgumentListExprFor(getLocator())) { emitDiagnostic(diag::extra_argument_to_nullary_call) .highlight(argExpr->getSourceRange()) .fixItRemove(argExpr->getSourceRange()); return true; } } if (ExtraArgs.size() < 2) return false; llvm::SmallString<64> positions; llvm::raw_svector_ostream OS(positions); interleave( ExtraArgs, [&](const std::pair &arg) { OS << "#" << (arg.first + 1); }, [&] { OS << ", "; }); emitDiagnostic(diag::extra_arguments_in_call, OS.str()); if (auto overload = getCalleeOverloadChoiceIfAvailable(getLocator())) { if (auto *decl = overload->choice.getDeclOrNull()) { emitDiagnosticAt(decl, diag::decl_declared_here, decl->getName()); } } return true; } bool ExtraneousArgumentsFailure::diagnoseAsNote() { auto overload = getCalleeOverloadChoiceIfAvailable(getLocator()); if (!(overload && overload->choice.isDecl())) return false; auto *decl = overload->choice.getDecl(); auto numArgs = getTotalNumArguments(); emitDiagnosticAt(decl, diag::candidate_with_extraneous_args, ContextualType, ContextualType->getNumParams(), numArgs, (numArgs == 1), isExpr(getAnchor())); return true; } bool ExtraneousArgumentsFailure::diagnoseSingleExtraArgument() const { auto *locator = getLocator(); // This specifically handles a case of `Void(...)` which generates // constraints differently from other constructor invocations and // wouldn't have `ApplyArgument` as a last element in the locator. if (auto *call = getAsExpr(getRawAnchor())) { auto *TE = dyn_cast(call->getFn()); if (TE && getType(TE)->getMetatypeInstanceType()->isVoid()) { emitDiagnosticAt(call->getLoc(), diag::extra_argument_to_nullary_call) .highlight(call->getArg()->getSourceRange()); return true; } } auto *arguments = getArgumentListExprFor(locator); if (!arguments) return false; const auto &e = ExtraArgs.front(); auto index = e.first; auto argument = e.second; auto tuple = dyn_cast(arguments); auto argExpr = tuple ? tuple->getElement(index) : cast(arguments)->getSubExpr(); auto loc = argExpr->getLoc(); if (tuple && index == tuple->getNumElements() - 1 && tuple->hasTrailingClosure()) { emitDiagnosticAt(loc, diag::extra_trailing_closure_in_call) .highlight(argExpr->getSourceRange()); } else if (ContextualType->getNumParams() == 0) { auto *PE = dyn_cast(arguments); Expr *subExpr = nullptr; if (PE) subExpr = PE->getSubExpr(); if (subExpr && argument.getPlainType()->isVoid()) { emitDiagnosticAt(loc, diag::extra_argument_to_nullary_call) .fixItRemove(subExpr->getSourceRange()); } else { emitDiagnosticAt(loc, diag::extra_argument_to_nullary_call) .highlight(argExpr->getSourceRange()); } } else if (argument.hasLabel()) { emitDiagnosticAt(loc, diag::extra_argument_named, argument.getLabel()) .highlight(argExpr->getSourceRange()); } else { emitDiagnosticAt(loc, diag::extra_argument_positional) .highlight(argExpr->getSourceRange()); } return true; } bool InaccessibleMemberFailure::diagnoseAsError() { auto anchor = getRawAnchor(); // Let's try to avoid over-diagnosing chains of inaccessible // members e.g.: // // struct A { // struct B { // struct C {} // } // } // // _ = A.B.C() // // We'll have a fix for each `B', `C` and `C.init` but it makes // sense to diagnose only `B` and consider the rest hidden. Expr *baseExpr = nullptr; DeclNameLoc nameLoc; if (auto *UDE = getAsExpr(anchor)) { baseExpr = UDE->getBase(); nameLoc = UDE->getNameLoc(); } else if (auto *UME = getAsExpr(anchor)) { nameLoc = UME->getNameLoc(); } else if (auto *SE = getAsExpr(anchor)) { baseExpr = SE->getBase(); } else if (auto *call = getAsExpr(anchor)) { baseExpr = call->getFn(); } if (baseExpr) { auto *locator = getConstraintLocator(baseExpr, ConstraintLocator::Member); const auto &solution = getSolution(); if (llvm::any_of(solution.Fixes, [&locator](const ConstraintFix *fix) { return fix->getLocator() == locator; })) return false; } auto loc = nameLoc.isValid() ? nameLoc.getStartLoc() : ::getLoc(anchor); auto accessLevel = Member->getFormalAccessScope().accessLevelForDiagnostics(); if (auto *CD = dyn_cast(Member)) { emitDiagnosticAt(loc, diag::init_candidate_inaccessible, CD->getResultInterfaceType(), accessLevel) .highlight(nameLoc.getSourceRange()); } else { emitDiagnosticAt(loc, diag::candidate_inaccessible, Member->getBaseName(), accessLevel) .highlight(nameLoc.getSourceRange()); } emitDiagnosticAt(Member, diag::decl_declared_here, Member->getName()); return true; } SourceLoc AnyObjectKeyPathRootFailure::getLoc() const { auto anchor = getAnchor(); if (auto *KPE = getAsExpr(anchor)) { if (auto rootTyRepr = KPE->getRootType()) return rootTyRepr->getLoc(); } return ::getLoc(anchor); } SourceRange AnyObjectKeyPathRootFailure::getSourceRange() const { auto anchor = getAnchor(); if (auto *KPE = getAsExpr(anchor)) { if (auto rootTyRepr = KPE->getRootType()) return rootTyRepr->getSourceRange(); } return ::getSourceRange(anchor); } bool AnyObjectKeyPathRootFailure::diagnoseAsError() { // Diagnose use of AnyObject as root for a keypath emitDiagnostic(diag::expr_swift_keypath_anyobject_root) .highlight(getSourceRange()); return true; } SourceLoc KeyPathSubscriptIndexHashableFailure::getLoc() const { auto *locator = getLocator(); if (locator->isKeyPathSubscriptComponent()) { auto *KPE = castToExpr(getAnchor()); if (auto kpElt = locator->findFirst()) return KPE->getComponents()[kpElt->getIndex()].getLoc(); } return FailureDiagnostic::getLoc(); } bool KeyPathSubscriptIndexHashableFailure::diagnoseAsError() { emitDiagnostic(diag::expr_keypath_subscript_index_not_hashable, resolveType(NonConformingType)); return true; } SourceLoc InvalidMemberRefInKeyPath::getLoc() const { auto anchor = getRawAnchor(); if (auto *KPE = getAsExpr(anchor)) { auto *locator = getLocator(); auto component = locator->findFirst(); assert(component); return KPE->getComponents()[component->getIndex()].getLoc(); } return ::getLoc(anchor); } bool InvalidStaticMemberRefInKeyPath::diagnoseAsError() { emitDiagnostic(diag::expr_keypath_static_member, getName(), isForKeyPathDynamicMemberLookup()); return true; } bool InvalidEnumCaseRefInKeyPath::diagnoseAsError() { emitDiagnostic(diag::expr_keypath_enum_case, getName(), isForKeyPathDynamicMemberLookup()); return true; } bool InvalidMemberWithMutatingGetterInKeyPath::diagnoseAsError() { emitDiagnostic(diag::expr_keypath_mutating_getter, getName(), isForKeyPathDynamicMemberLookup()); return true; } bool InvalidMethodRefInKeyPath::diagnoseAsError() { emitDiagnostic(diag::expr_keypath_not_property, getKind(), getName(), isForKeyPathDynamicMemberLookup()); return true; } SourceLoc InvalidUseOfAddressOf::getLoc() const { auto anchor = getAnchor(); if (auto *assign = getAsExpr(anchor)) return assign->getSrc()->getLoc(); return ::getLoc(anchor); } bool InvalidUseOfAddressOf::diagnoseAsError() { if (auto argApplyInfo = getFunctionArgApplyInfo(getLocator())) { if (!argApplyInfo->getParameterFlags().isInOut()) { emitDiagnostic(diag::extra_address_of, getToType()) .highlight(getSourceRange()) .fixItRemove(getSourceRange().Start); return true; } } emitDiagnostic(diag::extraneous_address_of); return true; } bool ExtraneousReturnFailure::diagnoseAsError() { emitDiagnostic(diag::cannot_return_value_from_void_func); if (auto FD = dyn_cast(getDC())) { // We only want to emit the note + fix-it if the function does not // have an explicit return type. The reason we also need to check // whether the parameter list has a valid loc is to guard against // cases like like 'var foo: () { return 1 }' as here that loc will // be invalid. We also need to check that the name is not empty, // because certain decls will have empty name (like setters). if (FD->getResultTypeRepr() == nullptr && FD->getParameters()->getStartLoc().isValid() && !FD->getBaseIdentifier().empty()) { auto fixItLoc = Lexer::getLocForEndOfToken( getASTContext().SourceMgr, FD->getParameters()->getEndLoc()); emitDiagnostic(diag::add_return_type_note) .fixItInsert(fixItLoc, " -> <#Return Type#>"); } } return true; } bool CollectionElementContextualFailure::diagnoseAsError() { auto anchor = getRawAnchor(); auto *locator = getLocator(); auto eltType = getFromType(); auto contextualType = getToType(); auto isFixedToDictionary = [&](ArrayExpr *anchor) { return llvm::any_of(getSolution().Fixes, [&](ConstraintFix *fix) { auto *fixAnchor = getAsExpr(fix->getAnchor()); return fixAnchor && fixAnchor == anchor && fix->getKind() == FixKind::TreatArrayLiteralAsDictionary; }); }; bool treatAsDictionary = false; Optional diagnostic; if (auto *AE = getAsExpr(anchor)) { if (!