mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Types where pack expansion required nested subsitution could cause the compiler to crash rather than properly expanding the pack. Both for populated types and infinityly expanding types which should generate an error. This expands the support for these to generate more errors and populated types, and correspondingly expands the test suite
762 lines
27 KiB
C++
762 lines
27 KiB
C++
//===--- PropertyUnification.cpp - Rules added w/ building property map ---===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is the core of the property map construction algorithm.
|
|
//
|
|
// The primary entry point is the PropertyBag::addProperty() method, which
|
|
// unifies multiple layout, superclass and concrete type requirements on a
|
|
// single term.
|
|
//
|
|
// This unification can add new rewrite rules, as well as record rewrite loops
|
|
// relating existing rules together. Property map construction is iterated with
|
|
// the Knuth-Bendix completion procedure until fixed point.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/LayoutConstraint.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "PropertyMap.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
/// Returns true if we have not processed this rule before.
|
|
bool PropertyMap::checkRuleOnce(unsigned ruleID) {
|
|
return CheckedRules.insert(ruleID).second;
|
|
}
|
|
|
|
/// Returns true if we have not processed this pair of rules before.
|
|
bool PropertyMap::checkRulePairOnce(unsigned firstRuleID,
|
|
unsigned secondRuleID) {
|
|
return CheckedRulePairs.insert(
|
|
std::make_pair(firstRuleID, secondRuleID)).second;
|
|
}
|
|
|
|
/// Given a key T, a rule (V.[p1] => V) where T == U.V, and a property [p2]
|
|
/// where [p1] < [p2], record a rule (T.[p2] => T) that is induced by
|
|
/// the original rule (V.[p1] => V).
|
|
///
|
|
/// This is used to define rewrite loops for relating pairs of rules where
|
|
/// one implies another:
|
|
///
|
|
/// - a more specific layout constraint implies a general layout constraint
|
|
/// - a more specific superclass bound implies a less specific superclass bound
|
|
/// - a superclass bound implies a layout constraint
|
|
/// - a concrete type that is a class implies a superclass bound
|
|
/// - a concrete type that is a class implies a layout constraint
|
|
///
|
|
static void recordRelation(Term key,
|
|
unsigned lhsRuleID,
|
|
Symbol rhsProperty,
|
|
RewriteSystem &system,
|
|
bool debug) {
|
|
const auto &lhsRule = system.getRule(lhsRuleID);
|
|
auto lhsProperty = lhsRule.getLHS().back();
|
|
|
|
ASSERT(key.size() >= lhsRule.getRHS().size());
|
|
|
|
CONDITIONAL_ASSERT((lhsProperty.getKind() == Symbol::Kind::Layout &&
|
|
rhsProperty.getKind() == Symbol::Kind::Layout) ||
|
|
(lhsProperty.getKind() == Symbol::Kind::Superclass &&
|
|
rhsProperty.getKind() == Symbol::Kind::Superclass) ||
|
|
(lhsProperty.getKind() == Symbol::Kind::Superclass &&
|
|
rhsProperty.getKind() == Symbol::Kind::Layout) ||
|
|
(lhsProperty.getKind() == Symbol::Kind::ConcreteType &&
|
|
rhsProperty.getKind() == Symbol::Kind::Superclass) ||
|
|
(lhsProperty.getKind() == Symbol::Kind::ConcreteType &&
|
|
rhsProperty.getKind() == Symbol::Kind::Layout));
|
|
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Recording relation: ";
|
|
llvm::dbgs() << lhsRule.getLHS() << " < " << rhsProperty << "\n";
|
|
}
|
|
|
|
unsigned relationID = system.recordRelation(lhsProperty, rhsProperty);
|
|
|
|
// Build the following rewrite path:
|
|
//
|
|
// U.(V => V.[p1]).[p2] ⊗ U.V.Relation([p1].[p2] => [p1]) ⊗ U.(V.[p1] => V).
|
|
//
|
|
RewritePath path;
|
|
|
|
// Starting from U.V.[p2], apply the rule in reverse to get U.V.[p1].[p2].
