Files
swift-mirror/lib/AST/RequirementMachine/RewriteLoop.cpp
Hamish Knight edca7c85ad Adopt ABORT throughout the compiler
Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
2025-05-19 20:55:01 +01:00

1046 lines
32 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- RewriteLoop.cpp - Identities between rewrite rules ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines data types used for representing redundancies among
// rewrite rules. The information encoded in these types is ultimately used
// for generic signature minimization.
//
// A RewriteStep is a single primitive transformation; the canonical example is
// the application of a rewrite rule, possibly to a subterm.
//
// A RewritePath is a composition of RewriteSteps describing the transformation
// of a term into another term. One place where a RewritePath originates is
// RewriteSystem::simplify(); that method takes an optional RewritePath argument
// to which the series of RewriteSteps performed during simplification are
// appended. If the term was already canonical, the resulting path is empty,
// otherwise it will consist of at least one RewriteStep.
//
// Simplification always applies rules by replacing a subterm equal to the LHS
// with the RHS where LHS > RHS, so the RewriteSteps constructed there always
// make the term shorter. However, more generally, RewriteSteps can also
// express the inverse rewrite, where RHS is replaced with LHS, making the term
// longer.
//
// Inverted RewriteSteps are constructed in the Knuth-Bendix completion
// algorithm. A simple example is where two rules (U.V => X) and (V.W => Y)
// overlap on the term U.V.W. Then the induced rule (X.W => U.Y) (assuming that
// X.W > U.Y) can be described by a RewritePath which begins at X.W, applies
// the inverted rule (X => U.V) to the subterm X to obtain U.V.W, then applies
// the rule (V.W => Y) to the subterm V.W to obtain U.Y.
//
// A RewriteLoop is a path that begins and ends at the same term. A RewriteLoop
// describes a _redundancy_. For example, when completion adds a new rule to
// resolve an overlap, it constructs a RewritePath describing this new rule in
// terms of existing rules; by adding an additional rewrite step corresponding
// to the new rule, we get a loop that begins and ends at the same point, or in
// other words, a RewriteLoop.
//
// In the above example, we have a RewritePath from X.W to U.Y via the two
// existing rewrite rules with the overlap term U.V.W in the middle. If we then
// add a third rewrite step for the new rule inverted, (U.Y => X.W), we get a
// loop that begins and ends at X.W. This loop encodes that the new rule
// (X.W => U.Y) is redundant because it can be expressed in terms of other rules.
//
// The homotopy reduction algorithm in HomotopyReduction.cpp uses rewrite loops
// to find a minimal set of rewrite rules, which are then used to construct a
// minimal generic signature.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Type.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Range.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// Dumps the rewrite step that was applied to \p term. Mutates \p term to
/// reflect the application of the rule.
void RewriteStep::dump(llvm::raw_ostream &out,
RewritePathEvaluator &evaluator,
const RewriteSystem &system) const {
switch (Kind) {
case Rule: {
auto result = evaluator.applyRewriteRule(*this, system);
if (!result.prefix.empty()) {
out << result.prefix;
out << ".";
}
out << "(" << result.lhs << " => " << result.rhs << ")";
if (!result.suffix.empty()) {
out << ".";
out << result.suffix;
}
break;
}
case PrefixSubstitutions: {
auto pair = evaluator.applyPrefixSubstitutions(*this, system);
out << "(σ";
out << (Inverse ? " - " : " + ");
out << pair.first << ")";
if (!pair.second.empty())
out << "." << pair.second;
break;
}
case Shift: {
evaluator.applyShift(*this, system);
out << (Inverse ? "B>A" : "A>B");
break;
}
case Decompose: {
evaluator.applyDecompose(*this, system);
out << (Inverse ? "Compose(" : "Decompose(");
out << Arg << ")";
break;
}
case Relation: {
auto result = evaluator.applyRelation(*this, system);
if (!result.prefix.empty()) {
out << result.prefix;
out << ".";
}
out << "(" << result.lhs << " =>> " << result.rhs << ")";
if (!result.suffix.empty()) {
out << ".";
out << result.suffix;
}
break;
}
case DecomposeConcrete: {
evaluator.applyDecomposeConcrete(*this, system);
out << (Inverse ? "ComposeConcrete(" : "DecomposeConcrete(");
const auto &difference = system.getTypeDifference(Arg);
out << difference.LHS << " : " << difference.RHS << ")";
break;
}
case LeftConcreteProjection: {
evaluator.applyLeftConcreteProjection(*this, system);
out << "LeftConcrete" << (Inverse ? "In" : "Pro") << "jection(";
const auto &difference = system.getTypeDifference(
getTypeDifferenceID());
out << difference.LHS << " : " << difference.RHS << ")";
break;
}
case RightConcreteProjection: {
evaluator.applyRightConcreteProjection(*this, system);
out << "RightConcrete" << (Inverse ? "In" : "Pro") << "jection(";
const auto &difference = system.getTypeDifference(
getTypeDifferenceID());
out << difference.LHS << " : " << difference.RHS << ")";
break;
}
}
}
/// Invert a rewrite path, producing a path that rewrites the original path's
/// destination back to the original path's source.