(treatAsDictionary = isFixedToDictionary(AE))) { if (diagnoseMergedLiteralElements()) return true; diagnostic.emplace(emitDiagnostic(diag::cannot_convert_array_element, eltType, contextualType)); } } if (treatAsDictionary || isExpr(anchor)) { auto eltLoc = locator->castLastElementTo(); switch (eltLoc.getIndex()) { case 0: // key diagnostic.emplace(emitDiagnostic(diag::cannot_convert_dict_key, eltType, contextualType)); break; case 1: // value diagnostic.emplace(emitDiagnostic(diag::cannot_convert_dict_value, eltType, contextualType)); break; default: break; } } if (locator->isForSequenceElementType()) { // If this is a conversion failure related to binding of `for-each` // statement it has to be diagnosed as pattern match if there are // holes present in the contextual type. if (FailureDiagnostic::getContextualTypePurpose(getAnchor()) == ContextualTypePurpose::CTP_ForEachStmt && contextualType->hasUnresolvedType()) { diagnostic.emplace(emitDiagnostic( (contextualType->is() && !eltType->is()) ? diag::cannot_match_expr_tuple_pattern_with_nontuple_value : diag::cannot_match_unresolved_expr_pattern_with_value, eltType)); } else { diagnostic.emplace( emitDiagnostic(contextualType->isExistentialType() ? diag::cannot_convert_sequence_element_protocol : diag::cannot_convert_sequence_element_value, eltType, contextualType)); } } if (!diagnostic) return false; (void)trySequenceSubsequenceFixIts(*diagnostic); return true; } bool CollectionElementContextualFailure::diagnoseMergedLiteralElements() { auto elementAnchor = simplifyLocatorToAnchor(getLocator()); if (!elementAnchor) return false; auto *typeVar = getRawType(elementAnchor)->getAs(); if (!typeVar || !typeVar->getImpl().getAtomicLiteralKind()) return false; // This element is a literal whose type variable could have been merged with others, // but the conversion constraint to the array element type was only placed on one // of them. So, we want to emit the error for each element whose type variable is in // this equivalence class. auto &cs = getConstraintSystem(); auto node = cs.getRepresentative(typeVar)->getImpl().getGraphNode(); for (const auto *typeVar : node->getEquivalenceClass()) { auto anchor = typeVar->getImpl().getLocator()->getAnchor(); emitDiagnosticAt(constraints::getLoc(anchor), diag::cannot_convert_array_element, getFromType(), getToType()); } return true; } bool MissingContextualConformanceFailure::diagnoseAsError() { auto anchor = getAnchor(); auto path = getLocator()->getPath(); Optional> diagnostic; if (path.empty()) { assert(isExpr(anchor)); if (isa(castToExpr(anchor)->getDest())) { diagnostic = getDiagnosticFor(CTP_SubscriptAssignSource, getToType()); } else { diagnostic = getDiagnosticFor(CTP_AssignSource, getToType()); } } else { const auto &last = path.back(); switch (last.getKind()) { case ConstraintLocator::ContextualType: assert(Context != CTP_Unused); diagnostic = getDiagnosticFor(Context, getToType()); break; case ConstraintLocator::SequenceElementType: { diagnostic = diag::cannot_convert_sequence_element_protocol; break; } default: break; } } if (!diagnostic) return false; auto srcType = getFromType(); auto dstType = getToType(); emitDiagnostic(*diagnostic, srcType, dstType); if (isExpr(anchor)) return true; if (srcType->isAny() && dstType->isAnyObject()) { emitDiagnostic(diag::any_as_anyobject_fixit) .fixItInsertAfter(getSourceRange().End, " as AnyObject"); } return true; } bool MissingGenericArgumentsFailure::hasLoc(GenericTypeParamType *GP) const { return GP->getDecl()->getStartLoc().isValid(); } bool MissingGenericArgumentsFailure::diagnoseAsError() { llvm::SmallDenseMap> scopedParameters; auto isScoped = findArgumentLocations([&](TypeRepr *base, GenericTypeParamType *GP) { scopedParameters[base].push_back(GP); }); if (!isScoped) { auto anchor = getAnchor(); assert(anchor.is() || anchor.is()); return diagnoseForAnchor(anchor, Parameters); } bool diagnosed = false; for (const auto &scope : scopedParameters) diagnosed |= diagnoseForAnchor(scope.first, scope.second); return diagnosed; } bool MissingGenericArgumentsFailure::diagnoseForAnchor( ASTNode anchor, ArrayRef params) const { bool diagnosed = false; for (auto *GP : params) diagnosed |= diagnoseParameter(anchor, GP); if (!diagnosed) return false; auto *DC = getDeclContext(); if (!DC) return true; if (auto *SD = dyn_cast(DC)) { emitDiagnosticAt(SD, diag::note_call_to_subscript, SD->getName()); return true; } if (auto *AFD = dyn_cast(DC)) { if (isa(AFD)) { emitDiagnosticAt(AFD, diag::note_call_to_initializer); } else { emitDiagnosticAt(AFD, AFD->isOperator() ? diag::note_call_to_operator : diag::note_call_to_func, AFD->getName()); } return true; } emitGenericSignatureNote(anchor); return true; } bool MissingGenericArgumentsFailure::diagnoseParameter( ASTNode anchor, GenericTypeParamType *GP) const { auto &solution = getSolution(); auto loc = ::getLoc(anchor); auto *locator = getLocator(); // Type variables associated with missing generic parameters are // going to be completely cut off from the rest of constraint system, // that's why we'd get two fixes in this case which is not ideal. if (locator->isForContextualType() && llvm::count_if(solution.DefaultedConstraints, [&GP](const ConstraintLocator *locator) { return locator->getGenericParameter() == GP; }) > 1) { return false; } if (auto *CE = getAsExpr(getRawAnchor())) { const auto castTo = getType(CE->getCastTypeRepr()); auto *NTD = castTo->getAnyNominal(); emitDiagnosticAt(loc, diag::unbound_generic_parameter_cast, GP, NTD ? NTD->getDeclaredType() : castTo); } else { emitDiagnosticAt(loc, diag::unbound_generic_parameter, GP); } Type baseTyForNote; auto *DC = getDeclContext(); if (!DC) return true; if (!hasLoc(GP)) return true; if (auto *NTD = dyn_cast_or_null(DC->getSelfNominalTypeDecl())) { baseTyForNote = NTD->getDeclaredType(); } else if (auto *TAD = dyn_cast(DC)) { baseTyForNote = TAD->getUnboundGenericType(); } else { return true; } emitDiagnosticAt(GP->getDecl(), diag::archetype_declared_in_type, GP, baseTyForNote); return true; } void MissingGenericArgumentsFailure::emitGenericSignatureNote( ASTNode anchor) const { auto &solution = getSolution(); auto *paramDC = getDeclContext(); if (!paramDC) return; auto *GTD = dyn_cast(paramDC); if (!GTD || anchor.is()) return; auto getParamDecl = [](const ConstraintLocator *locator) -> GenericTypeParamDecl * { return locator->isForGenericParameter() ? locator->getGenericParameter()->getDecl() : nullptr; }; llvm::SmallDenseMap params; for (auto &entry : solution.typeBindings) { auto *typeVar = entry.first; auto *GP = typeVar->getImpl().getGenericParameter(); if (!GP) continue; auto type = resolveType(typeVar); assert(!type->is()); // If this is one of the defaulted parameter types, attempt // to emit placeholder for it instead of `Any`. if (llvm::any_of(solution.DefaultedConstraints, [&](const ConstraintLocator *locator) { return GP->getDecl() == getParamDecl(locator); })) continue; params[GP->getDecl()] = type; } auto getPreferredType = [&](const GenericTypeParamDecl *GP) -> Type { auto type = params.find(GP); return (type == params.end()) ? Type() : type->second; }; SmallString<64> paramsAsString; auto baseType = anchor.get(); if (TypeChecker::getDefaultGenericArgumentsString(paramsAsString, GTD, getPreferredType)) { auto diagnostic = emitDiagnosticAt( baseType->getLoc(), diag::unbound_generic_parameter_explicit_fix); if (auto *genericTy = dyn_cast(baseType)) { // If some of the eneric arguments have been specified, we need to // replace existing signature with a new one. diagnostic.fixItReplace(genericTy->getAngleBrackets(), paramsAsString); } else { // Otherwise we can simply insert new generic signature. diagnostic.fixItInsertAfter(baseType->getEndLoc(), paramsAsString); } } } bool MissingGenericArgumentsFailure::findArgumentLocations( llvm::function_ref callback) { using Callback = llvm::function_ref; auto *const typeRepr = [this]() -> TypeRepr * { const auto anchor = getRawAnchor(); if (const auto *TE = getAsExpr(anchor)) return TE->getTypeRepr(); else if (const auto *ECE = getAsExpr(anchor)) return ECE->getCastTypeRepr(); else return nullptr; }(); if (!typeRepr) return false; struct AssociateMissingParams : public ASTWalker { llvm::SmallVector Params; Callback Fn; AssociateMissingParams(ArrayRef params, Callback callback) : Params(params.begin(), params.end()), Fn(callback) {} bool walkToTypeReprPre(TypeRepr *T) override { if (Params.empty()) return false; auto *ident = dyn_cast(T); if (!ident) return true; auto *decl = dyn_cast_or_null(ident->getBoundDecl()); if (!decl) return true; auto *paramList = decl->getGenericParams(); if (!paramList) return true; // There could a situation like `S()`, so we need to be // careful not to point at first `S` because it has all of // its generic parameters specified. if (auto *generic = dyn_cast(ident)) { if (paramList->size() == generic->getNumGenericArgs()) return true; } for (auto *candidate : paramList->getParams()) { auto result = llvm::find_if(Params, [&](const GenericTypeParamType *param) { return candidate == param->getDecl(); }); if (result != Params.end()) { Fn(ident, *result); Params.erase(result); } } // Keep walking. return true; } bool allParamsAssigned() const { return Params.empty(); } } associator(Parameters, callback); typeRepr->walk(associator); return associator.allParamsAssigned(); } SourceLoc SkipUnhandledConstructInResultBuilderFailure::getLoc() const { if (auto stmt = unhandled.dyn_cast()) return stmt->getStartLoc(); return unhandled.get()->getLoc(); } /// Determine whether