Files
swift-mirror/lib/AST/RequirementMachine/HomotopyReduction.cpp
Slava Pestov 7f8175b3da RequirementMachine: Add two more completion termination checks for concrete type requirements
The concrete nesting limit, which defaults to 30, catches
things like A == G<A>. However, with something like
A == (A, A), you end up with an exponential problem size
before you hit the limit.

Add two new limits.

The first is the total size of the concrete type, counting
all leaves, which defaults to 4000. It can be set with the
-requirement-machine-max-concrete-size= frontend flag.

The second avoids an assertion in addTypeDifference() which
can be hit if a certain counter overflows before any other
limit is breached. This also defaults to 4000 and can be set
with the -requirement-machine-max-type-differences= frontend flag.
2025-06-17 17:51:25 -04:00

858 lines
28 KiB
C++

//===--- HomotopyReduction.cpp - Higher-dimensional term rewriting --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the algorithm for computing a minimal set of rules from
// a confluent rewrite system. A minimal set of rules is:
//
// 1) Large enough that computing the confluent completion produces the original
// rewrite system;
//
// 2) Small enough that no further rules can be deleted without changing the
// resulting confluent rewrite system.
//
// The main entry point here is RewriteSystem::minimizeRewriteSystem().
//
// Redundant rules are detected by analyzing the set of rewrite loops computed
// by the completion procedure. See RewriteLoop.cpp for a discussion of rewrite
// loops.
//
// If a rewrite rule appears exactly once in a loop and without context, the
// loop witnesses a redundancy; the rewrite rule is equivalent to traveling
// around the loop "in the other direction". This rewrite rule and the
// corresponding rewrite loop can be deleted.
//
// Any occurrence of the rule in the remaining loops is replaced with the
// alternate definition obtained by splitting the loop that witnessed the
// redundancy.
//
// Iterating this process eventually produces a minimal set of rewrite rules.
//
// For a description of the general algorithm, see "A Homotopical Completion
// Procedure with Applications to Coherence of Monoids",
// https://hal.inria.fr/hal-00818253.
//
// Note that in the world of Swift, rewrite rules for introducing associated
// type symbols are marked 'permanent'; they are always re-added when a new
// rewrite system is built from a minimal generic signature, so instead of
// deleting them it is better to leave them in place in case it allows other
// rules to be deleted instead.
//
// Also, for a conformance rule (V.[P] => V) to be redundant, a stronger
// condition is needed than appearing once in a loop and without context;
// the rule must not be a _minimal conformance_. The algorithm for computing
// minimal conformances is implemented in MinimalConformances.cpp.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Type.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Range.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "PropertyMap.h"
#include "RewriteContext.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// If a rewrite loop contains an explicit rule in empty context, propagate the
/// explicit bit to all other rules appearing in empty context within the same
/// loop.
///
/// When computing minimal conformances we prefer to eliminate non-explicit
/// rules, as a heuristic to ensure that minimized conformance requirements
/// remain in the same protocol as originally written, in cases where they can
/// be moved between protocols.
///
/// However, conformance rules can also be written in a non-canonical way.
///
/// Most conformance requirements are non-canonical, since the original
/// requirements use unresolved types. For example, a requirement 'Self.X.Y : Q'
/// inside a protocol P will lower to a rewrite rule
///
/// [P].X.Y.[Q] => [P].X.Y
///
/// Completion will then add a new rule that looks something like this, using
/// associated type symbols:
///
/// [P:X].[P2:Y].[Q] => [P:X].[P2:Y]
///
/// Furthermore, if [P:X].[P2:Y] simplies to some other term, such as [P:Z],
/// there will be yet another rule added by completion:
///
/// [P:Z].[Q] => [P:Z]
///
/// The new rules are related to the original rule via rewrite loops where
/// both rules appear in empty context. This algorithm will propagate the
/// explicit bit from the original rule to the canonical rule.