void RewritePath::invert() {
std::reverse(Steps.begin(), Steps.end());
for (auto &step : Steps)
step.invert();
}
/// Given a rewrite rule which appears exactly once in a loop
/// without context, return a new definition for this rewrite rule.
/// The new definition is the path obtained by deleting the
/// rewrite rule from the loop.
RewritePath RewritePath::splitCycleAtRule(unsigned ruleID) const {
// A cycle is a path from the basepoint to the basepoint.
// Somewhere in this path, an application of \p ruleID
// appears in an empty context.
// First, we split the cycle into two paths:
//
// (1) A path from the basepoint to the rule's
// left hand side,
RewritePath basepointToLhs;
// (2) And a path from the rule's right hand side
// to the basepoint.
RewritePath rhsToBasepoint;
// Because the rule only appears once, we know that basepointToLhs
// and rhsToBasepoint do not involve the rule itself.
// If the rule is inverted, we have to invert the whole thing
// again at the end.
bool ruleWasInverted = false;
bool sawRule = false;
for (auto step : Steps) {
switch (step.Kind) {
case RewriteStep::Rule: {
if (step.getRuleID() != ruleID)
break;
ASSERT(!sawRule && "Rule appears more than once?");
ASSERT(!step.isInContext() && "Rule appears in context?");
ruleWasInverted = step.Inverse;
sawRule = true;
continue;
}
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::LeftConcreteProjection:
case RewriteStep::RightConcreteProjection:
break;
}
if (sawRule)
rhsToBasepoint.add(step);
else
basepointToLhs.add(step);
}
// Build a path from the rule's lhs to the rule's rhs via the
// basepoint.
RewritePath result = rhsToBasepoint;
result.append(basepointToLhs);
// We want a path from the lhs to the rhs, so invert it unless
// the rewrite step was also inverted.
if (!ruleWasInverted)
result.invert();
return result;
}
/// Replace every rewrite step involving the given rewrite rule with
/// either the replacement path (or its inverse, if the step was
/// inverted).
///
/// The replacement path is re-contextualized at each occurrence of a
/// rewrite step involving the given rule.
///
/// Returns true if any rewrite steps were replaced; false means the
/// rule did not appear in this path.
bool RewritePath::replaceRulesWithPaths(
llvm::function_ref<const RewritePath *(unsigned)> fn) {
bool foundAny = false;
for (const auto &step : Steps) {
if (step.Kind == RewriteStep::Rule &&
fn(step.getRuleID()) != nullptr) {
foundAny = true;
break;
}
}
if (!foundAny)
return false;
SmallVector<RewriteStep, 4> newSteps;
for (const auto &step : Steps) {
switch (step.Kind) {
case RewriteStep::Rule: {
auto *replacementPath = fn(step.getRuleID());
if (replacementPath == nullptr) {
newSteps.push_back(step);
break;
}
// Ok, we found a rewrite step referencing a redundant rule.
// Replace this step with the provided path. If this rewrite step has
// context, the path's own steps must be re-contextualized.