|
|
path.add(RewriteStep::forRewriteRule(
|
|
/*startOffset=*/key.size() - lhsRule.getRHS().size(),
|
|
/*endOffset=*/1,
|
|
/*ruleID=*/lhsRuleID,
|
|
/*inverse=*/true));
|
|
|
|
// U.V.Relation([p1].[p2] => [p1]).
|
|
path.add(RewriteStep::forRelation(/*startOffset=*/key.size(),
|
|
relationID, /*inverse=*/false));
|
|
|
|
// U.(V.[p1] => V).
|
|
path.add(RewriteStep::forRewriteRule(
|
|
/*startOffset=*/key.size() - lhsRule.getRHS().size(),
|
|
/*endOffset=*/0,
|
|
/*ruleID=*/lhsRuleID,
|
|
/*inverse=*/false));
|
|
|
|
// Add the rule (T.[p2] => T) with the above rewrite path.
|
|
MutableTerm lhs(key);
|
|
lhs.add(rhsProperty);
|
|
|
|
MutableTerm rhs(key);
|
|
|
|
(void) system.addRule(lhs, rhs, &path);
|
|
}
|
|
|
|
/// Given two property rules that conflict because no concrete type
|
|
/// can satisfy both, record the conflict. If both have the same kind,
|
|
/// mark one or the other as conflicting, but not both.
|
|
void RewriteSystem::recordConflict(unsigned existingRuleID,
|
|
unsigned newRuleID) {
|
|
auto &existingRule = getRule(existingRuleID);
|
|
auto &newRule = getRule(newRuleID);
|
|
|
|
// FIXME: Property map construction shouldn't have to consider imported rules
|
|
// at all. We need to import the property map from each protocol component,
|
|
// just like we import rules.
|
|
if (!isInMinimizationDomain(newRule.getLHS().getRootProtocol()) &&
|
|
!isInMinimizationDomain(existingRule.getLHS().getRootProtocol())) {
|
|
return;
|
|
}
|
|
|
|
// Record the conflict for purposes of diagnostics.
|
|
ConflictingRules.emplace_back(existingRuleID, newRuleID);
|
|
|
|
if (Debug.contains(DebugFlags::ConflictingRules)) {
|
|
llvm::dbgs() << "Conflicting rules:\n";
|
|
llvm::dbgs() << "- " << existingRule << "\n";
|
|
llvm::dbgs() << "- " << newRule << "\n";
|
|
}
|
|
|
|
if (existingRule.getLHS().back().getKind() ==
|
|
newRule.getLHS().back().getKind()) {
|
|
CONDITIONAL_ASSERT(!existingRule.isIdentityConformanceRule() &&
|
|
!newRule.isIdentityConformanceRule());
|
|
|
|
// While we don't promise canonical minimization with conflicts,
|
|
// it's not really a big deal to spit out a generic signature with
|
|
// conflicts, as long as we diagnosed an error _somewhere_.
|
|
//
|
|
// However, the requirement lowering doesn't like to see two
|
|
// conflicting rules of the same kind, so we rule that out by
|
|
// marking the shorter rule as the conflict. Otherwise, we just
|
|
// leave both rules in place.
|
|
if (existingRule.getRHS().size() > newRule.getRHS().size() ||
|
|
(existingRule.getRHS().size() == newRule.getRHS().size() &&
|
|
existingRuleID < newRuleID)) {
|
|
existingRule.markConflicting();
|
|
} else {
|
|
newRule.markConflicting();
|
|
}
|
|
}
|
|
}
|
|
|
|
void PropertyMap::addConformanceProperty(
|
|
Term key, Symbol property, unsigned ruleID) {
|
|
auto *props = getOrCreateProperties(key);
|
|
props->ConformsTo.push_back(property.getProtocol());
|
|
props->ConformsToRules.push_back(ruleID);
|
|
}
|
|
|
|
void PropertyMap::addLayoutProperty(
|
|
Term key, Symbol property, unsigned ruleID) {
|
|
auto *props = getOrCreateProperties(key);
|
|
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
|
|
|
|
auto newLayout = property.getLayoutConstraint();
|
|
|
|
if (!props->Layout) {
|
|
// If we haven't seen a layout requirement before, just record it.
|
|
props->Layout = newLayout;
|
|
props->LayoutRule = ruleID;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, compute the intersection.