void RewriteSystem::propagateExplicitBits() {
for (const auto &loop : Loops) {
auto rulesInEmptyContext =
loop.findRulesAppearingOnceInEmptyContext(*this);
bool sawExplicitRule = false;
for (unsigned ruleID : rulesInEmptyContext) {
const auto &rule = getRule(ruleID);
if (rule.isExplicit())
sawExplicitRule = true;
}
if (sawExplicitRule) {
for (unsigned ruleID : rulesInEmptyContext) {
auto &rule = getRule(ruleID);
if (!rule.isPermanent() && !rule.isExplicit())
rule.markExplicit();
}
}
}
}
/// Find concrete type or superclass rules where the right hand side occurs as a
/// proper prefix of one of its substitutions.
///
/// eg, (T.[concrete: G<T.[P:A]>] => T).
void RewriteSystem::computeRecursiveRules() {
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant())
continue;
auto optSymbol = rule.isPropertyRule();
if (!optSymbol)
continue;
auto kind = optSymbol->getKind();
if (kind != Symbol::Kind::ConcreteType &&
kind != Symbol::Kind::Superclass) {
continue;
}
auto rhs = rule.getRHS();
for (auto term : optSymbol->getSubstitutions()) {
if (term.size() > rhs.size() &&
std::equal(rhs.begin(), rhs.end(), term.begin())) {
RecursiveRules.push_back(ruleID);
rule.markRecursive();
break;
}
}
}
}
/// Find a rule to delete by looking through all loops for rewrite rules appearing
/// once in empty context. Returns a pair consisting of a loop ID and a rule ID,
/// otherwise returns None.
///
/// Minimization performs three passes over the rewrite system.
///
/// 1) First, rules that are not conformance rules are deleted, with
/// \p redundantConformances equal to nullptr.
///
/// 2) Second, minimal conformances are computed.
///
/// 3) Finally, redundant conformance rules are deleted, with
/// \p redundantConformances equal to the set of conformance rules that are
/// not minimal conformances.
std::optional<std::pair<unsigned, unsigned>>
RewriteSystem::findRuleToDelete(EliminationPredicate isRedundantRuleFn) {
SmallVector<std::pair<unsigned, unsigned>, 2> redundancyCandidates;
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
// Delete loops that don't contain any rewrite rules in empty context,
// since such loops do not yield any elimination candidates.
if (!loop.isUseful(*this)) {
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "** Deleting useless loop #" << loopID << ": ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
}
loop.markDeleted();
continue;
}
for (unsigned ruleID : loop.findRulesAppearingOnceInEmptyContext(*this)) {
redundancyCandidates.emplace_back(loopID, ruleID);
}
}
std::optional<std::pair<unsigned, unsigned>> found;
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "\n";
}
for (const auto &pair : redundancyCandidates) {
unsigned loopID = pair.first;
unsigned ruleID = pair.second;
const auto &loop = Loops[loopID];
const auto &rule = getRule(ruleID);
// We should not find a rule that has already been marked redundant
// here; it should have already been replaced with a rewrite path
// in all homotopy generators.
ASSERT(!rule.isRedundant());
// Associated type introduction rules are 'permanent'. They're
// not worth eliminating since they are re-added every time; it
// is better to find other candidates to eliminate in the same
// loop instead.
if (rule.isPermanent())
continue;
// Homotopy reduction runs multiple passes with different filters to
// prioritize the deletion of certain rules ahead of others. Apply
// the filter now.
if (!isRedundantRuleFn(loopID, ruleID)) {
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Skipping rule " << rule << " from loop #"
<< loopID << "\n";
}
continue;
}
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Candidate rule " << rule << " from loop #"
<< loopID << "\n";
}
if (!found) {
found = pair;
continue;
}
// 'rule' is the candidate rule; 'otherRule' is the best rule to eliminate
// we've found so far.
const auto &otherRule = getRule(found->second);
const auto &otherLoop = Loops[found->first];
{
// If one of the rules was a concrete unification projection, prefer to
// eliminate the *other* rule.