// Keep track of rewrite step pairs which push and pop the stack. Any
// rewrite steps enclosed with a push/pop are not re-contextualized.
unsigned pushCount = 0;
auto recontextualizeStep = [&](RewriteStep newStep) {
bool inverse = newStep.Inverse ^ step.Inverse;
if (newStep.pushesTermsOnStack() && inverse) {
ASSERT(pushCount > 0);
--pushCount;
}
if (pushCount == 0) {
newStep.StartOffset += step.StartOffset;
newStep.EndOffset += step.EndOffset;
}
newStep.Inverse = inverse;
newSteps.push_back(newStep);
if (newStep.pushesTermsOnStack() && !inverse) {
++pushCount;
}
};
// If this rewrite step is inverted, invert the entire path.
if (step.Inverse) {
for (auto newStep : llvm::reverse(*replacementPath))
recontextualizeStep(newStep);
} else {
for (auto newStep : *replacementPath)
recontextualizeStep(newStep);
}
// Rewrite steps which push and pop the stack must come in balanced pairs.
ASSERT(pushCount == 0);
break;
}
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::LeftConcreteProjection:
case RewriteStep::RightConcreteProjection:
newSteps.push_back(step);
break;
}
}
std::swap(newSteps, Steps);
return true;
}
bool RewritePath::replaceRuleWithPath(unsigned ruleID,
const RewritePath &path) {
return replaceRulesWithPaths(
[&](unsigned otherRuleID) -> const RewritePath * {
if (ruleID == otherRuleID)
return &path;
return nullptr;
});
}
SmallVector<unsigned, 1>
RewritePath::findRulesAppearingOnceInEmptyContext(const MutableTerm &term,
const RewriteSystem &system) const {
// Rules appearing in empty context (possibly more than once).
llvm::SmallDenseSet<unsigned, 2> rulesInEmptyContext;
// The number of times each rule appears (with or without context).
llvm::SmallDenseMap<unsigned, unsigned, 2> ruleFrequency;
RewritePathEvaluator evaluator(term);
for (auto step : Steps) {
switch (step.Kind) {
case RewriteStep::Rule: {
if (!step.isInContext() && !evaluator.isInContext())
rulesInEmptyContext.insert(step.getRuleID());
++ruleFrequency[step.getRuleID()];
break;
}
case RewriteStep::LeftConcreteProjection:
case RewriteStep::Decompose:
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::RightConcreteProjection:
break;
}
evaluator.apply(step, system);
}
// Collect all rules that we saw exactly once in empty context.
SmallVector<unsigned, 1> rulesOnceInEmptyContext;
for (auto rule : rulesInEmptyContext) {
auto found = ruleFrequency.find(rule);
ASSERT(found != ruleFrequency.end());
if (found->second == 1)
rulesOnceInEmptyContext.push_back(rule);
}
return rulesOnceInEmptyContext;
}
/// Dumps a series of rewrite steps applied to \p term.
void RewritePath::dump(llvm::raw_ostream &out,
MutableTerm term,
const RewriteSystem &system) const {
RewritePathEvaluator evaluator(term);
bool first = true;
for (const auto &step : Steps) {
if (!first) {
out << "";
} else {
first = false;
}
step.dump(out, evaluator, system);
}
}
void RewritePath::dumpLong(llvm::raw_ostream &out,
MutableTerm term,
const RewriteSystem &system) const {
RewritePathEvaluator evaluator(term);
for (const auto &step : Steps) {
evaluator.dump(out);
evaluator.apply(step, system);
out << "\n";
}
evaluator.dump(out);
}
void RewriteLoop::verify(const RewriteSystem &system) const {
RewritePathEvaluator evaluator(Basepoint);
for (const auto &step : Path) {
evaluator.apply(step, system);
}
if (evaluator.getCurrentTerm() != Basepoint) {
ABORT([&](auto &out) {
out << "Not a loop: ";
dump(out, system);
});
}
if (evaluator.isInContext()) {
ABORT([&](auto &out) {
out << "Leftover terms on evaluator stack\n";
evaluator.dump(out);
});
}
}
/// Recompute various cached values if needed.
void RewriteLoop::recompute(const RewriteSystem &system) {
if (!Dirty)
return;
Dirty = 0;
Useful = 0;
ProjectionCount = 0;
DecomposeCount = 0;
HasConcreteTypeAliasRule = 0;
RewritePathEvaluator evaluator(Basepoint);
for (auto step : Path) {
switch (step.Kind) {
case RewriteStep::Rule: {
Useful |= (!step.isInContext() && !evaluator.isInContext());
const auto &rule = system.getRule(step.getRuleID());
if (rule.isDerivedFromConcreteProtocolTypeAliasRule())
HasConcreteTypeAliasRule = 1;
break;
}
case RewriteStep::LeftConcreteProjection:
++ProjectionCount;
break;
case RewriteStep::Decompose:
++DecomposeCount;
break;
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::RightConcreteProjection:
break;
}
evaluator.apply(step, system);
}
RulesInEmptyContext =
Path.findRulesAppearingOnceInEmptyContext(Basepoint, system);
}
/// A rewrite rule is redundant if it appears exactly once in a loop
/// without context.