the given "if" chain has a missing "else". static bool hasMissingElseInChain(IfStmt *ifStmt) { if (!ifStmt->getElseStmt()) return true; if (auto ifElse = dyn_cast(ifStmt->getElseStmt())) return hasMissingElseInChain(ifElse); return false; } void SkipUnhandledConstructInResultBuilderFailure::diagnosePrimary( bool asNote) { if (auto stmt = unhandled.dyn_cast()) { emitDiagnostic(asNote ? diag::note_result_builder_control_flow : diag::result_builder_control_flow, builder->getName()); // Emit custom notes to help the user introduce the appropriate 'build' // functions. SourceLoc buildInsertionLoc; std::string stubIndent; Type componentType; std::tie(buildInsertionLoc, stubIndent, componentType) = determineResultBuilderBuildFixItInfo(builder); if (buildInsertionLoc.isInvalid()) { // Do nothing. } else if (isa(stmt) && hasMissingElseInChain(cast(stmt))) { auto diag = emitDiagnosticAt( builder->getLoc(), diag::result_builder_missing_build_optional, builder->getDeclaredInterfaceType()); std::string fixItString; { llvm::raw_string_ostream out(fixItString); printResultBuilderBuildFunction( builder, componentType, ResultBuilderBuildFunction::BuildOptional, stubIndent, out); } diag.fixItInsert(buildInsertionLoc, fixItString); } else if (isa(stmt) || isa(stmt)) { auto diag = emitDiagnosticAt( builder->getLoc(), diag::result_builder_missing_build_either, builder->getDeclaredInterfaceType()); std::string fixItString; { llvm::raw_string_ostream out(fixItString); printResultBuilderBuildFunction( builder, componentType, ResultBuilderBuildFunction::BuildEitherFirst, stubIndent, out); out << '\n'; printResultBuilderBuildFunction( builder, componentType, ResultBuilderBuildFunction::BuildEitherSecond, stubIndent, out); } diag.fixItInsert(buildInsertionLoc, fixItString); } else if (isa(stmt)) { auto diag = emitDiagnosticAt( builder->getLoc(), diag::result_builder_missing_build_array, builder->getDeclaredInterfaceType()); std::string fixItString; { llvm::raw_string_ostream out(fixItString); printResultBuilderBuildFunction( builder, componentType, ResultBuilderBuildFunction::BuildArray, stubIndent, out); } diag.fixItInsert(buildInsertionLoc, fixItString); } } else { emitDiagnostic(asNote ? diag::note_result_builder_decl : diag::result_builder_decl, builder->getName()); } } bool SkipUnhandledConstructInResultBuilderFailure::diagnoseAsError() { diagnosePrimary(/*asNote=*/false); emitDiagnosticAt(builder, diag::kind_declname_declared_here, builder->getDescriptiveKind(), builder->getName()); return true; } bool SkipUnhandledConstructInResultBuilderFailure::diagnoseAsNote() { diagnosePrimary(/*asNote=*/true); return true; } bool MutatingMemberRefOnImmutableBase::diagnoseAsError() { auto *anchor = castToExpr(getRawAnchor()); auto baseExpr = getBaseExprFor(anchor); if (!baseExpr) return false; auto diagIDsubelt = diag::cannot_pass_rvalue_mutating_subelement; auto diagIDmember = diag::cannot_pass_rvalue_mutating; if (auto *storage = dyn_cast(Member)) { if (storage->isGetterMutating()) { diagIDsubelt = diag::cannot_pass_rvalue_mutating_getter_subelement; diagIDmember = diag::cannot_pass_rvalue_mutating_getter; } } const auto &solution = getSolution(); AssignmentFailure failure(baseExpr, solution, anchor->getLoc(), diagIDsubelt, diagIDmember); return failure.diagnoseAsError(); } bool InvalidTupleSplatWithSingleParameterFailure::diagnoseAsError() { auto selectedOverload = getCalleeOverloadChoiceIfAvailable(getLocator()); if (!selectedOverload || !selectedOverload->choice.isDecl()) return false; auto *choice = selectedOverload->choice.getDecl(); auto *argExpr = getArgumentListExprFor(getLocator()); if (!argExpr) return false; using Substitution = std::pair; llvm::SmallVector substitutions; auto paramTy = restoreGenericParameters( ParamType, [&](GenericTypeParamType *GP, Type resolvedType) { substitutions.push_back(std::make_pair(GP, resolvedType)); }); DeclBaseName name = choice->getBaseName(); std::string subsStr; if (!substitutions.empty()) { llvm::array_pod_sort( substitutions.begin(), substitutions.end(), [](const std::pair *lhs, const std::pair *rhs) -> int { GenericParamKey key1(lhs->first); GenericParamKey key2(rhs->first); return key1 < key2 ? -1 : (key1 == key2) ? 0 : 1; }); subsStr += " [with "; interleave( substitutions, [&subsStr](const Substitution &substitution) { subsStr += substitution.first->getString(); subsStr += " = "; subsStr += substitution.second->getString(); }, [&subsStr] { subsStr += ", "; }); subsStr += ']'; } auto diagnostic = name.isSpecial() ? emitDiagnosticAt(argExpr->getLoc(), diag::single_tuple_parameter_mismatch_special, choice->getDescriptiveKind(), paramTy, subsStr) : emitDiagnosticAt( argExpr->getLoc(), diag::single_tuple_parameter_mismatch_normal, choice->getDescriptiveKind(), name, paramTy, subsStr); auto newLeftParenLoc = argExpr->getStartLoc(); if (auto *TE = dyn_cast(argExpr)) { auto firstArgLabel = TE->getElementName(0); // Cover situations like: // // func foo(x: (Int, Int)) {} // foo(x: 0, 1) // // Where left paren should be suggested after the label, // since the label belongs to the parameter itself. if (!firstArgLabel.empty()) { auto paramTuple = resolveType(ParamType)->castTo(); // If the label of the first argument matches the one required // by the parameter it would be omitted from the fixed parameter type. if (!paramTuple->getElement(0).hasName()) newLeftParenLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr, TE->getElementNameLoc(0)); } } diagnostic.highlight(argExpr->getSourceRange()) .fixItInsertAfter(newLeftParenLoc, "(") .fixItInsert(argExpr->getEndLoc(), ")"); return true; } bool ThrowingFunctionConversionFailure::diagnoseAsError() { emitDiagnostic(diag::throws_functiontype_mismatch, getFromType(), getToType()); return true; } bool AsyncFunctionConversionFailure::diagnoseAsError() { emitDiagnostic(diag::async_functiontype_mismatch, getFromType(), getToType()); return true; } bool InOutConversionFailure::diagnoseAsError() { auto *locator = getLocator(); auto path = locator->getPath(); if (!path.empty() && path.back().getKind() == ConstraintLocator::FunctionArgument) { if (auto argApplyInfo = getFunctionArgApplyInfo(locator)) { emitDiagnostic(diag::cannot_convert_argument_value, argApplyInfo->getArgType(), argApplyInfo->getParamType()); } else { assert(locator->findLast()); auto anchor = getAnchor(); auto contextualType = getContextualType(anchor); auto purpose = getContextualTypePurpose(); auto diagnostic = getDiagnosticFor(purpose, contextualType); if (!diagnostic) return false; emitDiagnostic(*diagnostic, getType(anchor), contextualType); } return true; } emitDiagnostic(diag::cannot_pass_rvalue_inout_converted, getFromType(), getToType()); fixItChangeArgumentType(); return true; } void InOutConversionFailure::fixItChangeArgumentType() const { auto *argExpr = castToExpr(getAnchor()); auto *DC = getDC(); if (auto *IOE = dyn_cast(argExpr)) argExpr = IOE->getSubExpr(); auto *DRE = dyn_cast(argExpr); if (!DRE) return; auto *VD = dyn_cast_or_null(DRE->getDecl()); if (!VD) return; // Don't emit for non-local variables. // (But in script-mode files, we consider module-scoped // variables in the same file to be local variables.) auto VDC = VD->getDeclContext(); bool isLocalVar = VDC->isLocalContext(); if (!isLocalVar && VDC->isModuleScopeContext()) { auto argFile = DC->getParentSourceFile(); auto varFile = VDC->getParentSourceFile(); isLocalVar = (argFile == varFile && argFile->isScriptMode()); } if (!isLocalVar) return; auto actualType = getFromType(); auto neededType = getToType(); SmallString<32> scratch; SourceLoc endLoc; // Filled in if we decide to diagnose this SourceLoc startLoc; // Left invalid if we're inserting auto isSimpleTypelessPattern = [](Pattern *P) -> bool { if (auto VP = dyn_cast_or_null(P)) P = VP->getSubPattern(); return P && isa(P); }; auto typeRange = VD->getTypeSourceRangeForDiagnostics(); if (typeRange.isValid()) { startLoc = typeRange.Start; endLoc = typeRange.End; } else if (isSimpleTypelessPattern(VD->getParentPattern())) { endLoc = VD->getNameLoc(); scratch += ": "; } if (endLoc.isInvalid()) return; scratch += neededType.getString(); // Adjust into the location where we actually want to insert endLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr, endLoc); // Since we already adjusted endLoc, this will turn an insertion // into a zero-character replacement. if (!startLoc.isValid()) startLoc = endLoc; emitDiagnosticAt(VD, diag::inout_change_var_type_if_possible, actualType, neededType) .fixItReplaceChars(startLoc, endLoc, scratch); } bool ArgumentMismatchFailure::diagnoseAsError() { if (diagnoseMisplacedMissingArgument()) return true; if (diagnoseConversionToBool()) return true; if (diagnoseArchetypeMismatch()) return true; if (diagnosePatternMatchingMismatch()) return true; if (diagnoseUseOfReferenceEqualityOperator()) return true; if (diagnosePropertyWrapperMismatch()) return true; if (diagnoseTrailingClosureMismatch()) return true; if (diagnoseKeyPathAsFunctionResultMismatch()) return