//
// For example, if 'X.T == G<U, V>' is implied by the conformance on X,
// and the following three rules are defined in the current protocol:
//
// a) X.T == G<Int, W>
// b) X.U == Int
// c) X.V == W
//
// Then we can either eliminate a) alone, or b) and c). Since b) and c)
// are projections, they are "simpler", and we would rather keep both and
// eliminate a).
unsigned projectionCount = loop.getProjectionCount(*this);
unsigned otherProjectionCount = otherLoop.getProjectionCount(*this);
if (projectionCount != otherProjectionCount) {
if (projectionCount < otherProjectionCount)
found = pair;
continue;
}
}
{
// If one of the rules is a concrete type requirement, prefer to
// eliminate the *other* rule.
bool ruleIsConcrete = rule.getLHS().back().hasSubstitutions();
bool otherRuleIsConcrete = otherRule.getLHS().back().hasSubstitutions();
if (ruleIsConcrete != otherRuleIsConcrete) {
if (otherRuleIsConcrete)
found = pair;
continue;
}
}
{
// If both are concrete type requirements, prefer to eliminate the
// one with the more deeply nested type.
unsigned ruleNesting = rule.getNestingAndSize().first;
unsigned otherRuleNesting = otherRule.getNestingAndSize().first;
if (ruleNesting != otherRuleNesting) {
if (ruleNesting > otherRuleNesting)
found = pair;
continue;
}
}
{
// Otherwise, perform a shortlex comparison on (LHS, RHS).
std::optional<int> comparison = rule.compare(otherRule, Context);
if (!comparison.has_value()) {
// Two rules (T.[C] => T) and (T.[C'] => T) are incomparable if
// C and C' are superclass, concrete type or concrete conformance
// symbols.
continue;
}
if (*comparison == 0) {
// Given two rewrite loops that both eliminate the same rule, prefer
// the one that was not recorded by substitution simplification;
// substitution simplification rules contain the projections in
// context, which then prevents the projections from being eliminated.
//
// An example is if you have two rules implied by conformances on X,
//
// a) X.T == G<Y>
// b) X.T == G<Z>
//
// then the induced rule Y == Z is a projection.
//
// The rule X.T == G<Z> can be eliminated with a loop that begins at
// X.T.[concrete: G<Y>] followed by a decomposition and rewrite of
// Y into Z, finally followed by an inverse decomposition back to
// X.T.[concrete: G<Z>].
//
// However, if we can eliminate G<Y> via some other loop, we prefer
// to do that, since that might *also* allow us to eliminate Y == Z.
unsigned decomposeCount = loop.getDecomposeCount(*this);
unsigned otherDecomposeCount = otherLoop.getDecomposeCount(*this);
if (decomposeCount != otherDecomposeCount) {
if (decomposeCount < otherDecomposeCount)
found = pair;
continue;
}
}
if (*comparison > 0) {
// Otherwise, if the new rule is less canonical than the best one so
// far, it becomes the new candidate for elimination.
found = pair;
continue;
}
}
}
return found;
}
/// Delete a rewrite rule that is known to be redundant, replacing all
/// occurrences of the rule in all loops with the replacement path.
void RewriteSystem::deleteRule(unsigned ruleID,
const RewritePath &replacementPath) {
// Replace all occurrences of the rule with the replacement path in
// all remaining rewrite loops.
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
bool changed = loop.Path.replaceRuleWithPath(ruleID, replacementPath);
if (!changed)
continue;
if (Context.getASTContext().LangOpts.EnableRequirementMachineLoopNormalization) {
loop.computeNormalForm(*this);
}
// The loop's path has changed, so we must invalidate the cached
// result of findRulesAppearingOnceInEmptyContext().
loop.markDirty();
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Updated loop #" << loopID << ": ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
}
}
// Record the redundant rule along with its replacement path.