ArrayRef<unsigned>
RewriteLoop::findRulesAppearingOnceInEmptyContext(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return RulesInEmptyContext;
}
/// The number of LeftConcreteProjection steps, used by the elimination order to
/// prioritize loops that are not concrete unification projections.
unsigned RewriteLoop::getProjectionCount(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return ProjectionCount;
}
/// The number of Decompose steps, used by the elimination order to prioritize
/// loops that are not concrete simplifications.
unsigned RewriteLoop::getDecomposeCount(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return DecomposeCount;
}
/// Returns true if the loop contains at least one concrete protocol typealias rule.
/// See Rule::isDerivedFromConcreteProtocolTypeAliasRule().
bool RewriteLoop::hasConcreteTypeAliasRule(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return HasConcreteTypeAliasRule;
}
/// Returns true if the loop contains any rules in empty context.
bool RewriteLoop::isUseful(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return Useful;
}
void RewriteLoop::dump(llvm::raw_ostream &out,
const RewriteSystem &system) const {
out << Basepoint << ": ";
Path.dump(out, Basepoint, system);
if (isDeleted())
out << " [deleted]";
}
void RewritePathEvaluator::dump(llvm::raw_ostream &out) const {
for (unsigned i = 0, e = Primary.size(); i < e; ++i) {
if (i == Primary.size() - 1)
out << "-> ";
else
out << " ";
out << Primary[i] << "\n";
}
for (unsigned i = 0, e = Secondary.size(); i < e; ++i) {
out << " " << Secondary[Secondary.size() - i - 1] << "\n";
}
}
void RewritePathEvaluator::checkPrimary() const {
if (Primary.empty()) {
ABORT([&](auto &out) {
out << "Empty primary stack\n";
dump(out);
});
}
}
void RewritePathEvaluator::checkSecondary() const {
if (Secondary.empty()) {
ABORT([&](auto &out) {
out << "Empty secondary stack\n";
dump(out);
});
}
}
MutableTerm &RewritePathEvaluator::getCurrentTerm() {
checkPrimary();
return Primary.back();
}
AppliedRewriteStep
RewritePathEvaluator::applyRewriteRule(const RewriteStep &step,
const RewriteSystem &system) {
auto &term = getCurrentTerm();
ASSERT(step.Kind == RewriteStep::Rule);
const auto &rule = system.getRule(step.getRuleID());
auto lhs = (step.Inverse ? rule.getRHS() : rule.getLHS());
auto rhs = (step.Inverse ? rule.getLHS() : rule.getRHS());
auto bug = [&](StringRef msg) {
ABORT([&](auto &out) {
out << msg << "\n";
out << "- Term: " << term << "\n";
out << "- StartOffset: " << step.StartOffset << "\n";
out << "- EndOffset: " << step.EndOffset << "\n";
out << "- Expected subterm: " << lhs;
});
};
if (term.size() != step.StartOffset + lhs.size() + step.EndOffset) {
bug("Invalid whiskering");
}
if (!std::equal(term.begin() + step.StartOffset,
term.begin() + step.StartOffset + lhs.size(),
lhs.begin())) {
bug("Invalid subterm");
}
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
MutableTerm suffix(term.end() - step.EndOffset, term.end());
term = prefix;
term.append(rhs);
term.append(suffix);
return {lhs, rhs, prefix, suffix};
}
std::pair<MutableTerm, MutableTerm>
RewritePathEvaluator::applyPrefixSubstitutions(const RewriteStep &step,
const RewriteSystem &system) {
ASSERT(step.Arg != 0);
auto &term = getCurrentTerm();
ASSERT(step.Kind == RewriteStep::PrefixSubstitutions);
auto &ctx = system.getRewriteContext();
MutableTerm prefix(term.begin() + step.StartOffset,
term.begin() + step.StartOffset + step.Arg);
MutableTerm suffix(term.end() - step.EndOffset - 1, term.end());
// We're either adding or removing the prefix to each concrete substitution.