true; auto argType = getFromType(); auto paramType = getToType(); if (paramType->isAnyObject()) { emitDiagnostic(diag::cannot_convert_argument_value_anyobject, argType, paramType); return true; } Diag diagnostic = diag::cannot_convert_argument_value; // If parameter type is a protocol value, let's says that // argument doesn't conform to a give protocol. if (paramType->isExistentialType()) diagnostic = diag::cannot_convert_argument_value_protocol; auto diag = emitDiagnostic(diagnostic, argType, paramType); // If argument is an l-value type and parameter is a pointer type, // let's match up its element type to the argument to see whether // it would be appropriate to suggest adding `&`. auto argument = getAnchor(); if (getType(argument, /*wantRValue=*/false)->is()) { auto elementTy = paramType->getAnyPointerElementType(); if (elementTy && argType->isEqual(elementTy)) { diag.fixItInsert(::getSourceRange(argument).Start, "&"); return true; } } tryFixIts(diag); return true; } bool ArgumentMismatchFailure::diagnoseAsNote() { auto *locator = getLocator(); if (auto *callee = getCallee()) { emitDiagnosticAt( callee, diag::candidate_has_invalid_argument_at_position, getToType(), getParamPosition(), locator->isLastElement()); return true; } return false; } bool ArgumentMismatchFailure::diagnoseUseOfReferenceEqualityOperator() const { auto *locator = getLocator(); if (!isArgumentOfReferenceEqualityOperator(locator)) return false; auto *binaryOp = castToExpr(getRawAnchor()); auto *lhs = binaryOp->getArg()->getElement(0); auto *rhs = binaryOp->getArg()->getElement(1); auto name = *getOperatorName(binaryOp->getFn()); auto lhsType = getType(lhs); auto rhsType = getType(rhs); // If both arguments where incorrect e.g. both are function types, // let's avoid producing a diagnostic second time, because first // one would cover both arguments. if (getAsExpr(getAnchor()) == rhs && rhsType->is()) { auto *argLoc = getConstraintLocator( binaryOp, {ConstraintLocator::ApplyArgument, LocatorPathElt::ApplyArgToParam(0, 0, getParameterFlagsAtIndex(0))}); if (llvm::any_of(getSolution().Fixes, [&argLoc](const ConstraintFix *fix) { return fix->getLocator() == argLoc; })) return true; } // Regardless of whether the type has reference or value semantics, // comparison with nil is illegal, albeit for different reasons spelled // out by the diagnosis. if (isa(lhs) || isa(rhs)) { std::string revisedName = std::string(name); revisedName.pop_back(); auto loc = binaryOp->getLoc(); auto nonNilType = isa(lhs) ? rhsType : lhsType; auto nonNilExpr = isa(lhs) ? rhs : lhs; // If we made it here, then we're trying to perform a comparison with // reference semantics rather than value semantics. The fixit will // lop off the extra '=' in the operator. if (nonNilType->getOptionalObjectType()) { emitDiagnosticAt( loc, diag::value_type_comparison_with_nil_illegal_did_you_mean, nonNilType) .fixItReplace(loc, revisedName); } else { emitDiagnosticAt(loc, diag::value_type_comparison_with_nil_illegal, nonNilType) .highlight(nonNilExpr->getSourceRange()); } return true; } if (lhsType->is() || rhsType->is()) { emitDiagnosticAt(binaryOp->getLoc(), diag::cannot_reference_compare_types, name.str(), lhsType, rhsType) .highlight(lhs->getSourceRange()) .highlight(rhs->getSourceRange()); return true; } return false; } bool ArgumentMismatchFailure::diagnosePatternMatchingMismatch() const { if (!isArgumentOfPatternMatchingOperator(getLocator())) return false; auto *op = castToExpr(getRawAnchor()); auto *lhsExpr = op->getArg()->getElement(0); auto *rhsExpr = op->getArg()->getElement(1); auto lhsType = getType(lhsExpr); auto rhsType = getType(rhsExpr); auto diagnostic = lhsType->is() ? emitDiagnostic( diag::cannot_match_unresolved_expr_pattern_with_value, rhsType) : emitDiagnostic(diag::cannot_match_expr_pattern_with_value, lhsType, rhsType); diagnostic.highlight(lhsExpr->getSourceRange()); diagnostic.highlight(rhsExpr->getSourceRange()); if (auto optUnwrappedType = rhsType->getOptionalObjectType()) { if (lhsType->isEqual(optUnwrappedType)) { diagnostic.fixItInsertAfter(lhsExpr->getEndLoc(), "?"); } } return true; } bool ArgumentMismatchFailure::diagnoseArchetypeMismatch() const { auto *argTy = getFromType()->getAs(); auto *paramTy = getToType()->getAs(); if (!(argTy && paramTy)) return false; // Produce this diagnostic only if the names // of the generic parameters are the same. if (argTy->getName() != paramTy->getName()) return false; auto getGenericTypeDecl = [&](ArchetypeType *archetype) -> ValueDecl * { auto paramType = archetype->getInterfaceType(); if (auto *GTPT = paramType->getAs()) return GTPT->getDecl(); if (auto *DMT = paramType->getAs()) return DMT->getAssocType(); return nullptr; }; auto *argDecl = getGenericTypeDecl(argTy); auto *paramDecl = getGenericTypeDecl(paramTy); if (!(paramDecl && argDecl)) return false; emitDiagnostic(diag::cannot_convert_argument_value_generic, argTy, describeGenericType(argDecl), paramTy, describeGenericType(paramDecl)); emitDiagnosticAt(argDecl, diag::descriptive_generic_type_declared_here, describeGenericType(argDecl, true)); emitDiagnosticAt(paramDecl, diag::descriptive_generic_type_declared_here, describeGenericType(paramDecl, true)); return true; } bool ArgumentMismatchFailure::diagnoseMisplacedMissingArgument() const { const auto &solution = getSolution(); auto *locator = getLocator(); if (!MissingArgumentsFailure::isMisplacedMissingArgument(solution, locator)) return false; // Assign new type variable to a type of a parameter. auto *fnType = getFnType(); const auto ¶m = fnType->getParams()[0]; auto anchor = getRawAnchor(); MissingArgumentsFailure failure( solution, {SynthesizedArg{0, param}}, getConstraintLocator(anchor, ConstraintLocator::ApplyArgument)); return failure.diagnoseSingleMissingArgument(); } bool ArgumentMismatchFailure::diagnosePropertyWrapperMismatch() const { auto argType = getFromType(); auto paramType = getToType(); // Verify that this is an implicit call to a property wrapper initializer // in a form of `init(wrappedValue:)` or deprecated `init(initialValue:)`. auto *call = getAsExpr(getRawAnchor()); if (!(call && call->isImplicit() && isa(call->getFn()) && call->getNumArguments() == 1 && (call->getArgumentLabels().front() == getASTContext().Id_wrappedValue || call->getArgumentLabels().front() == getASTContext().Id_initialValue))) return false; auto argExpr = cast(call->getArg())->getElement(0); // If this is an attempt to initialize property wrapper with opaque value // of error type, let's just ignore that problem since original mismatch // has been diagnosed already. if (argExpr->isImplicit() && isa(argExpr) && argType->is()) return true; emitDiagnostic(diag::cannot_convert_initializer_value, argType, paramType); return true; } bool ArgumentMismatchFailure::diagnoseTrailingClosureMismatch() const { if (!Info.isTrailingClosure()) return false; auto paramType = getToType(); if (paramType->lookThroughAllOptionalTypes()->is()) return false; emitDiagnostic(diag::trailing_closure_bad_param, paramType) .highlight(getSourceRange()); if (auto overload = getCalleeOverloadChoiceIfAvailable(getLocator())) { if (auto *decl = overload->choice.getDeclOrNull()) { emitDiagnosticAt(decl, diag::decl_declared_here, decl->getName()); } } return true; } bool ArgumentMismatchFailure::diagnoseKeyPathAsFunctionResultMismatch() const { auto argExpr = getArgExpr(); if (!isExpr(argExpr)) return false; auto argType = getFromType(); auto paramType = getToType(); if (!isKnownKeyPathType(argType)) return false; auto kpType = argType->castTo(); auto kpRootType = kpType->getGenericArgs()[0]; auto kpValueType = kpType->getGenericArgs()[1]; auto paramFnType = paramType->getAs(); if (!