|
|
ASSERT(props->LayoutRule.has_value());
|
|
auto mergedLayout = props->Layout.merge(property.getLayoutConstraint());
|
|
|
|
// If the intersection is invalid, we have a conflict.
|
|
if (!mergedLayout->isKnownLayout()) {
|
|
System.recordConflict(*props->LayoutRule, ruleID);
|
|
|
|
// Replace the old layout. Since recordConflict() marks the older rule,
|
|
// this ensures that if we process multiple conflicting layout
|
|
// requirements, all but the final one will be marked conflicting.
|
|
props->Layout = newLayout;
|
|
props->LayoutRule = ruleID;
|
|
return;
|
|
}
|
|
|
|
// If the intersection is equal to the existing layout requirement,
|
|
// the new layout requirement is redundant.
|
|
if (mergedLayout == props->Layout) {
|
|
if (checkRulePairOnce(*props->LayoutRule, ruleID)) {
|
|
recordRelation(key, *props->LayoutRule, property, System, debug);
|
|
}
|
|
|
|
// If the intersection is equal to the new layout requirement, the
|
|
// existing layout requirement is redundant.
|
|
} else if (mergedLayout == newLayout) {
|
|
if (checkRulePairOnce(ruleID, *props->LayoutRule)) {
|
|
auto oldProperty = System.getRule(*props->LayoutRule).getLHS().back();
|
|
recordRelation(key, ruleID, oldProperty, System, debug);
|
|
}
|
|
|
|
props->LayoutRule = ruleID;
|
|
} else {
|
|
ABORT("Arbitrary intersection of layout requirements isn't supported yet");
|
|
}
|
|
}
|
|
|
|
/// Given a term T == U.V, an existing rule (V.[superclass: C] => V), and
|
|
/// a superclass declaration D of C, record a new rule (T.[superclass: C'] => T)
|
|
/// where C' is the substituted superclass type of C for D.
|
|
///
|
|
/// For example, suppose we have
|
|
///
|
|
/// class Derived : Base<Int> {}
|
|
/// class Base<T> {}
|
|
///
|
|
/// Given C == Derived and D == Base, then C' == Base<Int>.
|
|
void PropertyMap::recordSuperclassRelation(Term key,
|
|
Symbol superclassType,
|
|
unsigned superclassRuleID,
|
|
const ClassDecl *otherClass) {
|
|
auto derivedType = superclassType.getConcreteType();
|
|
CONDITIONAL_ASSERT(otherClass->isSuperclassOf(
|
|
derivedType->getClassOrBoundGenericClass()));
|
|
|
|
auto baseType = derivedType->getSuperclassForDecl(otherClass)
|
|
->getCanonicalType();
|
|
|
|
SmallVector<Term, 3> baseSubstitutions;
|
|
auto baseSchema = Context.getRelativeSubstitutionSchemaFromType(
|
|
baseType, superclassType.getSubstitutions(),
|
|
baseSubstitutions);
|
|
|
|
auto baseSymbol = Symbol::forSuperclass(baseSchema, baseSubstitutions,
|
|
Context);
|
|
|
|
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
|
|
recordRelation(key, superclassRuleID, baseSymbol, System, debug);
|
|
}
|
|
|
|
/// When a type parameter has two superclasses, we have to both unify the
|
|
/// type constructor arguments, and record the most derived superclass.
|
|
///
|
|
/// For example, if we have this setup:
|
|
///
|
|
/// class Base<T, T> {}
|
|
/// class Middle<U> : Base<T, T> {}
|
|
/// class Derived : Middle<Int> {}
|
|
///
|
|
/// T : Base<U, V>
|
|
/// T : Derived
|
|
///
|
|
/// The most derived superclass requirement is 'T : Derived'.