Symbol &last = *(term.end() - step.EndOffset - 1);
if (!last.hasSubstitutions()) {
ABORT([&](auto &out) {
out << "Invalid rewrite path\n";
out << "- Term: " << term << "\n";
out << "- Start offset: " << step.StartOffset << "\n";
out << "- End offset: " << step.EndOffset;
});
}
last = last.transformConcreteSubstitutions(
[&](Term t) -> Term {
if (step.Inverse) {
if (!std::equal(t.begin(),
t.begin() + step.Arg,
prefix.begin())) {
ABORT([&](auto &out) {
out << "Invalid rewrite path\n";
out << "- Term: " << term << "\n";
out << "- Substitution: " << t << "\n";
out << "- Start offset: " << step.StartOffset << "\n";
out << "- End offset: " << step.EndOffset << "\n";
out << "- Expected subterm: " << prefix;
});
}
MutableTerm mutTerm(t.begin() + step.Arg, t.end());
return Term::get(mutTerm, ctx);
} else {
MutableTerm mutTerm(prefix);
mutTerm.append(t);
return Term::get(mutTerm, ctx);
}
}, ctx);
return std::make_pair(prefix, suffix);
}
void RewritePathEvaluator::applyShift(const RewriteStep &step,
const RewriteSystem &system) {
ASSERT(step.Kind == RewriteStep::Shift);
ASSERT(step.StartOffset == 0);
ASSERT(step.EndOffset == 0);
ASSERT(step.Arg == 0);
if (!step.Inverse) {
// Move top of primary stack to secondary stack.
checkPrimary();
Secondary.push_back(Primary.back());
Primary.pop_back();
} else {
// Move top of secondary stack to primary stack.
checkSecondary();
Primary.push_back(Secondary.back());
Secondary.pop_back();
}
}
void RewritePathEvaluator::applyDecompose(const RewriteStep &step,
const RewriteSystem &system) {
ASSERT(step.Kind == RewriteStep::Decompose);
unsigned numSubstitutions = step.Arg;
if (!step.Inverse) {
// The input term takes the form U.[concrete: C].V or U.[superclass: C].V,
// where |V| == EndOffset.
const auto &term = getCurrentTerm();
auto symbol = *(term.end() - step.EndOffset - 1);
if (!symbol.hasSubstitutions()) {
ABORT([&](auto &out) {
out << "Expected term with superclass or concrete type symbol"
<< " on primary stack\n";
dump(out);
});
}
// The symbol must have the expected number of substitutions.
if (symbol.getSubstitutions().size() != numSubstitutions) {
ABORT([&](auto &out) {
out << "Expected " << numSubstitutions << " substitutions\n";
dump(out);
});
}
// Push each substitution on the primary stack.
for (auto substitution : symbol.getSubstitutions()) {
Primary.push_back(MutableTerm(substitution));
}
} else {
// The primary stack must store the number of substitutions, together with
// a term that takes the form U.[concrete: C].V or U.[superclass: C].V,
// where |V| == EndOffset.
if (Primary.size() < numSubstitutions + 1) {
ABORT([&](auto &out) {
out << "Not enough terms on primary stack\n";
dump(out);
});
}
// The term immediately underneath the substitutions is the one we're
// updating with new substitutions.
const auto &term = *(Primary.end() - numSubstitutions - 1);
auto symbol = *(term.end() - step.EndOffset - 1);
// The symbol at the end of this term must have the expected number of
// substitutions.
if (symbol.getSubstitutions().size() != numSubstitutions) {
ABORT([&](auto &out) {
out << "Expected " << numSubstitutions << " substitutions\n";
dump(out);
});
}
for (unsigned i = 0; i < numSubstitutions; ++i) {
const auto &substitution = *(Primary.end() - numSubstitutions + i);
if (MutableTerm(symbol.getSubstitutions()[i]) != substitution) {
ABORT([&](auto &out) {
out << "Expected " << symbol.getSubstitutions()[i] << "\n";
out << "Got " << substitution << "\n";
dump(out);
});
}
}
// Pop the substitutions from the primary stack.