RedundantRules.emplace_back(ruleID, replacementPath);
}
void RewriteSystem::performHomotopyReduction(
EliminationPredicate isRedundantRuleFn) {
while (true) {
auto optPair = findRuleToDelete(isRedundantRuleFn);
// If no redundant rules remain which can be eliminated by this pass, stop.
if (!optPair)
break;
unsigned loopID = optPair->first;
unsigned ruleID = optPair->second;
auto &loop = Loops[loopID];
auto replacementPath = loop.Path.splitCycleAtRule(ruleID);
loop.markDeleted();
auto &rule = getRule(ruleID);
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "** Deleting rule " << rule << " from loop #"
<< loopID << "\n";
llvm::dbgs() << "* Replacement path: ";
MutableTerm mutTerm(getRule(ruleID).getLHS());
replacementPath.dump(llvm::dbgs(), mutTerm, *this);
llvm::dbgs() << "\n";
}
rule.markRedundant();
deleteRule(ruleID, replacementPath);
}
}
/// Use the loops to delete redundant rewrite rules via a series of Tietze
/// transformations, updating and simplifying existing loops as each rule
/// is deleted.
///
/// Redundant rules are mutated to set their isRedundant() bit.
void RewriteSystem::minimizeRewriteSystem(const PropertyMap &map) {
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-----------------------------\n";
llvm::dbgs() << "- Minimizing rewrite system -\n";
llvm::dbgs() << "-----------------------------\n";
}
ASSERT(Complete);
ASSERT(!Minimized);
ASSERT(!Frozen);
Minimized = 1;
propagateExplicitBits();
if (Context.getASTContext().LangOpts.EnableRequirementMachineLoopNormalization) {
for (auto &loop : Loops) {
loop.computeNormalForm(*this);
}
}
// First pass:
// - Eliminate all LHS-simplified non-conformance rules.
// - Eliminate all RHS-simplified and substitution-simplified rules.
//
// An example of a conformance rule that is LHS-simplified but not
// RHS-simplified is (T.[P] => T) where T is irreducible, but there
// is a rule (V.[P] => V) for some V with T == U.V.
//
// Such conformance rules can still be minimal, as part of a hack to
// maintain compatibility with the GenericSignatureBuilder's minimization
// algorithm.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "------------------------------\n";
llvm::dbgs() << "First pass: simplified rules -\n";
llvm::dbgs() << "------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.isLHSSimplified() &&
!rule.isAnyConformanceRule())
return true;
if (rule.isRHSSimplified() ||
rule.isSubstitutionSimplified())
return true;
return false;
});
// Second pass:
// - Eliminate all rules with unresolved symbols which were *not*
// simplified.
//
// Two examples of such rules:
//
// - (T.X => T.[P:X]) obtained from resolving the overlap between
// (T.[P] => T) and ([P].X => [P:X]).
//
// - (T.X.[concrete: C] => T.X) obtained from resolving the overlap
// between (T.[P] => T) and a protocol typealias rule
// ([P].X.[concrete: C] => [P].X).
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-------------------------------\n";
llvm::dbgs() << "Second pass: unresolved rules -\n";
llvm::dbgs() << "-------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.containsNameSymbols())
return true;
return false;
});
// Now compute a set of minimal conformances.
//
// FIXME: For now this just produces a set of redundant conformances, but
// it should actually output the canonical minimal conformance equation
// for each non-minimal conformance. We can then use information to
// compute conformance access paths, instead of the current "brute force"
// algorithm used for that purpose.
llvm::DenseSet<unsigned> redundantConformances;
computeMinimalConformances(map, redundantConformances);
// Third pass: Eliminate all non-minimal conformance rules.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-------------------------------------------\n";
llvm::dbgs() << "Third pass: non-minimal conformance rules -\n";
llvm::dbgs() << "-------------------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.isAnyConformanceRule() &&
redundantConformances.count(ruleID))
return true;
return false;
});
// Fourth pass: Eliminate all remaining redundant non-conformance rules.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "----------------------------------------\n";
llvm::dbgs() << "Fourth pass: all other redundant rules -\n";
llvm::dbgs() << "----------------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &loop = Loops[loopID];
const auto &rule = getRule(ruleID);
if (rule.isProtocolTypeAliasRule())
return true;
if (!loop.hasConcreteTypeAliasRule(*this) &&
!rule.isAnyConformanceRule())
return true;
return false;
});
computeRecursiveRules();
// Check invariants after homotopy reduction.