|
|
///
|
|
/// The corresponding superclass of 'Derived' is 'Base<Int, Int>', so we
|
|
/// unify the type constructor arguments of 'Base<U, V>' and 'Base<Int, Int>',
|
|
/// which generates two induced rules:
|
|
///
|
|
/// U.[concrete: Int] => U
|
|
/// V.[concrete: Int] => V
|
|
void PropertyMap::addSuperclassProperty(
|
|
Term key, Symbol property, unsigned ruleID) {
|
|
auto *props = getOrCreateProperties(key);
|
|
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
|
|
|
|
const auto *superclassDecl = property.getConcreteType()
|
|
->getClassOrBoundGenericClass();
|
|
ASSERT(superclassDecl != nullptr);
|
|
|
|
if (checkRuleOnce(ruleID)) {
|
|
// A rule (T.[superclass: C] => T) induces a rule (T.[layout: L] => T),
|
|
// where L is either AnyObject or _NativeObject.
|
|
auto layout =
|
|
LayoutConstraint::getLayoutConstraint(
|
|
superclassDecl->getLayoutConstraintKind(),
|
|
Context.getASTContext());
|
|
auto layoutSymbol = Symbol::forLayout(layout, Context);
|
|
|
|
recordRelation(key, ruleID, layoutSymbol, System, debug);
|
|
}
|
|
|
|
// If this is the first superclass requirement we've seen for this term,
|
|
// just record it and we're done.
|
|
if (!props->SuperclassDecl) {
|
|
if (debug) {
|
|
llvm::dbgs() << "% New superclass " << superclassDecl->getName()
|
|
<< " for " << key << "\n";
|
|
}
|
|
|
|
props->SuperclassDecl = superclassDecl;
|
|
|
|
ASSERT(props->Superclasses.empty());
|
|
auto &req = props->Superclasses[superclassDecl];
|
|
|
|
ASSERT(!req.SuperclassType.has_value());
|
|
ASSERT(req.SuperclassRules.empty());
|
|
|
|
req.SuperclassType = property;
|
|
req.SuperclassRules.emplace_back(property, ruleID);
|
|
return;
|
|
}
|
|
|
|
if (debug) {
|
|
llvm::dbgs() << "% New superclass " << superclassDecl->getName()
|
|
<< " for " << key << " is ";
|
|
}
|
|
|
|
// Otherwise, we compare it against the existing superclass requirement.
|
|
ASSERT(!props->Superclasses.empty());
|
|
|
|
if (superclassDecl == props->SuperclassDecl) {
|
|
if (debug) {
|
|
llvm::dbgs() << "equal to existing superclass\n";
|
|
}
|
|
|
|
// Perform concrete type unification at this level of the class
|
|
// hierarchy.
|
|
auto &req = props->Superclasses[superclassDecl];
|
|
ASSERT(req.SuperclassType.has_value());
|
|
ASSERT(!req.SuperclassRules.empty());
|
|
|
|
unifyConcreteTypes(key, req.SuperclassType, req.SuperclassRules,
|
|
property, ruleID);
|
|
|
|
} else if (superclassDecl->isSuperclassOf(props->SuperclassDecl)) {
|
|
if (debug) {
|
|
llvm::dbgs() << "less specific than existing superclass "
|
|
<< props->SuperclassDecl->getName() << "\n";
|
|
}
|
|
|
|
// Record a relation where existing superclass implies the new superclass.
|
|
const auto &existingReq = props->Superclasses[props->SuperclassDecl];
|
|
for (auto pair : existingReq.SuperclassRules) {
|
|
if (checkRulePairOnce(pair.second, ruleID)) {
|
|
recordSuperclassRelation(key, pair.first, pair.second,
|
|
superclassDecl);
|
|
}
|
|
}
|
|
|
|
// Record the new rule at the less specific level of the class
|
|
// hierarchy, performing concrete type unification if we've
|
|
// already seen another rule at that level.
|
|
auto &req = props->Superclasses[superclassDecl];
|
|
|
|
unifyConcreteTypes(key, req.SuperclassType, req.SuperclassRules,
|
|
property, ruleID);
|
|
|
|
} else if (props->SuperclassDecl->isSuperclassOf(superclassDecl)) {
|
|
if (debug) {
|
|
llvm::dbgs() << "more specific than existing superclass "
|
|
<< props->SuperclassDecl->getName() << "\n";
|
|
}
|
|
|
|
// Record a relation where new superclass implies the existing superclass.