Primary.resize(Primary.size() - numSubstitutions);
}
}
AppliedRewriteStep
RewritePathEvaluator::applyRelation(const RewriteStep &step,
const RewriteSystem &system) {
ASSERT(step.Kind == RewriteStep::Relation);
auto relation = system.getRelation(step.Arg);
auto &term = getCurrentTerm();
auto lhs = (step.Inverse ? relation.second : relation.first);
auto rhs = (step.Inverse ? relation.first : relation.second);
auto bug = [&](StringRef msg) {
ABORT([&](auto &out) {
out << msg << "\n";
out << "- Term: " << term << "\n";
out << "- StartOffset: " << step.StartOffset << "\n";
out << "- EndOffset: " << step.EndOffset << "\n";
out << "- Expected subterm: " << lhs << "\n";
});
};
if (term.size() != step.StartOffset + lhs.size() + step.EndOffset) {
bug("Invalid whiskering");
}
if (!std::equal(term.begin() + step.StartOffset,
term.begin() + step.StartOffset + lhs.size(),
lhs.begin())) {
bug("Invalid subterm");
}
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
MutableTerm suffix(term.end() - step.EndOffset, term.end());
term = prefix;
term.append(rhs);
term.append(suffix);
return {lhs, rhs, prefix, suffix};
}
void RewritePathEvaluator::applyDecomposeConcrete(const RewriteStep &step,
const RewriteSystem &system) {
ASSERT(step.Kind == RewriteStep::DecomposeConcrete);
const auto &difference = system.getTypeDifference(step.Arg);
auto bug = [&](StringRef msg) {
ABORT([&](auto &out) {
out << msg << "\n";
out << "- StartOffset: " << step.StartOffset << "\n";
out << "- EndOffset: " << step.EndOffset << "\n";
out << "- DifferenceID: " << step.Arg << "\n";
out << "\nType difference:\n";
difference.dump(out);
out << "\nEvaluator state:\n";
dump(out);
});
};
auto substitutions = difference.LHS.getSubstitutions();
if (!step.Inverse) {
auto &term = getCurrentTerm();
auto concreteSymbol = *(term.end() - step.EndOffset - 1);
if (concreteSymbol != difference.RHS)
bug("Concrete symbol not equal to expected RHS");
MutableTerm newTerm(term.begin(), term.end() - step.EndOffset - 1);
newTerm.add(difference.LHS);
newTerm.append(term.end() - step.EndOffset, term.end());
term = newTerm;
for (unsigned n : indices(substitutions))
Primary.push_back(difference.getReplacementSubstitution(n));
} else {
unsigned numSubstitutions = substitutions.size();
if (Primary.size() < numSubstitutions + 1)
bug("Not enough terms on the stack");
for (unsigned n : indices(substitutions)) {
const auto &otherSubstitution = *(Primary.end() - numSubstitutions + n);
auto expectedSubstitution = difference.getReplacementSubstitution(n);
if (otherSubstitution != expectedSubstitution) {
SmallString<0> message;
llvm::raw_svector_ostream out(message);
out << "Unexpected substitution term on the stack\n";
out << "Got: " << otherSubstitution << "\n";
out << "Expected: " << expectedSubstitution << "\n";
bug(message);
}
}
Primary.resize(Primary.size() - numSubstitutions);
auto &term = getCurrentTerm();
auto concreteSymbol = *(term.end() - step.EndOffset - 1);
if (concreteSymbol != difference.LHS)
bug("Concrete symbol not equal to expected LHS");
MutableTerm newTerm(term.begin(), term.end() - step.EndOffset - 1);
newTerm.add(difference.RHS);
newTerm.append(term.end() - step.EndOffset, term.end());
term = newTerm;
}
}
void
RewritePathEvaluator::applyLeftConcreteProjection(const RewriteStep &step,
const RewriteSystem &system) {
ASSERT(step.Kind == RewriteStep::LeftConcreteProjection);
const auto &difference = system.getTypeDifference(step.getTypeDifferenceID());
unsigned index = step.getSubstitutionIndex();
auto leftProjection = difference.getOriginalSubstitution(index);
MutableTerm leftBaseTerm(difference.BaseTerm);
leftBaseTerm.add(difference.LHS);
auto bug = [&](StringRef msg) {
ABORT([&](auto &out) {
out << msg << "\n";
out << "- StartOffset: " << step.StartOffset << "\n";
out << "- EndOffset: " << step.EndOffset << "\n";
