mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Convert a bunch of places where we're dumping to stderr and calling `abort` over to using `ABORT` such that the message gets printed to the pretty stack trace. This ensures it gets picked up by CrashReporter.
402 lines
13 KiB
C++
402 lines
13 KiB
C++
//===--- Requirement.cpp - Generic requirement ----------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Requirement class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Requirement.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericParamList.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
|
|
using namespace swift;
|
|
|
|
bool Requirement::hasError() const {
|
|
if (getFirstType()->hasError())
|
|
return true;
|
|
|
|
if (getKind() != RequirementKind::Layout && getSecondType()->hasError())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Requirement::isCanonical() const {
|
|
if (!getFirstType()->isCanonical())
|
|
return false;
|
|
|
|
switch (getKind()) {
|
|
case RequirementKind::SameShape:
|
|
case RequirementKind::Conformance:
|
|
case RequirementKind::SameType:
|
|
case RequirementKind::Superclass:
|
|
if (!getSecondType()->isCanonical())
|
|
return false;
|
|
break;
|
|
|
|
case RequirementKind::Layout:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Get the canonical form of this requirement.
|
|
Requirement Requirement::getCanonical() const {
|
|
Type firstType = getFirstType()->getCanonicalType();
|
|
|
|
switch (getKind()) {
|
|
case RequirementKind::SameShape:
|
|
case RequirementKind::Conformance:
|
|
case RequirementKind::SameType:
|
|
case RequirementKind::Superclass: {
|
|
Type secondType = getSecondType()->getCanonicalType();
|
|
return Requirement(getKind(), firstType, secondType);
|
|
}
|
|
|
|
case RequirementKind::Layout:
|
|
return Requirement(getKind(), firstType, getLayoutConstraint());
|
|
}
|
|
llvm_unreachable("Unhandled RequirementKind in switch");
|
|
}
|
|
|
|
ProtocolDecl *Requirement::getProtocolDecl() const {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return getSecondType()->castTo<ProtocolType>()->getDecl();
|
|
}
|
|
|
|
CheckRequirementResult Requirement::checkRequirement(
|
|
SmallVectorImpl<Requirement> &subReqs,
|
|
bool allowMissing,
|
|
SmallVectorImpl<ProtocolConformanceRef> *isolatedConformances
|
|
) const {
|
|
if (hasError())
|
|
return CheckRequirementResult::SubstitutionFailure;
|
|
|
|
auto firstType = getFirstType();
|
|
|
|
auto expandPackRequirement = [&](PackType *packType) {
|
|
for (auto eltType : packType->getElementTypes()) {
|
|
// FIXME: Doesn't seem right
|
|
if (auto *expansionType = eltType->getAs<PackExpansionType>())
|
|
eltType = expansionType->getPatternType();
|
|
|
|
auto kind = getKind();
|
|
if (kind == RequirementKind::Layout) {
|
|
subReqs.emplace_back(kind, eltType,
|
|
getLayoutConstraint());
|
|
} else {
|
|
subReqs.emplace_back(kind, eltType,
|
|
getSecondType());
|
|
}
|
|
}
|
|
return CheckRequirementResult::PackRequirement;
|
|
};
|
|
|
|
switch (getKind()) {
|
|
case RequirementKind::Conformance: {
|
|
if (auto packType = firstType->getAs<PackType>()) {
|
|
return expandPackRequirement(packType);
|
|
}
|
|
|
|
auto *proto = getProtocolDecl();
|
|
|
|
if (firstType->isTypeParameter())
|
|
return CheckRequirementResult::RequirementFailure;
|
|
|
|
auto conformance = lookupConformance(
|
|
firstType, proto, allowMissing);
|
|
if (!conformance)
|
|
return CheckRequirementResult::RequirementFailure;
|
|
|
|
// Collect isolated conformances.
|
|
if (isolatedConformances) {
|
|
conformance.forEachIsolatedConformance(
|
|
[&](ProtocolConformanceRef isolatedConformance) {
|
|
isolatedConformances->push_back(isolatedConformance);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
auto condReqs = conformance.getConditionalRequirements();
|
|
if (condReqs.empty())
|
|
return CheckRequirementResult::Success;
|
|
subReqs.append(condReqs.begin(), condReqs.end());
|
|
return CheckRequirementResult::ConditionalConformance;
|
|
}
|
|
|
|
case RequirementKind::Layout: {
|
|
if (auto packType = firstType->getAs<PackType>()) {
|
|
return expandPackRequirement(packType);
|
|
}
|
|
|
|
if (auto *archetypeType = firstType->getAs<ArchetypeType>()) {
|
|
auto layout = archetypeType->getLayoutConstraint();
|
|
if (layout && layout.merge(getLayoutConstraint()))
|
|
return CheckRequirementResult::Success;
|
|
|
|
return CheckRequirementResult::RequirementFailure;
|
|
}
|
|
|
|
if (getLayoutConstraint()->isClass()) {
|
|
if (firstType->satisfiesClassConstraint())
|
|
return CheckRequirementResult::Success;
|
|
|
|
return CheckRequirementResult::RequirementFailure;
|
|
}
|
|
|
|
// TODO: Statically check other layout constraints, once they can
|
|
// be spelled in Swift.