|
|
const auto &existingReq = props->Superclasses[props->SuperclassDecl];
|
|
for (auto pair : existingReq.SuperclassRules) {
|
|
if (checkRulePairOnce(pair.second, ruleID)) {
|
|
recordSuperclassRelation(key, property, ruleID,
|
|
props->SuperclassDecl);
|
|
}
|
|
}
|
|
|
|
// Record the new rule at the more specific level of the class
|
|
// hierarchy.
|
|
auto &req = props->Superclasses[superclassDecl];
|
|
ASSERT(!req.SuperclassType.has_value());
|
|
ASSERT(req.SuperclassRules.empty());
|
|
|
|
req.SuperclassType = property;
|
|
req.SuperclassRules.emplace_back(property, ruleID);
|
|
|
|
props->SuperclassDecl = superclassDecl;
|
|
|
|
} else {
|
|
if (debug) {
|
|
llvm::dbgs() << "not related to existing superclass "
|
|
<< props->SuperclassDecl->getName() << "\n";
|
|
}
|
|
|
|
auto &req = props->Superclasses[props->SuperclassDecl];
|
|
for (const auto &pair : req.SuperclassRules) {
|
|
if (checkRulePairOnce(pair.second, ruleID))
|
|
System.recordConflict(pair.second, ruleID);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given two concrete type rules, record a rewrite loop relating them,
|
|
/// record induced rules, and relate the induced rules to the concrete
|
|
/// type rules.
|
|
void PropertyMap::unifyConcreteTypes(Term key,
|
|
Symbol lhsProperty, unsigned lhsRuleID,
|
|
Symbol rhsProperty, unsigned rhsRuleID) {
|
|
if (!checkRulePairOnce(lhsRuleID, rhsRuleID))
|
|
return;
|
|
|
|
auto &lhsRule = System.getRule(lhsRuleID);
|
|
auto &rhsRule = System.getRule(rhsRuleID);
|
|
|
|
ASSERT(rhsRule.getRHS() == key);
|
|
|
|
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
|
|
|
|
//if (debug) {
|
|
llvm::dbgs() << "% Unifying " << lhsProperty
|
|
<< " with " << rhsProperty << "\n";
|
|
//}
|
|
|
|
std::optional<unsigned> lhsDifferenceID;
|
|
std::optional<unsigned> rhsDifferenceID;
|
|
|
|
bool conflict = System.computeTypeDifference(key,
|
|
lhsProperty,
|
|
rhsProperty,
|
|
lhsDifferenceID,
|
|
rhsDifferenceID);
|
|
|
|
if (conflict) {
|
|
// FIXME: Diagnose the conflict
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Concrete type conflict\n";
|
|
}
|
|
System.recordConflict(lhsRuleID, rhsRuleID);
|
|
return;
|
|
}
|
|
|
|
// Handle the case where (LHS ∧ RHS) is distinct from both LHS and RHS:
|
|
// - First, record a new rule.
|
|
// - Next, process the LHS -> (LHS ∧ RHS) difference.
|
|
// - Finally, process the RHS -> (LHS ∧ RHS) difference.
|
|
if (lhsDifferenceID && rhsDifferenceID) {
|
|
const auto &lhsDifference = System.getTypeDifference(*lhsDifferenceID);
|
|
const auto &rhsDifference = System.getTypeDifference(*rhsDifferenceID);
|
|
ASSERT(lhsDifference.RHS == rhsDifference.RHS);
|
|
|
|
auto newProperty = lhsDifference.RHS;
|
|
ASSERT(newProperty == rhsDifference.RHS);
|
|
|
|
MutableTerm rhsTerm(key);
|
|
MutableTerm lhsTerm(key);
|
|
lhsTerm.add(newProperty);
|
|
|
|
// This rule does not need a rewrite path because it will be related
|
|
// to the two existing rules by the processTypeDifference() calls below.
|
|
System.addRule(lhsTerm, rhsTerm);
|
|
|
|
// Recover a rewrite path from T to T.[LHS ∧ RHS].
|
|
RewritePath path;
|
|
System.buildRewritePathForJoiningTerms(rhsTerm, lhsTerm, &path);
|
|
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Induced rule " << lhsTerm
|
|
<< " == " << rhsTerm << "\n";
|
|
}
|
|
|
|
// Process LHS -> (LHS ∧ RHS).