verifyRewriteLoops();
verifyRedundantConformances(redundantConformances);
verifyMinimizedRules(redundantConformances);
if (Debug.contains(DebugFlags::RedundantRules)) {
llvm::dbgs() << "\nRedundant rules:\n";
for (const auto &pair : RedundantRules) {
const auto &rule = getRule(pair.first);
llvm::dbgs() << "- ("
<< rule.getLHS() << " => "
<< rule.getRHS() << ") ::== ";
MutableTerm lhs(rule.getLHS());
pair.second.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n";
if (Debug.contains(DebugFlags::RedundantRulesDetail)) {
llvm::dbgs() << "\n";
pair.second.dumpLong(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
}
}
/// Returns flags indicating if the rewrite system has unresolved or
/// conflicting rules in our minimization domain. If these flags are
/// set, we do not install this rewrite system in the rewrite context
/// after minimization. Instead, we will rebuild a new rewrite system
/// from the minimized requirements.
GenericSignatureErrors RewriteSystem::getErrors() const {
ASSERT(Complete);
ASSERT(Minimized);
GenericSignatureErrors result;
if (!ConflictingRules.empty())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
for (const auto &rule : getLocalRules()) {
if (rule.isPermanent())
continue;
// The conditional requirement inference feature imports new protocol
// components after the basic rewrite system is already built, so that's
// why we end up with imported rules that appear to be in the local rules
// slice. Those rules are well-formed, but their isRedundant() bit isn't
// set, so we must ignore them here.
if (!isInMinimizationDomain(rule.getLHS().getRootProtocol()))
continue;
if (!rule.isRedundant()) {
if (!rule.isProtocolTypeAliasRule() &&
rule.containsNameSymbols())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
}
if (rule.isRecursive())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
if (!rule.isRedundant()) {
if (auto property = rule.isPropertyRule()) {
if (property->getKind() == Symbol::Kind::ConcreteConformance)
result |= GenericSignatureErrorFlags::HasConcreteConformances;
if (property->hasSubstitutions() &&
property->containsNameSymbols())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
}
}
}
return result;
}
/// Collect all non-permanent, non-redundant rules whose domain is equal to
/// one of the protocols in the connected component represented by this
/// rewrite system.
///
/// These rules form the requirement signatures of these protocols.
llvm::DenseMap<const ProtocolDecl *, RewriteSystem::MinimizedProtocolRules>
RewriteSystem::getMinimizedProtocolRules() const {
ASSERT(Minimized);
ASSERT(!Protos.empty());
llvm::DenseMap<const ProtocolDecl *, MinimizedProtocolRules> rules;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.isConflicting())
continue;
const auto *proto = rule.getLHS().getRootProtocol();
if (!isInMinimizationDomain(proto))
continue;
if (rule.isProtocolTypeAliasRule()) {
if (auto property = rule.isPropertyRule()) {
if (property->containsNameSymbols())
continue;
} else if (rule.getRHS().containsNameSymbols()) {
continue;
}
rules[proto].TypeAliases.push_back(ruleID);
} else {
if (rule.containsNameSymbols())
continue;
rules[proto].Requirements.push_back(ruleID);
}
}
return rules;
}
/// Collect all non-permanent, non-redundant rules whose left hand side
/// begins with a generic parameter symbol.
///
/// These rules form the top-level generic signature for this rewrite system.
std::vector<unsigned>
RewriteSystem::getMinimizedGenericSignatureRules() const {
ASSERT(Minimized);
ASSERT(Protos.empty());
std::vector<unsigned> rules;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.isConflicting() ||
rule.containsNameSymbols()) {
continue;
}
if (rule.getLHS()[0].getKind() != Symbol::Kind::PackElement &&
rule.getLHS()[0].getKind() != Symbol::Kind::GenericParam)
continue;
rules.push_back(ruleID);
}
return rules;
}
/// Verify that each loop begins and ends at its basepoint.