(paramFnType && paramFnType->getNumParams() == 1 && paramFnType->getParams().front().getPlainType()->isEqual(kpRootType))) return false; emitDiagnostic(diag::expr_smart_keypath_value_covert_to_contextual_type, kpValueType, paramFnType->getResult()); return true; } void ExpandArrayIntoVarargsFailure::tryDropArrayBracketsFixIt( const Expr *anchor) const { // If this is an array literal, offer to remove the brackets and pass the // elements directly as variadic arguments. if (auto *arrayExpr = dyn_cast(anchor)) { auto diag = emitDiagnosticAt(arrayExpr->getLoc(), diag::suggest_pass_elements_directly); diag.fixItRemove(arrayExpr->getLBracketLoc()) .fixItRemove(arrayExpr->getRBracketLoc()); // Handle the case where the array literal has a trailing comma. if (arrayExpr->getNumCommas() == arrayExpr->getNumElements()) diag.fixItRemove(arrayExpr->getCommaLocs().back()); } } bool ExpandArrayIntoVarargsFailure::diagnoseAsError() { if (auto *anchor = getAsExpr(getAnchor())) { emitDiagnostic(diag::cannot_convert_array_to_variadic, getFromType(), getToType()); tryDropArrayBracketsFixIt(anchor); // TODO: Array splat fix-it once that's supported. return true; } return false; } bool ExpandArrayIntoVarargsFailure::diagnoseAsNote() { auto overload = getCalleeOverloadChoiceIfAvailable(getLocator()); auto *anchor = getAsExpr(getAnchor()); if (!overload || !anchor) return false; if (auto chosenDecl = overload->choice.getDeclOrNull()) { emitDiagnosticAt(chosenDecl, diag::candidate_would_match_array_to_variadic, getToType()); tryDropArrayBracketsFixIt(anchor); return true; } return false; } bool ExtraneousCallFailure::diagnoseAsError() { auto anchor = getAnchor(); auto *locator = getLocator(); // If this is something like `foo()` where `foo` is a variable // or a property, let's suggest dropping `()`. auto removeParensFixIt = [&](InFlightDiagnostic &diagnostic) { auto *argLoc = getConstraintLocator(getRawAnchor(), ConstraintLocator::ApplyArgument); if (auto *TE = getAsExpr(simplifyLocatorToAnchor(argLoc))) { if (TE->getNumElements() == 0) { diagnostic.fixItRemove(TE->getSourceRange()); } } }; if (auto overload = getCalleeOverloadChoiceIfAvailable(locator)) { if (auto *decl = overload->choice.getDeclOrNull()) { if (auto *enumCase = dyn_cast(decl)) { auto diagnostic = emitDiagnostic(diag::unexpected_arguments_in_enum_case, enumCase->getBaseIdentifier()); removeParensFixIt(diagnostic); return true; } } } if (auto *UDE = getAsExpr(anchor)) { auto *baseExpr = UDE->getBase(); auto *call = castToExpr(getRawAnchor()); if (getType(baseExpr)->isAnyObject()) { emitDiagnostic(diag::cannot_call_with_params, UDE->getName().getBaseName().userFacingName(), getType(call->getArg())->getString(), isa(baseExpr)); return true; } } auto diagnostic = emitDiagnostic(diag::cannot_call_non_function_value, getType(anchor)); removeParensFixIt(diagnostic); return true; } void NonEphemeralConversionFailure::emitSuggestionNotes() const { auto getPointerKind = [](Type ty) -> PointerTypeKind { PointerTypeKind pointerKind; auto pointeeType = ty->lookThroughSingleOptionalType() ->getAnyPointerElementType(pointerKind); assert(pointeeType && "Expected a pointer!"); (void)pointeeType; return pointerKind; }; // This must stay in sync with diag::ephemeral_use_array_with_unsafe_buffer // and diag::ephemeral_use_with_unsafe_pointer. enum AlternativeKind { AK_Raw = 0, AK_MutableRaw, AK_Typed, AK_MutableTyped, }; auto getAlternativeKind = [&]() -> Optional { switch (getPointerKind(getParamType())) { case PTK_UnsafeRawPointer: return AK_Raw; case PTK_UnsafeMutableRawPointer: return AK_MutableRaw; case PTK_UnsafePointer: return AK_Typed; case PTK_UnsafeMutablePointer: return AK_MutableTyped; case PTK_AutoreleasingUnsafeMutablePointer: return None; } llvm_unreachable("invalid pointer kind"); }; // First emit a note about the implicit conversion only lasting for the // duration of the call. auto *argExpr = getArgExpr(); emitDiagnosticAt( argExpr->getLoc(), diag::ephemeral_pointer_argument_conversion_note, getArgType(), getParamType(), getCallee(), getCalleeFullName()) .highlight(argExpr->getSourceRange()); // Then try to find a suitable alternative. switch (ConversionKind) { case ConversionRestrictionKind::ArrayToPointer: { // Don't suggest anything for optional arrays, as there's currently no // direct alternative. if (getArgType()->getOptionalObjectType()) break; // We can suggest using withUnsafe[Mutable][Bytes/BufferPointer]. if (auto alternative = getAlternativeKind()) emitDiagnosticAt(argExpr->getLoc(), diag::ephemeral_use_array_with_unsafe_buffer, *alternative); break; } case ConversionRestrictionKind::StringToPointer: { // Don't suggest anything for optional strings, as there's currently no // direct alternative. if (getArgType()->getOptionalObjectType()) break; // We can suggest withCString as long as the resulting pointer is // immutable. switch (getPointerKind(getParamType())) { case PTK_UnsafePointer: case PTK_UnsafeRawPointer: emitDiagnosticAt(argExpr->getLoc(), diag::ephemeral_use_string_with_c_string); break; case PTK_UnsafeMutableRawPointer: case PTK_UnsafeMutablePointer: case PTK_AutoreleasingUnsafeMutablePointer: // There's nothing really sensible we can suggest for a mutable pointer. break; } break; } case ConversionRestrictionKind::InoutToPointer: // For an arbitrary inout-to-pointer, we can suggest // withUnsafe[Mutable][Bytes/Pointer]. if (auto alternative = getAlternativeKind()) emitDiagnosticAt(argExpr->getLoc(), diag::ephemeral_use_with_unsafe_pointer, *alternative); break; case ConversionRestrictionKind::DeepEquality: case ConversionRestrictionKind::Superclass: case ConversionRestrictionKind::Existential: case ConversionRestrictionKind::MetatypeToExistentialMetatype: case ConversionRestrictionKind::ExistentialMetatypeToMetatype: case ConversionRestrictionKind::ValueToOptional: case ConversionRestrictionKind::OptionalToOptional: case ConversionRestrictionKind::ClassMetatypeToAnyObject: case ConversionRestrictionKind::ExistentialMetatypeToAnyObject: case ConversionRestrictionKind::ProtocolMetatypeToProtocolClass: case ConversionRestrictionKind::PointerToPointer: case ConversionRestrictionKind::ArrayUpcast: case ConversionRestrictionKind::DictionaryUpcast: case ConversionRestrictionKind::SetUpcast: case ConversionRestrictionKind::HashableToAnyHashable: case ConversionRestrictionKind::CFTollFreeBridgeToObjC: case ConversionRestrictionKind::ObjCTollFreeBridgeToCF: case ConversionRestrictionKind::CGFloatToDouble: case ConversionRestrictionKind::DoubleToCGFloat: llvm_unreachable("Expected an ephemeral conversion!"); } } bool NonEphemeralConversionFailure::diagnosePointerInit() const { auto *constructor = dyn_cast_or_null(getCallee()); if (!constructor) return false; auto constructedTy = getFnType()->getResult(); // Strip off a level of optionality if we have a failable initializer. if (constructor->isFailable()) constructedTy = constructedTy->getOptionalObjectType(); // This must stay in sync with diag::cannot_construct_dangling_pointer. enum ConstructorKind { CK_Pointer = 0, CK_BufferPointer, }; // Consider OpaquePointer as well as the other kinds of pointers. auto isConstructingPointer = constructedTy->getAnyPointerElementType() || constructedTy->getAnyNominal() == getASTContext().getOpaquePointerDecl(); ConstructorKind constructorKind; auto parameterCount = constructor->getParameters()->size(); if (isConstructingPointer && parameterCount == 1) { constructorKind = CK_Pointer; } else if (constructedTy->getAnyBufferPointerElementType() && parameterCount == 2) { constructorKind = CK_BufferPointer; } else { return false; } auto diagID = DowngradeToWarning ? diag::cannot_construct_dangling_pointer_warning : diag::cannot_construct_dangling_pointer; auto anchor = getRawAnchor(); emitDiagnosticAt(::getLoc(anchor), diagID, constructedTy, constructorKind) .highlight(::getSourceRange(anchor)); emitSuggestionNotes(); return true; } bool NonEphemeralConversionFailure::diagnoseAsNote() { // We can only emit a useful note if we have a callee. if (auto *callee = getCallee()) { emitDiagnosticAt(callee, diag::candidate_performs_illegal_ephemeral_conv, getParamPosition()); return true; } return false; } bool NonEphemeralConversionFailure::diagnoseAsError() { // Emit a specialized diagnostic for // Unsafe[Mutable][Raw]Pointer.init([mutating]:) & // Unsafe[Mutable][Raw]BufferPointer.init(start:count:). if (diagnosePointerInit()) return true; // Otherwise, emit a more general diagnostic. SmallString<8> scratch; auto argDesc = getArgDescription(scratch); auto *argExpr = getArgExpr(); if (isa(argExpr)) { auto diagID = DowngradeToWarning ? diag::cannot_use_inout_non_ephemeral_warning : diag::cannot_use_inout_non_ephemeral; emitDiagnosticAt(argExpr->getLoc(), diagID, argDesc, getCallee(), getCalleeFullName()) .highlight(argExpr->getSourceRange()); } else { auto diagID = DowngradeToWarning ? diag::cannot_pass_type_to_non_ephemeral_warning : diag::cannot_pass_type_to_non_ephemeral; emitDiagnosticAt(argExpr->getLoc(), diagID, getArgType(), argDesc, getCallee(), getCalleeFullName()) .highlight(argExpr->getSourceRange()); } emitSuggestionNotes(); return true; } bool AssignmentTypeMismatchFailure::diagnoseMissingConformance() const { auto srcType = getFromType(); auto dstType = getToType()->lookThroughAllOptionalTypes(); llvm::SmallPtrSet srcMembers; llvm::SmallPtrSet dstMembers; auto retrieveProtocols = [](Type type, llvm::SmallPtrSetImpl &members) { if (auto *protocol = type->getAs()) members.insert(protocol->getDecl()); if (auto *composition = type->getAs()) { for (auto member : composition->getMembers()) { if (auto *protocol = member->getAs()) members.insert(protocol->getDecl()); } } }; retrieveProtocols(srcType, srcMembers); retrieveProtocols(dstType, dstMembers); if (srcMembers.empty() || dstMembers.empty()) return false; // Let's check whether there is an overlap between source and destination. for (auto *member : srcMembers) dstMembers.erase(member); if (dstMembers.size() == 1) dstType = (*dstMembers.begin())->getDeclaredType(); emitDiagnostic(diag::cannot_convert_assign_protocol, srcType, dstType); return true; } bool AssignmentTypeMismatchFailure::diagnoseAsError() { if (diagnoseMissingConformance()) return true; return ContextualFailure::diagnoseAsError(); } bool AssignmentTypeMismatchFailure::diagnoseAsNote() { auto