|
|
System.processTypeDifference(lhsDifference, *lhsDifferenceID,
|
|
lhsRuleID, path);
|
|
|
|
// Process RHS -> (LHS ∧ RHS).
|
|
System.processTypeDifference(rhsDifference, *rhsDifferenceID,
|
|
rhsRuleID, path);
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle the case where RHS == (LHS ∧ RHS) by processing LHS -> (LHS ∧ RHS).
|
|
if (lhsDifferenceID) {
|
|
ASSERT(!rhsDifferenceID);
|
|
|
|
const auto &lhsDifference = System.getTypeDifference(*lhsDifferenceID);
|
|
//ASSERT(lhsProperty == lhsDifference.LHS);
|
|
//ASSERT(rhsProperty == lhsDifference.RHS);
|
|
|
|
// Build a rewrite path (T.[RHS] => T).
|
|
RewritePath path;
|
|
|
|
path.add(RewriteStep::forRewriteRule(
|
|
/*startOffset=*/0, /*endOffset=*/0,
|
|
/*ruleID=*/rhsRuleID, /*inverse=*/false));
|
|
|
|
System.processTypeDifference(lhsDifference, *lhsDifferenceID,
|
|
lhsRuleID, path);
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle the case where LHS == (LHS ∧ RHS) by processing RHS -> (LHS ∧ RHS).
|
|
if (rhsDifferenceID) {
|
|
ASSERT(!lhsDifferenceID);
|
|
|
|
const auto &rhsDifference = System.getTypeDifference(*rhsDifferenceID);
|
|
ASSERT(rhsProperty == rhsDifference.LHS);
|
|
ASSERT(lhsProperty == rhsDifference.RHS);
|
|
|
|
// Build a rewrite path (T.[LHS] => T).
|
|
RewritePath path;
|
|
|
|
unsigned lhsPrefix = key.size() - lhsRule.getRHS().size();
|
|
if (lhsPrefix > 0) {
|
|
path.add(RewriteStep::forPrefixSubstitutions(
|
|
lhsPrefix, /*endOffset=*/0, /*inverse=*/true));
|
|
}
|
|
|
|
path.add(RewriteStep::forRewriteRule(
|
|
/*startOffset=*/lhsPrefix, /*endOffset=*/0,
|
|
/*ruleID=*/lhsRuleID, /*inverse=*/false));
|
|
|
|
System.processTypeDifference(rhsDifference, *rhsDifferenceID,
|
|
rhsRuleID, path);
|
|
|
|
return;
|
|
}
|
|
|
|
ASSERT(lhsProperty == rhsProperty);
|
|
|
|
if (lhsRuleID != rhsRuleID) {
|
|
// If the rules are different but the concrete types are identical, then
|
|
// the key is some term U.V, the existing rule is a rule of the form:
|
|
//
|
|
// V.[concrete: G<...> with <X, Y>]
|
|
//
|
|
// and the new rule is a rule of the form:
|
|
//
|
|
// U.V.[concrete: G<...> with <U.X, U.Y>]
|
|
//
|
|
// Record a loop relating the two rules via a rewrite step to prefix 'U' to
|
|
// the symbol's substitutions.
|
|
//
|
|
// Since the new rule appears without context, it becomes redundant.
|
|
RewritePath path;
|
|
path.add(RewriteStep::forRewriteRule(
|
|
/*startOffset=*/0, /*endOffset=*/0,
|
|
/*ruleID=*/rhsRuleID, /*inverse=*/false));
|
|
|
|
RewritePath unificationPath;
|
|
System.buildRewritePathForUnifier(key, lhsRuleID, path, &unificationPath);
|
|
System.recordRewriteLoop(MutableTerm(rhsRule.getLHS()), unificationPath);
|
|
}
|
|
}
|
|
|
|
/// Relate a concrete type rule to all existing concrete type rules for this
|
|
/// key, and recompute the best concrete type property and rule seen so far.
|
|
///
|
|
/// Used by addSuperclassProperty() and addConcreteTypeProperty().
|
|
void PropertyMap::unifyConcreteTypes(
|
|
Term key, std::optional<Symbol> &bestProperty,
|
|
llvm::SmallVectorImpl<std::pair<Symbol, unsigned>> &existingRules,
|
|
Symbol property, unsigned ruleID) {
|
|
// Unify this rule with all other concrete type rules we've seen so far,
|
|
// to record rewrite loops relating the rules and their projections.