|
|
return CheckRequirementResult::Success;
|
|
}
|
|
|
|
case RequirementKind::Superclass:
|
|
if (auto packType = firstType->getAs<PackType>()) {
|
|
return expandPackRequirement(packType);
|
|
}
|
|
|
|
if (getSecondType()->isExactSuperclassOf(firstType))
|
|
return CheckRequirementResult::Success;
|
|
|
|
return CheckRequirementResult::RequirementFailure;
|
|
|
|
case RequirementKind::SameType:
|
|
if (firstType->isEqual(getSecondType()))
|
|
return CheckRequirementResult::Success;
|
|
|
|
return CheckRequirementResult::RequirementFailure;
|
|
|
|
case RequirementKind::SameShape:
|
|
if (firstType->getReducedShape() ==
|
|
getSecondType()->getReducedShape())
|
|
return CheckRequirementResult::Success;
|
|
|
|
return CheckRequirementResult::RequirementFailure;
|
|
}
|
|
|
|
llvm_unreachable("Bad requirement kind");
|
|
}
|
|
|
|
bool Requirement::canBeSatisfied() const {
|
|
switch (getKind()) {
|
|
case RequirementKind::SameShape:
|
|
llvm_unreachable("Same-shape requirements not supported here");
|
|
|
|
case RequirementKind::Conformance:
|
|
return getFirstType()->is<ArchetypeType>();
|
|
|
|
case RequirementKind::Layout: {
|
|
if (auto *archetypeType = getFirstType()->getAs<ArchetypeType>()) {
|
|
auto layout = archetypeType->getLayoutConstraint();
|
|
return (!layout || layout.merge(getLayoutConstraint()));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
case RequirementKind::Superclass:
|
|
return (getFirstType()->isBindableTo(getSecondType()) ||
|
|
getSecondType()->isBindableTo(getFirstType()));
|
|
|
|
case RequirementKind::SameType:
|
|
return (getFirstType()->isBindableTo(getSecondType()) ||
|
|
getSecondType()->isBindableTo(getFirstType()));
|
|
}
|
|
|
|
llvm_unreachable("Bad requirement kind");
|
|
}
|
|
|
|
bool Requirement::isInvertibleProtocolRequirement() const {
|
|
return getKind() == RequirementKind::Conformance
|
|
&& getFirstType()->is<GenericTypeParamType>()
|
|
&& getProtocolDecl()->getInvertibleProtocolKind();
|
|
}
|
|
|
|
/// Determine the canonical ordering of requirements.
|
|
static unsigned getRequirementKindOrder(RequirementKind kind) {
|
|
switch (kind) {
|
|
case RequirementKind::SameShape: return 4;
|
|
case RequirementKind::Conformance: return 2;
|
|
case RequirementKind::Superclass: return 0;
|
|
case RequirementKind::SameType: return 3;
|
|
case RequirementKind::Layout: return 1;
|
|
}
|
|
llvm_unreachable("unhandled kind");
|
|
}
|
|
|
|
/// Linear order on requirements in a generic signature.
|
|
int Requirement::compare(const Requirement &other) const {
|
|
int compareLHS =
|
|
compareDependentTypes(getFirstType(), other.getFirstType());
|
|
|
|
if (compareLHS != 0)
|
|
return compareLHS;
|
|
|
|
int compareKind = (getRequirementKindOrder(getKind()) -
|
|
getRequirementKindOrder(other.getKind()));
|
|
|
|
if (compareKind != 0)
|
|
return compareKind;
|
|
|
|
// We should only have multiple conformance requirements.
|
|
if (getKind() != RequirementKind::Conformance) {
|
|
ABORT([&](auto &out) {
|
|
out << "Unordered generic requirements\n";
|
|
out << "LHS: "; dump(out); out << "\n";
|
|
out << "RHS: "; other.dump(out);
|
|
});
|
|
}
|
|
|
|
int compareProtos =
|
|
TypeDecl::compare(getProtocolDecl(), other.getProtocolDecl());
|
|
assert(compareProtos != 0 && "Duplicate conformance requirements");
|
|
|
|
return compareProtos;
|
|
}
|
|
|
|
static std::optional<CheckRequirementsResult>
|
|
checkRequirementsImpl(ArrayRef<Requirement> requirements,
|
|
bool allowTypeParameters) {
|
|
SmallVector<Requirement, 4> worklist(requirements.begin(), requirements.end());
|
|
|
|
bool hadSubstFailure = false;
|
|
|
|
while (!worklist.empty()) {
|
|
auto req = worklist.pop_back_val();
|
|
|
|
// Check preconditions.