anchor = getAnchor(); if (auto overload = getCalleeOverloadChoiceIfAvailable(getConstraintLocator(anchor))) { if (auto *decl = overload->choice.getDeclOrNull()) { emitDiagnosticAt(decl, diag::cannot_convert_candidate_result_to_contextual_type, decl->getName(), getFromType(), getToType()); return true; } } return false; } bool MissingContextualBaseInMemberRefFailure::diagnoseAsError() { auto *anchor = castToExpr(getAnchor()); // Member reference could be wrapped into a number of parens // e.g. `((.foo))`. auto *parentExpr = findParentExpr(anchor); // Look through immediate call of unresolved member (e.g., `.foo(0)`). if (parentExpr && isa(parentExpr)) parentExpr = findParentExpr(parentExpr); // FIXME: We should probably look through the entire member chain so that // something like `let _ = .foo().bar` gets the "no contextual type" error // rather than the "Cannot infer contextual base" error. UnresolvedMemberChainResultExpr *resultExpr = nullptr; if (parentExpr && isa(parentExpr)) { resultExpr = cast(parentExpr); parentExpr = findParentExpr(parentExpr); } do { // If we have found something which isn't a paren let's stop, // otherwise let's keep unwrapping until there are either no // more parens or no more parents... if (!parentExpr || !isa(parentExpr)) break; } while ((parentExpr = findParentExpr(parentExpr))); auto diagnostic = parentExpr || (resultExpr && getContextualType(resultExpr)) ? diag::cannot_infer_base_of_unresolved_member : diag::unresolved_member_no_inference; emitDiagnostic(diagnostic, MemberName).highlight(getSourceRange()); return true; } bool UnableToInferClosureParameterType::diagnoseAsError() { auto *closure = castToExpr(getRawAnchor()); // Let's check whether this closure is an argument to // a call which couldn't be properly resolved e.g. // missing member or invalid contextual reference and // if so let's not diagnose this problem because main // issue here is inability to establish context for // closure inference. // // TODO(diagnostics): Once we gain an ability to determine // originating source of type holes this check could be // significantly simplified. { auto &solution = getSolution(); // If there is a contextual mismatch associated with this // closure, let's not diagnose any parameter type issues. if (hasFixFor(solution, getConstraintLocator( closure, LocatorPathElt::ContextualType()))) return false; if (auto *parentExpr = findParentExpr(closure)) { while (parentExpr && (isa(parentExpr) || isa(parentExpr))) { parentExpr = findParentExpr(parentExpr); } if (parentExpr) { // Missing or invalid member reference in call. if (auto *AE = dyn_cast(parentExpr)) { if (getType(AE->getFn())->is()) return false; } // Any fix anchored on parent expression makes it unnecessary // to diagnose unability to infer parameter type because it's // an indication that proper context couldn't be established to // resolve the closure. ASTNode parentNode(parentExpr); if (llvm::any_of(solution.Fixes, [&parentNode](const ConstraintFix *fix) -> bool { return fix->getAnchor() == parentNode; })) return false; } } } auto paramIdx = getLocator() ->castLastElementTo() .getIndex(); auto *PD = closure->getParameters()->get(paramIdx); llvm::SmallString<16> id; llvm::raw_svector_ostream OS(id); if (PD->isAnonClosureParam()) { OS << "$" << paramIdx; } else { OS << "'" << PD->getParameterName() << "'"; } auto loc = PD->isAnonClosureParam() ? getLoc() : PD->getLoc(); emitDiagnosticAt(loc, diag::cannot_infer_closure_parameter_type, OS.str()); return true; } bool UnableToInferClosureReturnType::diagnoseAsError() { auto *closure = castToExpr(getRawAnchor()); auto diagnostic = emitDiagnostic(diag::cannot_infer_closure_result_type, closure->hasSingleExpressionBody()); // If there is a location for an 'in' token, then the argument list was // specified somehow but no return type was. Insert a "-> ReturnType " // before the in token. if (closure->getInLoc().isValid()) { diagnostic.fixItInsert(closure->getInLoc(), diag::insert_closure_return_type_placeholder, /*argListSpecified=*/false); } else if (closure->getParameters()->size() == 0) { // Otherwise, the closure must take zero arguments. // // As such, we insert " () -> ReturnType in " right after the '{' that // starts the closure body. diagnostic.fixItInsertAfter(closure->getBody()->getLBraceLoc(), diag::insert_closure_return_type_placeholder, /*argListSpecified=*/true); } return true; } static std::pair getImportModuleAndDefaultType(const ASTContext &ctx, const ObjectLiteralExpr *expr) { const auto &target = ctx.LangOpts.Target; switch (expr->getLiteralKind()) { case ObjectLiteralExpr::colorLiteral: { if (target.isMacOSX()) { return std::make_pair("AppKit", "NSColor"); } else if (target.isiOS() || target.isTvOS()) { return std::make_pair("UIKit", "UIColor"); } break; } case ObjectLiteralExpr::imageLiteral: { if (target.isMacOSX()) { return std::make_pair("AppKit", "NSImage"); } else if (target.isiOS() || target.isTvOS()) { return std::make_pair("UIKit", "UIImage"); } break; } case ObjectLiteralExpr::fileLiteral: { return std::make_pair("Foundation", "URL"); } } return std::make_pair("", ""); } SourceLoc UnableToInferProtocolLiteralType::getLoc() const { return ::getLoc(getRawAnchor()); } bool UnableToInferProtocolLiteralType::diagnoseAsError() { auto &ctx = getASTContext(); auto *expr = castToExpr(getRawAnchor()); StringRef importModule; StringRef importDefaultTypeName; std::tie(importModule, importDefaultTypeName) = getImportModuleAndDefaultType(ctx, expr); auto plainName = expr->getLiteralKindPlainName(); emitDiagnostic(diag::object_literal_default_type_missing, plainName); if (!importModule.empty()) { emitDiagnostic(diag::object_literal_resolve_import, importModule, importDefaultTypeName, plainName); } return true; } bool MissingQuialifierInMemberRefFailure::diagnoseAsError() { auto selectedOverload = getOverloadChoiceIfAvailable(getLocator()); if (!selectedOverload) return false; auto *UDE = castToExpr(getRawAnchor()); auto baseType = getType(UDE->getBase()); auto methodKind = baseType->isAnyExistentialType() ? DescriptiveDeclKind::StaticMethod : DescriptiveDeclKind::Method; auto choice = selectedOverload->choice.getDeclOrNull(); if (!choice) return false; auto *DC = choice->getDeclContext(); if (!(DC->isModuleContext() || DC->isModuleScopeContext())) { emitDiagnostic(diag::member_shadows_function, UDE->getName(), methodKind, choice->getDescriptiveKind(), choice->getName()); return true; } auto qualifier = DC->getParentModule()->getName(); emitDiagnostic(diag::member_shadows_global_function, UDE->getName(), methodKind, choice->getDescriptiveKind(), choice->getName(), qualifier); SmallString<32> namePlusDot = qualifier.str(); namePlusDot.push_back('.'); emitDiagnostic(diag::fix_unqualified_access_top_level_multi, namePlusDot, choice->getDescriptiveKind(), qualifier) .fixItInsert(UDE->getStartLoc(), namePlusDot); emitDiagnosticAt(choice, diag::decl_declared_here, choice->getName()); return true; } bool CoercionAsForceCastFailure::diagnoseAsError() { emitDiagnostic(diag::coercion_may_fail_warning, getFromType(), getToType()) .highlight(getSourceRange()); return true; } bool KeyPathRootTypeMismatchFailure::diagnoseAsError() { auto locator = getLocator(); assert(locator->isKeyPathRoot() && "Expected a key path root"); auto baseType = getFromType(); auto rootType = getToType(); emitDiagnostic(diag::expr_keypath_root_type_mismatch, rootType, baseType); return true; } bool MultiArgFuncKeyPathFailure::diagnoseAsError() { // Diagnose use a keypath where a function with multiple arguments is expected emitDiagnostic(diag::expr_keypath_multiparam_func_conversion, resolveType(functionType)); return true; } bool UnableToInferKeyPathRootFailure::diagnoseAsError() { assert(isExpr(getAnchor()) && "Expected key path expression"); auto &ctx = getASTContext(); auto contextualType = getContextualType(getAnchor()); auto *keyPathExpr = castToExpr(getAnchor()); auto emitKeyPathDiagnostic = [&]() { if (contextualType && contextualType->getAnyNominal() == ctx.getAnyKeyPathDecl()) { return emitDiagnostic( diag::cannot_infer_keypath_root_anykeypath_context); } return emitDiagnostic( diag::cannot_infer_contextual_keypath_type_specify_root); }; emitKeyPathDiagnostic() .highlight(keyPathExpr->getLoc()) .fixItInsertAfter(keyPathExpr->getStartLoc(), "<#Root#>"); return true; } Optional> AbstractRawRepresentableFailure::getDiagnostic() const { auto *locator = getLocator(); if (locator->isForContextualType()) { return diag::cannot_convert_initializer_value; } else if (locator->isForAssignment()) { return diag::cannot_convert_assign; } else if (locator->isLastElement()) { return diag::cannot_convert_argument_value; } return None; } bool AbstractRawRepresentableFailure::diagnoseAsError() { auto message = getDiagnostic(); if (!message) return false; auto diagnostic = emitDiagnostic(*message, getFromType(), getToType()); fixIt(diagnostic); return true; } bool AbstractRawRepresentableFailure::diagnoseAsNote() { auto *locator = getLocator(); Optional diagnostic; if (locator->isForContextualType()) { auto overload = getCalleeOverloadChoiceIfAvailable(locator); if (!overload) return false; if (auto *decl = overload->choice.getDeclOrNull()) { diagnostic.emplace(emitDiagnosticAt( decl, diag::cannot_convert_candidate_result_to_contextual_type, decl->getName(), ExpectedType, RawReprType)); } } else if (auto argConv = locator->getLastElementAs()) { diagnostic.emplace( emitDiagnostic(diag::candidate_has_invalid_argument_at_position, RawReprType, argConv->getParamIdx(), /*inOut=*/false)); } if (diagnostic) { fixIt(*diagnostic); return true; } return false; } void MissingRawRepresentableInitFailure::fixIt( InFlightDiagnostic &diagnostic) const { if (auto *E = getAsExpr(getAnchor())) { auto range = E->getSourceRange(); auto rawReprObjType = RawReprType->getOptionalObjectType(); auto valueObjType = ExpectedType->getOptionalObjectType(); if (rawReprObjType && valueObjType) { std::string mapCodeFix; // Check whether expression has been be wrapped in parens first. if (!E->canAppendPostfixExpression()) { diagnostic.fixItInsert(range.Start, "("); mapCodeFix += ")"; } mapCodeFix += ".map { "; mapCodeFix += rawReprObjType->getString(); mapCodeFix += "(rawValue: $0) }"; diagnostic.fixItInsertAfter(range.End, mapCodeFix); } else if (rawReprObjType) { diagnostic .fixItInsert(range.Start, rawReprObjType->getString() + "(rawValue: ") .fixItInsertAfter(range.End, ")"); } else if (valueObjType) { diagnostic.flush(); std::string fixItBefore = RawReprType->getString() + "(rawValue: "; std::string fixItAfter; if (!E->canAppendPostfixExpression(true)) { fixItBefore += "("; fixItAfter += ")"; } fixItAfter += "!) ?? <#default value#>"; emitDiagnostic(diag::construct_raw_representable_from_unwrapped_value, RawReprType, valueObjType) .highlight(range) .fixItInsert(range.Start, fixItBefore) .fixItInsertAfter(range.End, fixItAfter); } else { diagnostic .fixItInsert(range.Start, RawReprType->getString() + "(rawValue: ") .fixItInsertAfter(range.End, ") ?? <#default value#>"); } } } bool MissingRawValueFailure::diagnoseAsError() { auto *locator = getLocator(); if (locator->isLastElement()) { MissingConformanceFailure failure(getSolution(), locator, {RawReprType, ExpectedType}); auto diagnosed = failure.diagnoseAsError(); if (!diagnosed) return false; auto note = emitDiagnostic(diag::note_remapped_type, ".rawValue"); fixIt(note); return true; } return AbstractRawRepresentableFailure::diagnoseAsError(); } void MissingRawValueFailure::fixIt(InFlightDiagnostic &diagnostic) const { auto *E = getAsExpr(getAnchor()); if (!E) return; std::string fix; auto range = E->getSourceRange(); if (!E->canAppendPostfixExpression()) { diagnostic.fixItInsert(range.Start, "("); fix += ")"; } // If raw representable is an optional we need to map its raw value out // out first and then, if destination is not optional, allow to specify // default value. if (RawReprType->getOptionalObjectType()) { fix += "?.rawValue"; if (!ExpectedType->getOptionalObjectType()) fix += " ?? <#default value#>"; } else { fix += ".rawValue"; } diagnostic.fixItInsertAfter(range.End, fix); } bool MissingOptionalUnwrapKeyPathFailure::diagnoseAsError() { emitDiagnostic(diag::optional_not_unwrapped, getFromType(), getFromType()->lookThroughSingleOptionalType()); emitDiagnostic(diag::optional_keypath_application_base) .fixItInsertAfter(getLoc(), "?"); emitDiagnostic(diag::unwrap_with_force_value) .fixItInsertAfter(getLoc(), "!"); return true; } SourceLoc MissingOptionalUnwrapKeyPathFailure::getLoc() const { auto *SE = castToExpr(getAnchor()); return SE->getBase()->getEndLoc(); } bool TrailingClosureRequiresExplicitLabel::diagnoseAsError() { auto argInfo = *getFunctionArgApplyInfo(getLocator()); { auto diagnostic = emitDiagnostic( diag::unlabeled_trailing_closure_deprecated, argInfo.getParamLabel()); fixIt(diagnostic, argInfo); } if (auto *callee = argInfo.getCallee()) { emitDiagnosticAt(callee, diag::decl_declared_here, callee->getName()); } return true; } void TrailingClosureRequiresExplicitLabel::fixIt( InFlightDiagnostic &diagnostic, const FunctionArgApplyInfo &info) const { auto &ctx = getASTContext(); // Dig out source locations. SourceLoc existingRParenLoc; SourceLoc leadingCommaLoc; auto anchor = getRawAnchor(); auto *arg = info.getArgListExpr(); Expr *fn = nullptr; if (auto *applyExpr = getAsExpr(anchor)) { fn = applyExpr->getFn(); } else { // Covers subscripts, unresolved members etc. fn = getAsExpr(anchor); } if (!fn) return; auto *trailingClosure = info.getArgExpr(); if (auto tupleExpr = dyn_cast(arg)) { existingRParenLoc = tupleExpr->getRParenLoc(); assert(tupleExpr->getNumElements() >= 2 && "Should be a ParenExpr?"); leadingCommaLoc = Lexer::getLocForEndOfToken( ctx.SourceMgr, tupleExpr->getElements()[tupleExpr->getNumElements() - 2]->getEndLoc()); } else { auto parenExpr = cast(arg); existingRParenLoc = parenExpr->getRParenLoc(); } // Figure out the text to be inserted before the trailing closure. SmallString<16> insertionText; SourceLoc insertionLoc; if (leadingCommaLoc.isValid()) { insertionText += ", "; assert(existingRParenLoc.isValid()); insertionLoc = leadingCommaLoc; } else if (existingRParenLoc.isInvalid()) { insertionText += "("; insertionLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, fn->getEndLoc()); } else { insertionLoc = existingRParenLoc; } // Add the label, if there is one. auto paramName = info.getParamLabel(); if (!paramName.empty()) { insertionText += paramName.str(); insertionText += ": "; } // If there is an existing right parentheses/brace, remove it while we // insert the new text. if (existingRParenLoc.isValid()) { SourceLoc afterExistingRParenLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, existingRParenLoc); diagnostic.fixItReplaceChars(insertionLoc, afterExistingRParenLoc, insertionText); } else { // Insert the appropriate prefix. diagnostic.fixItInsert(insertionLoc, insertionText); } // Insert a right parenthesis/brace after the closing '}' of the trailing // closure; SourceLoc newRParenLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, trailingClosure->getEndLoc()); diagnostic.fixItInsert(newRParenLoc, isExpr(anchor) ? "]" : ")"); } bool InvalidEmptyKeyPathFailure::diagnoseAsError() { auto *KPE = getAsExpr(getAnchor()); assert(KPE && KPE->hasSingleInvalidComponent() && "Expected a malformed key path expression"); // If we have a string interpolation represented as key path expressions // e.g. \(x), \(x, a: 1). Let's skip it because this would be already // diagnosed and it is not the case for an extra empty key path diagnostic. auto *root = KPE->getParsedRoot(); if (root && (isa(root) || isa(root))) return true; emitDiagnostic(diag::expr_swift_keypath_empty); return true; } bool MissingContextualTypeForNil::diagnoseAsError() { auto *expr = castToExpr(getAnchor()); // If this is a standalone `nil` literal expression e.g. // `_ = nil`, let's diagnose it here because solver can't // attempt any types for it. auto *parentExpr = findParentExpr(expr); while (parentExpr && isa(parentExpr)) parentExpr = findParentExpr(parentExpr); // In cases like `_ = nil?` AST would have `nil` // wrapped in `BindOptionalExpr`. if (parentExpr && isa(parentExpr)) parentExpr = findParentExpr(parentExpr); if (parentExpr) { // `_ = nil as? ...` if (isa(parentExpr)) { emitDiagnostic(diag::conditional_cast_from_nil); return true; } // `_ = nil!` if (isa(parentExpr)) { emitDiagnostic(diag::cannot_force_unwrap_nil_literal); return true; } // `_ = nil?` if (isa(parentExpr)) { emitDiagnostic(diag::unresolved_nil_literal); return true; } } emitDiagnostic(diag::unresolved_nil_literal); return true; } bool ReferenceToInvalidDeclaration::diagnoseAsError() { auto &DE = getASTContext().Diags; // `resolveType` caches results, so there is no way // to suppress and then re-request the diagnostic // via calling `resolveType` on the same `TypeRepr`. if (getAsDecl(getAnchor())) return DE.hadAnyError(); auto *decl = castToExpr(getAnchor())->getDecl(); assert(decl); // This problem should have been already diagnosed during // validation of the declaration. if (DE.hadAnyError()) return true; // If no errors have been emitted yet, let's emit one // about reference to an invalid declaration. emitDiagnostic(diag::reference_to_invalid_decl, decl->getName()); emitDiagnosticAt(decl, diag::decl_declared_here, decl->getName()); return true; } bool InvalidReturnInResultBuilderBody::diagnoseAsError() { auto *closure = castToExpr(getAnchor()); auto returnStmts = TypeChecker::findReturnStatements(closure); assert(!returnStmts.empty()); auto loc = returnStmts.front()->getReturnLoc(); emitDiagnosticAt(loc, diag::result_builder_disabled_by_return, BuilderType); // Note that one can remove all of the return statements. { auto diag = emitDiagnosticAt(loc, diag::result_builder_remove_returns); for (auto returnStmt : returnStmts) diag.fixItRemove(returnStmt->getReturnLoc()); } return true; } bool MemberMissingExplicitBaseTypeFailure::diagnoseAsError() { auto UME = castToExpr(getAnchor()); auto memberName = UME->getName().getBaseIdentifier().str(); auto &DE = getASTContext().Diags; auto &solution = getSolution(); auto selected = solution.getOverloadChoice(getLocator()); auto baseType = resolveType(selected.choice.getBaseType()->getMetatypeInstanceType()); SmallVector optionals; auto baseTyUnwrapped = baseType->lookThroughAllOptionalTypes(optionals); if (!optionals.empty()) { auto baseTyName = baseType->getCanonicalType().getString(); auto baseTyUnwrappedName = baseTyUnwrapped->getString(); auto loc = UME->getLoc(); auto startLoc = UME->getStartLoc(); DE.diagnoseWithNotes( DE.diagnose(loc, diag::optional_ambiguous_case_ref, baseTyName, baseTyUnwrappedName, memberName), [&]() { DE.diagnose(UME->getDotLoc(), diag::optional_fixit_ambiguous_case_ref) .fixItInsert(startLoc, "Optional"); DE.diagnose(UME->getDotLoc(), diag::type_fixit_optional_ambiguous_case_ref, baseTyUnwrappedName, memberName) .fixItInsert(startLoc, baseTyUnwrappedName); }); } else { auto baseTypeName = baseType->getCanonicalType().getString(); auto baseOptionalTypeName = OptionalType::get(baseType)->getCanonicalType().getString(); DE.diagnoseWithNotes( DE.diagnose(UME->getLoc(), diag::optional_ambiguous_case_ref, baseTypeName, baseOptionalTypeName, memberName), [&]() { DE.diagnose(UME->getDotLoc(), diag::type_fixit_optional_ambiguous_case_ref, baseOptionalTypeName, memberName) .fixItInsert(UME->getDotLoc(), baseOptionalTypeName); DE.diagnose(UME->getDotLoc(), diag::type_fixit_optional_ambiguous_case_ref, baseTypeName, memberName) .fixItInsert(UME->getDotLoc(), baseTypeName); }); } return true; } bool InvalidMemberRefOnProtocolMetatype::diagnoseAsError() { auto *locator = getLocator(); auto overload = getOverloadChoiceIfAvailable(locator); if (!overload) return false; auto *member = overload->choice.getDeclOrNull(); assert(member); emitDiagnostic( diag::contextual_member_ref_on_protocol_requires_self_requirement, member->getDescriptiveKind(), member->getName()); auto *extension = dyn_cast(member->getDeclContext()); // If this was a protocol requirement we can't suggest a fix-it. if (!extension) return true; auto note = emitDiagnosticAt(extension, diag::missing_sametype_requirement_on_self); if (auto *whereClause = extension->getTrailingWhereClause()) { auto sourceRange = whereClause->getSourceRange(); note.fixItInsertAfter(sourceRange.End, ", Self == <#Type#> "); } else { auto nameRepr = extension->getExtendedTypeRepr(); note.fixItInsertAfter(nameRepr->getEndLoc(), " where Self == <#Type#>"); } return true; } bool CheckedCastBaseFailure::isCastTypeIUO() const { auto *expr = castToExpr(getAnchor()); const auto *const TR = expr->getCastTypeRepr(); return TR && TR->getKind() == TypeReprKind::ImplicitlyUnwrappedOptional; } SourceRange CheckedCastBaseFailure::getCastRange() const { auto anchor = getAnchor(); if (auto *forcedCastExpr = getAsExpr(anchor)) { return {forcedCastExpr->getLoc(), forcedCastExpr->getExclaimLoc()}; } else if (auto *conditionalCast = getAsExpr(anchor)) { return {conditionalCast->getLoc(), conditionalCast->getQuestionLoc()}; } else if (auto expr = getAsExpr(anchor)) { return expr->getLoc(); } llvm_unreachable("There is no other kind of checked cast!"); } std::tuple CoercibleOptionalCheckedCastFailure::unwrapedTypes() const { SmallVector fromOptionals; SmallVector toOptionals; Type unwrappedFromType = getFromType()->lookThroughAllOptionalTypes(fromOptionals); Type unwrappedToType = getToType()->lookThroughAllOptionalTypes(toOptionals); return std::make_tuple(unwrappedFromType, unwrappedToType, fromOptionals.size() - toOptionals.size()); } bool CoercibleOptionalCheckedCastFailure::diagnoseIfExpr() const { auto *expr = getAsExpr(CastExpr); if (!expr) return false; Type unwrappedFrom, unwrappedTo; unsigned extraFromOptionals; std::tie(unwrappedFrom, unwrappedTo, extraFromOptionals) = unwrapedTypes(); SourceRange diagFromRange = getFromRange(); SourceRange diagToRange = getToRange(); SourceLoc asLoc = expr->getAsLoc(); // If we're only unwrapping a single optional, we could have just // checked for 'nil'. auto diag = emitDiagnostic(diag::is_expr_same_type, getFromType(), getToType()); diag.highlight(diagFromRange); diag.highlight(diagToRange); diag.fixItReplace(SourceRange(asLoc, diagToRange.End), "!= nil"); // Add parentheses if needed. if (!expr->getSubExpr()->canAppendPostfixExpression()) { diag.fixItInsert(expr->getSubExpr()->getStartLoc(), "("); diag.fixItInsertAfter(expr->getSubExpr()->getEndLoc(), ")"); } return true; } bool CoercibleOptionalCheckedCastFailure::diagnoseForcedCastExpr() const { auto *expr = getAsExpr(CastExpr); if (!expr) return false; auto fromType = getFromType(); auto toType = getToType(); Type unwrappedFrom, unwrappedTo; unsigned extraFromOptionals; std::tie(unwrappedFrom, unwrappedTo, extraFromOptionals) = unwrapedTypes(); SourceRange diagFromRange = getFromRange(); SourceRange diagToRange = getToRange(); bool isBridged = CastKind == CheckedCastKind::BridgingCoercion; if (isCastTypeIUO()) { toType = toType->getOptionalObjectType(); extraFromOptionals++; } std::string extraFromOptionalsStr(extraFromOptionals, '!'); auto diag = emitDiagnostic(diag::downcast_same_type, fromType, toType, extraFromOptionalsStr, isBridged); diag.highlight(diagFromRange); diag.highlight(diagToRange); /// Add the '!''s needed to adjust the type. diag.fixItInsertAfter(diagFromRange.End, std::string(extraFromOptionals, '!')); if (isBridged) { // If it's bridged, we still need the 'as' to perform the bridging. diag.fixItReplace(getCastRange(), "as"); } else { auto &ctx = getASTContext(); // Otherwise, implicit conversions will handle it in most cases. SourceLoc afterExprLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, diagFromRange.End); diag.fixItRemove(SourceRange(afterExprLoc, diagToRange.End)); } return true; } bool CoercibleOptionalCheckedCastFailure::diagnoseConditionalCastExpr() const { auto *expr = getAsExpr(CastExpr); if (!expr) return false; auto fromType = getFromType(); auto toType = getToType(); Type unwrappedFrom, unwrappedTo; unsigned extraFromOptionals; std::tie(unwrappedFrom, unwrappedTo, extraFromOptionals) = unwrapedTypes(); SourceRange diagFromRange = getFromRange(); SourceRange diagToRange = getToRange(); bool isBridged = CastKind == CheckedCastKind::BridgingCoercion; // A single optional is carried through. It's better to use 'as' to // the appropriate optional type. auto diag = emitDiagnostic(diag::conditional_downcast_same_type, fromType, toType, unwrappedFrom->isEqual(toType) ? 0 : isBridged ? 2 : 1); diag.highlight(diagFromRange); diag.highlight(diagToRange); if (isBridged) { // For a bridged cast, replace the 'as?' with 'as'. diag.fixItReplace(getCastRange(), "as"); // Make sure we'll cast to the appropriately-optional type by adding // the '?'. // FIXME: Parenthesize! diag.fixItInsertAfter(diagToRange.End, "?"); } else { auto &ctx = getASTContext(); // Just remove the cast; implicit conversions will handle it. SourceLoc afterExprLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, diagFromRange.End); if (afterExprLoc.isValid() && diagToRange.isValid()) diag.fixItRemove(SourceRange(afterExprLoc, diagToRange.End)); } return true; } bool AlwaysSucceedCheckedCastFailure::diagnoseIfExpr() const { auto *expr = getAsExpr(CastExpr); if (!expr) return false; emitDiagnostic(diag::isa_is_always_true, "is"); return true; } bool AlwaysSucceedCheckedCastFailure::diagnoseConditionalCastExpr() const { auto *expr = getAsExpr(CastExpr); if (!expr) return false; emitDiagnostic(diag::conditional_downcast_coercion, getFromType(), getToType()); return true; } bool AlwaysSucceedCheckedCastFailure::diagnoseForcedCastExpr() const { auto *expr = getAsExpr(CastExpr); if (!expr) return false; auto fromType = getFromType(); auto toType = getToType(); auto diagLoc = expr->getLoc(); if (isCastTypeIUO()) { toType = toType->getOptionalObjectType(); } if (fromType->isEqual(toType)) { auto castTypeRepr = expr->getCastTypeRepr(); emitDiagnostic(diag::forced_downcast_noop, toType) .fixItRemove(SourceRange(diagLoc, castTypeRepr->getSourceRange().End)); } else { emitDiagnostic(diag::forced_downcast_coercion, fromType, toType) .fixItReplace(getCastRange(), "as"); } return true; } bool AlwaysSucceedCheckedCastFailure::diagnoseAsError() { if (diagnoseIfExpr()) return true; if (diagnoseForcedCastExpr()) return true; if (diagnoseConditionalCastExpr()) return true; llvm_unreachable("Shouldn't reach here"); } bool CoercibleOptionalCheckedCastFailure::diagnoseAsError() { if (diagnoseIfExpr()) return true; if (diagnoseForcedCastExpr()) return true; if (diagnoseConditionalCastExpr()) return true; llvm_unreachable("Shouldn't reach here"); } bool UnsupportedRuntimeCheckedCastFailure::diagnoseAsError() { auto anchor = getAnchor(); emitDiagnostic(diag::checked_cast_not_supported, getFromType(), getToType(), isExpr(anchor) ? 0 : 1); emitDiagnostic(diag::checked_cast_not_supported_coerce_instead) .fixItReplace(getCastRange(), "as"); return true; }