|
|
for (auto pair : existingRules) {
|
|
llvm::dbgs() << "one call of unify types\n";
|
|
unifyConcreteTypes(key, pair.first, pair.second, property, ruleID);
|
|
llvm::dbgs() << "call of unify type ends\n";
|
|
}
|
|
|
|
// Record the new rule.
|
|
existingRules.emplace_back(property, ruleID);
|
|
|
|
// Now, figure out the best concrete type seen so far. If this is the
|
|
// first rule, it's the best one.
|
|
if (!bestProperty) {
|
|
bestProperty = property;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, compute the meet with the existing best property.
|
|
std::optional<unsigned> lhsDifferenceID;
|
|
std::optional<unsigned> rhsDifferenceID;
|
|
|
|
bool conflict = System.computeTypeDifference(key,
|
|
*bestProperty, property,
|
|
lhsDifferenceID,
|
|
rhsDifferenceID);
|
|
if (conflict)
|
|
return;
|
|
|
|
if (lhsDifferenceID) {
|
|
bestProperty = System.getTypeDifference(*lhsDifferenceID).RHS;
|
|
} else if (rhsDifferenceID) {
|
|
bestProperty = System.getTypeDifference(*rhsDifferenceID).RHS;
|
|
} else {
|
|
ASSERT(*bestProperty == property);
|
|
}
|
|
}
|
|
|
|
/// When a type parameter has two concrete types, we have to unify the
|
|
/// type constructor arguments.
|
|
///
|
|
/// For example, suppose that we have two concrete same-type requirements:
|
|
///
|
|
/// T == Foo<X.Y, Z, String>
|
|
/// T == Foo<Int, A.B, W>
|
|
///
|
|
/// These lower to the following two rules:
|
|
///
|
|
/// T.[concrete: Foo<τ_0_0, τ_0_1, String> with {X.Y, Z}] => T
|
|
/// T.[concrete: Foo<Int, τ_0_0, τ_0_1> with {A.B, W}] => T
|
|
///
|
|
/// The two concrete type symbols will be added to the property bag of 'T',
|
|
/// and we will eventually end up in this method, where we will generate three
|
|
/// induced rules:
|
|
///
|
|
/// X.Y.[concrete: Int] => X.Y
|
|
/// A.B => Z
|
|
/// W.[concrete: String] => W
|
|
void PropertyMap::addConcreteTypeProperty(
|
|
Term key, Symbol property, unsigned ruleID) {
|
|
auto *props = getOrCreateProperties(key);
|
|
|
|
unifyConcreteTypes(key,
|
|
props->ConcreteType,
|
|
props->ConcreteTypeRules,
|
|
property, ruleID);
|
|
}
|
|
|
|
/// Record a protocol conformance, layout or superclass constraint on the given
|
|
/// key. Must be called in monotonically non-decreasing key order.
|
|
void PropertyMap::addProperty(
|
|
Term key, Symbol property, unsigned ruleID) {
|
|
CONDITIONAL_ASSERT(property.isProperty());
|
|
CONDITIONAL_ASSERT(*System.getRule(ruleID).isPropertyRule() == property);
|
|
|
|
switch (property.getKind()) {
|
|
case Symbol::Kind::Protocol:
|
|
addConformanceProperty(key, property, ruleID);
|
|
return;
|
|
|
|
case Symbol::Kind::Layout:
|
|
addLayoutProperty(key, property, ruleID);
|
|
return;
|
|
|
|
case Symbol::Kind::Superclass:
|
|
addSuperclassProperty(key, property, ruleID);
|
|
return;
|
|
|
|
case Symbol::Kind::ConcreteType:
|
|
addConcreteTypeProperty(key, property, ruleID);
|
|
return;
|
|
|
|
case Symbol::Kind::ConcreteConformance:
|
|
// Concrete conformance rules are not recorded in the property map, since
|
|
// they're not needed for unification, and generic signature queries don't
|
|
// care about them.