|
|
auto firstType = req.getFirstType();
|
|
ASSERT((allowTypeParameters || !firstType->hasTypeParameter())
|
|
&& "must take a contextual type. if you really are ok with an "
|
|
"indefinite answer (and usually YOU ARE NOT), then consider whether "
|
|
"you really, definitely are ok with an indefinite answer, and "
|
|
"use `checkRequirementsWithoutContext` instead");
|
|
ASSERT(!firstType->hasTypeVariable());
|
|
|
|
if (req.getKind() != RequirementKind::Layout) {
|
|
auto secondType = req.getSecondType();
|
|
ASSERT((allowTypeParameters || !secondType->hasTypeParameter())
|
|
&& "must take a contextual type. if you really are ok with an "
|
|
"indefinite answer (and usually YOU ARE NOT), then consider whether "
|
|
"you really, definitely are ok with an indefinite answer, and "
|
|
"use `checkRequirementsWithoutContext` instead");
|
|
ASSERT(!secondType->hasTypeVariable());
|
|
}
|
|
|
|
switch (req.checkRequirement(worklist, /*allowMissing=*/true)) {
|
|
case CheckRequirementResult::Success:
|
|
case CheckRequirementResult::ConditionalConformance:
|
|
case CheckRequirementResult::PackRequirement:
|
|
break;
|
|
|
|
case CheckRequirementResult::RequirementFailure:
|
|
// If a requirement failure was caused by a context-free type parameter,
|
|
// then we can't definitely know whether it would have satisfied the
|
|
// requirement without context.
|
|
if (req.getFirstType()->isTypeParameter()) {
|
|
return std::nullopt;
|
|
}
|
|
return CheckRequirementsResult::RequirementFailure;
|
|
|
|
case CheckRequirementResult::SubstitutionFailure:
|
|
hadSubstFailure = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (hadSubstFailure)
|
|
return CheckRequirementsResult::SubstitutionFailure;
|
|
|
|
return CheckRequirementsResult::Success;
|
|
}
|
|
|
|
CheckRequirementsResult
|
|
swift::checkRequirements(ArrayRef<Requirement> requirements) {
|
|
// This entry point requires that there are no type parameters in any of the
|
|
// requirements, so the underlying check should always produce a result.
|
|
return checkRequirementsImpl(requirements, /*allow type parameters*/ false)
|
|
.value();
|
|
}
|
|
|
|
std::optional<CheckRequirementsResult>
|
|
swift::checkRequirementsWithoutContext(ArrayRef<Requirement> requirements) {
|
|
return checkRequirementsImpl(requirements, /*allow type parameters*/ true);
|
|
}
|
|
|
|
CheckRequirementsResult swift::checkRequirements(
|
|
ArrayRef<Requirement> requirements,
|
|
TypeSubstitutionFn substitutions, SubstOptions options) {
|
|
SmallVector<Requirement, 4> substReqs;
|
|
for (auto req : requirements) {
|
|
substReqs.push_back(req.subst(substitutions,
|
|
LookUpConformanceInModule(), options));
|
|
}
|
|
|
|
return checkRequirements(substReqs);
|
|
}
|
|
|
|
InverseRequirement::InverseRequirement(Type subject,
|
|
ProtocolDecl *protocol,
|
|
SourceLoc loc)
|
|
: subject(subject), protocol(protocol), loc(loc) {
|
|
// Ensure it's an invertible protocol.
|
|
assert(protocol);
|
|
assert(protocol->getKnownProtocolKind());
|
|
assert(getInvertibleProtocolKind(*(protocol->getKnownProtocolKind())));
|
|
}
|
|
|
|
InvertibleProtocolKind InverseRequirement::getKind() const {
|
|
return *getInvertibleProtocolKind(*(protocol->getKnownProtocolKind()));
|
|
}
|
|
|
|
void InverseRequirement::expandDefaults(
|
|
ASTContext &ctx,
|
|
ArrayRef<Type> gps,
|
|
SmallVectorImpl<StructuralRequirement> &result) {
|
|
for (auto gp : gps) {
|
|
// Value generics never have inverses (or the positive thereof).
|
|
if (auto gpTy = gp->getAs<GenericTypeParamType>()) {
|
|
if (gpTy->isValue()) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
for (auto ip : InvertibleProtocolSet::allKnown()) {
|
|
auto proto = ctx.getProtocol(getKnownProtocolKind(ip));
|
|
result.push_back({{RequirementKind::Conformance, gp,
|
|
proto->getDeclaredInterfaceType()},
|
|
SourceLoc()});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Linear order on inverse requirements in a generic signature.
|
|
int InverseRequirement::compare(const InverseRequirement &other) const {
|
|
int compareLHS =
|
|
compareDependentTypes(subject, other.subject);
|
|
|
|
if (compareLHS != 0)
|
|
return compareLHS;
|
|
|
|
int compareProtos =
|
|
TypeDecl::compare(protocol, other.protocol);
|
|
assert(compareProtos != 0 && "Duplicate conformance requirements");
|
|
|
|
return compareProtos;
|
|
}
|