out << "- SubstitutionIndex: " << index << "\n";
out << "- LeftProjection: " << leftProjection << "\n";
out << "- LeftBaseTerm: " << leftBaseTerm << "\n";
out << "- DifferenceID: " << step.getTypeDifferenceID() << "\n";
out << "\nType difference:\n";
difference.dump(out);
out << ":\n";
difference.dump(out);
out << "\nEvaluator state:\n";
dump(out);
});
};
if (!step.Inverse) {
const auto &term = getCurrentTerm();
MutableTerm subTerm(term.begin() + step.StartOffset,
term.end() - step.EndOffset);
if (subTerm != MutableTerm(leftProjection))
bug("Incorrect left projection term");
Primary.push_back(leftBaseTerm);
} else {
if (Primary.size() < 2)
bug("Too few elements on the primary stack");
if (Primary.back() != leftBaseTerm)
bug("Incorrect left base term");
Primary.pop_back();
const auto &term = getCurrentTerm();
MutableTerm subTerm(term.begin() + step.StartOffset,
term.end() - step.EndOffset);
if (subTerm != leftProjection)
bug("Incorrect left projection term");
}
}
void
RewritePathEvaluator::applyRightConcreteProjection(const RewriteStep &step,
const RewriteSystem &system) {
ASSERT(step.Kind == RewriteStep::RightConcreteProjection);
const auto &difference = system.getTypeDifference(step.getTypeDifferenceID());
unsigned index = step.getSubstitutionIndex();
auto leftProjection = difference.getOriginalSubstitution(index);
auto rightProjection = difference.getReplacementSubstitution(index);
MutableTerm leftBaseTerm(difference.BaseTerm);
leftBaseTerm.add(difference.LHS);
MutableTerm rightBaseTerm(difference.BaseTerm);
rightBaseTerm.add(difference.RHS);
auto bug = [&](StringRef msg) {
ABORT([&](auto &out) {
out << msg << "\n";
out << "- StartOffset: " << step.StartOffset << "\n";
out << "- EndOffset: " << step.EndOffset << "\n";
out << "- SubstitutionIndex: " << index << "\n";
out << "- LeftProjection: " << leftProjection << "\n";
out << "- RightProjection: " << rightProjection << "\n";
out << "- LeftBaseTerm: " << leftBaseTerm << "\n";
out << "- RightBaseTerm: " << rightBaseTerm << "\n";
out << "- DifferenceID: " << step.getTypeDifferenceID() << "\n";
out << "\nType difference:\n";
difference.dump(out);
out << "\nEvaluator state:\n";
dump(out);
});
};
if (!step.Inverse) {
auto &term = getCurrentTerm();
MutableTerm subTerm(term.begin() + step.StartOffset,
term.end() - step.EndOffset);
if (subTerm != rightProjection)
bug("Incorrect right projection term");
MutableTerm newTerm(term.begin(), term.begin() + step.StartOffset);
newTerm.append(leftProjection);
newTerm.append(term.end() - step.EndOffset, term.end());
term = newTerm;
Primary.push_back(rightBaseTerm);
} else {
if (Primary.size() < 2)
bug("Too few elements on the primary stack");
if (Primary.back() != rightBaseTerm)
bug("Incorrect right base term");
Primary.pop_back();
auto &term = getCurrentTerm();
MutableTerm subTerm(term.begin() + step.StartOffset,
term.end() - step.EndOffset);
if (subTerm != leftProjection)
bug("Incorrect left projection term");
MutableTerm newTerm(term.begin(), term.begin() + step.StartOffset);
newTerm.append(rightProjection);
newTerm.append(term.end() - step.EndOffset, term.end());
term = newTerm;
}
}
void RewritePathEvaluator::apply(const RewriteStep &step,
const RewriteSystem &system) {
switch (step.Kind) {
case RewriteStep::Rule:
(void) applyRewriteRule(step, system);
break;
case RewriteStep::PrefixSubstitutions:
(void) applyPrefixSubstitutions(step, system);
break;
case RewriteStep::Shift:
applyShift(step, system);
break;
case RewriteStep::Decompose:
applyDecompose(step, system);
break;
case RewriteStep::Relation:
applyRelation(step, system);
break;
case RewriteStep::DecomposeConcrete:
applyDecomposeConcrete(step, system);
break;
case RewriteStep::LeftConcreteProjection:
applyLeftConcreteProjection(step, system);
break;
case RewriteStep::RightConcreteProjection:
applyRightConcreteProjection(step, system);
break;
}
}