|
|
return;
|
|
|
|
case Symbol::Kind::Name:
|
|
case Symbol::Kind::GenericParam:
|
|
case Symbol::Kind::AssociatedType:
|
|
case Symbol::Kind::Shape:
|
|
case Symbol::Kind::PackElement:
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("Bad symbol kind");
|
|
}
|
|
|
|
/// Post-pass to handle unification and conflict checking between pairs of
|
|
/// rules of different kinds:
|
|
///
|
|
/// - concrete vs superclass
|
|
/// - concrete vs layout
|
|
///
|
|
/// Note that we allow a subclass existential 'any C & P' to satisfy a
|
|
/// superclass requirement 'C' as long as 'P' is an @objc protocol.
|
|
///
|
|
/// This is not fully sound because 'any C & P' is not substitutable for
|
|
/// 'C' if the code calls static method or required initializers on 'C',
|
|
/// but existing code out there relies on this working.
|
|
///
|
|
/// A more refined check would ensure that 'C' had no required initializers
|
|
/// and that 'P' was self-conforming; or we could ban this entirely in a
|
|
/// future -swift-version mode.
|
|
void PropertyMap::checkConcreteTypeRequirements() {
|
|
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
|
|
|
|
for (auto *props : Entries) {
|
|
for (auto pair : props->ConcreteTypeRules) {
|
|
auto concreteType = pair.first;
|
|
unsigned concreteTypeRule = pair.second;
|
|
|
|
// If the concrete type is not a class and we have a superclass
|
|
// requirement, we have a conflict.
|
|
if (!concreteType.getConcreteType()->getClassOrBoundGenericClass() &&
|
|
!(concreteType.getConcreteType()->isObjCExistentialType() &&
|
|
concreteType.getConcreteType()->getSuperclass()) &&
|
|
props->hasSuperclassBound()) {
|
|
const auto &req = props->getSuperclassRequirement();
|
|
for (auto pair : req.SuperclassRules) {
|
|
if (checkRulePairOnce(concreteTypeRule, pair.second))
|
|
System.recordConflict(concreteTypeRule, pair.second);
|
|
}
|
|
}
|
|
|
|
// If the concrete type does not satisfy a class layout constraint and
|
|
// we have such a layout requirement, we have a conflict.
|
|
if (!concreteType.getConcreteType()->satisfiesClassConstraint() &&
|
|
props->LayoutRule &&
|
|
props->Layout->isClass()) {
|
|
if (checkRulePairOnce(concreteTypeRule, *props->LayoutRule))
|
|
System.recordConflict(concreteTypeRule, *props->LayoutRule);
|
|
}
|
|
|
|
if (checkRuleOnce(concreteTypeRule)) {
|
|
if (concreteType.getConcreteType()->satisfiesClassConstraint()) {
|
|
Type superclassType = concreteType.getConcreteType();
|
|
if (!superclassType->getClassOrBoundGenericClass())
|
|
superclassType = superclassType->getSuperclass();
|
|
|
|
if (superclassType) {
|
|
// A rule (T.[concrete: C] => T) where C is a class type induces a rule
|
|
// (T.[superclass: C] => T).
|
|
auto superclassSymbol = Symbol::forSuperclass(
|
|
superclassType->getCanonicalType(),
|
|
concreteType.getSubstitutions(),
|
|
Context);
|
|
|
|
recordRelation(props->getKey(), concreteTypeRule,
|
|
superclassSymbol, System, debug);
|
|
}
|
|
|
|
// A rule (T.[concrete: C] => T) where C is a class type induces a rule
|
|
// (T.[layout: L] => T), where L is either AnyObject or _NativeObject.
|
|
auto layoutConstraint = LayoutConstraintKind::Class;
|
|
if (superclassType)
|
|
if (auto *classDecl = superclassType->getClassOrBoundGenericClass())
|
|
layoutConstraint = classDecl->getLayoutConstraintKind();
|
|
|
|
auto layout =
|
|
LayoutConstraint::getLayoutConstraint(
|
|
layoutConstraint, Context.getASTContext());
|
|
auto layoutSymbol = Symbol::forLayout(layout, Context);
|
|
|
|
recordRelation(props->getKey(), concreteTypeRule,
|
|
layoutSymbol, System, debug);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|