void RewriteSystem::verifyRewriteLoops() const {
for (const auto &loop : Loops) {
loop.verify(*this);
}
}
/// Assert if homotopy reduction failed to eliminate a redundant conformance,
/// since this suggests a misunderstanding on my part.
void RewriteSystem::verifyRedundantConformances(
const llvm::DenseSet<unsigned> &redundantConformances) const {
for (unsigned ruleID : redundantConformances) {
const auto &rule = getRule(ruleID);
ASSERT(!rule.isPermanent() &&
"Permanent rule cannot be redundant");
ASSERT(!rule.isIdentityConformanceRule() &&
"Identity conformance cannot be redundant");
ASSERT(rule.isAnyConformanceRule() &&
"Redundant conformance is not a conformance rule?");
if (!rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Homotopy reduction did not eliminate redundant conformance?\n";
out << "(#" << ruleID << ") " << rule << "\n\n";
dump(out);
});
}
}
}
// Assert if homotopy reduction failed to eliminate a rewrite rule it was
// supposed to delete.
void RewriteSystem::verifyMinimizedRules(
const llvm::DenseSet<unsigned> &redundantConformances) const {
unsigned redundantRuleCount = 0;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
// Ignore the rewrite rule if it is not part of our minimization domain.
if (!isInMinimizationDomain(rule.getLHS().getRootProtocol())) {
if (rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Redundant rule outside minimization domain: " << rule
<< "\n\n";
dump(out);
});
}
continue;
}
// Note that sometimes permanent rules can be simplified, but they can never
// be redundant.
if (rule.isPermanent()) {
if (rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Permanent rule is redundant: " << rule << "\n\n";
dump(out);
});
}
continue;
}
if (rule.isRedundant())
++redundantRuleCount;
// LHS-simplified rules should be redundant, unless they're protocol
// conformance rules, which unfortunately might not be redundant, because
// we try to keep them in the original protocol definition for
// compatibility with the GenericSignatureBuilder's minimization algorithm.
if (rule.isLHSSimplified() &&
!rule.isRedundant() &&
!rule.isProtocolConformanceRule()) {
ABORT([&](auto &out) {
out << "Simplified rule is not redundant: " << rule << "\n\n";
dump(out);
});
}
// RHS-simplified and substitution-simplified rules should be redundant.
if ((rule.isRHSSimplified() ||
rule.isSubstitutionSimplified()) &&
!rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Simplified rule is not redundant: " << rule << "\n\n";
dump(out);
});
}
if (rule.isRedundant() &&
rule.isAnyConformanceRule() &&
!rule.isRHSSimplified() &&
!rule.isSubstitutionSimplified() &&
!rule.containsNameSymbols() &&
!redundantConformances.count(ruleID)) {
ABORT([&](auto &out) {
out << "Minimal conformance is redundant: " << rule << "\n\n";
dump(out);
});
}
}
if (RedundantRules.size() != redundantRuleCount) {
ABORT([&](auto &out) {
out << "Expected " << RedundantRules.size() << " redundant rules "
<< "but counted " << redundantRuleCount << "\n";
dump(out);
});
}
// Replacement paths for redundant rules can only reference other redundant
// rules if those redundant rules were made redundant later, ie if they
// appear later in the array.
llvm::DenseSet<unsigned> laterRedundantRules;
for (const auto &pair : llvm::reverse(RedundantRules)) {
const auto &rule = getRule(pair.first);
if (!rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Recorded replacement path for non-redundant rule " << rule
<< "\n";
dump(out);
});
}
for (const auto &step : pair.second) {
if (step.Kind == RewriteStep::Rule) {
unsigned otherRuleID = step.getRuleID();
const auto &otherRule = getRule(otherRuleID);
if (otherRule.isRedundant() &&
!laterRedundantRules.count(otherRuleID)) {
ABORT([&](auto &out) {
out << "Redundant requirement path contains a redundant rule "
<< otherRule << "\n";
dump(out);
});
}
}
}
laterRedundantRules.insert(pair.first);
}
}