Files
swift-mirror/lib/AST/RequirementMachine/Rule.cpp
Slava Pestov 7f8175b3da RequirementMachine: Add two more completion termination checks for concrete type requirements
The concrete nesting limit, which defaults to 30, catches
things like A == G<A>. However, with something like
A == (A, A), you end up with an exponential problem size
before you hit the limit.

Add two new limits.

The first is the total size of the concrete type, counting
all leaves, which defaults to 4000. It can be set with the
-requirement-machine-max-concrete-size= frontend flag.

The second avoids an assertion in addTypeDifference() which
can be hit if a certain counter overflows before any other
limit is breached. This also defaults to 4000 and can be set
with the -requirement-machine-max-type-differences= frontend flag.
2025-06-17 17:51:25 -04:00

307 lines
9.1 KiB
C++

//===--- Rule.cpp - An oriented rewrite rule in a rewrite system ----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "Rule.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeWalker.h"
#include "swift/Basic/Assertions.h"
#include "llvm/Support/raw_ostream.h"
#include "RewriteContext.h"
#include "Term.h"
#include "Symbol.h"
using namespace swift;
using namespace rewriting;
/// If this is a rule of the form T.[p] => T where [p] is a property symbol,
/// returns the symbol. Otherwise, returns None.
///
/// Note that this is meant to be used with a simplified rewrite system,
/// where the right hand sides of rules are canonical, since this also means
/// that T is canonical.
std::optional<Symbol> Rule::isPropertyRule() const {
auto property = LHS.back();
if (!property.isProperty())
return std::nullopt;
if (LHS.size() - 1 != RHS.size())
return std::nullopt;
if (!std::equal(RHS.begin(), RHS.end(), LHS.begin()))
return std::nullopt;
return property;
}
/// If this is a rule of the form T.[P] => T where [P] is a protocol symbol,
/// return the protocol P, otherwise return nullptr.
const ProtocolDecl *Rule::isProtocolConformanceRule() const {
if (auto property = isPropertyRule()) {
if (property->getKind() == Symbol::Kind::Protocol)
return property->getProtocol();
}
return nullptr;
}
/// If this is a rule of the form T.[concrete: C : P] => T where
/// [concrete: C : P] is a concrete conformance symbol, return the protocol P,
/// otherwise return nullptr.
const ProtocolDecl *Rule::isAnyConformanceRule() const {
if (auto property = isPropertyRule()) {
switch (property->getKind()) {
case Symbol::Kind::ConcreteConformance:
case Symbol::Kind::Protocol:
return property->getProtocol();
case Symbol::Kind::Layout:
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType:
return nullptr;
case Symbol::Kind::Name:
case Symbol::Kind::AssociatedType:
case Symbol::Kind::GenericParam:
case Symbol::Kind::Shape:
case Symbol::Kind::PackElement:
break;
}
llvm_unreachable("Bad symbol kind");
}
return nullptr;
}
/// If this is a rule of the form [P].[P] => [P] where [P] is a protocol
/// symbol, return true, otherwise return false.
bool Rule::isIdentityConformanceRule() const {
return (LHS.size() == 2 &&
RHS.size() == 1 &&
LHS[0] == RHS[0] &&
LHS[0] == LHS[1] &&
LHS[0].getKind() == Symbol::Kind::Protocol);
}
/// If this is a rule of the form [P].[Q] => [P] where [P] and [Q] are
/// protocol symbols, return true, otherwise return false.
bool Rule::isProtocolRefinementRule(RewriteContext &ctx) const {
if (LHS.size() == 2 &&
RHS.size() == 1 &&
LHS[0] == RHS[0] &&
LHS[0].getKind() == Symbol::Kind::Protocol &&
(LHS[1].getKind() == Symbol::Kind::Protocol ||
LHS[1].getKind() == Symbol::Kind::ConcreteConformance) &&
LHS[0] != LHS[1]) {
// A protocol refinement rule must be from a directly-stated
// inheritance clause entry. It can only become redundant if it is
// written in terms of other protocol refinement rules; otherwise, it
// must appear in the protocol's requirement signature.
//
// See RewriteSystem::isValidRefinementPath() for an explanation.
auto *proto = LHS[0].getProtocol();
auto *otherProto = LHS[1].getProtocol();
return proto->inheritsFrom(otherProto);
}
return false;
}
/// If this is a rule of the form [P].[concrete: C : Q] => [P] where
/// [P] is a protocol symbol, return true.
///
/// This means that P constrains 'Self' to a concrete type that conforms
/// to some Q with P : Q. We don't consider this to be a valid conformance
/// path element, to ensure compatibility with the GSB in an odd edge
/// case:
///
/// protocol P : C {}
/// class C : P {}
///
/// The GSB minimizes the signature <T where T : P> to <T where T : P>,
/// whereas the minimal conformances algorithm would otherwise minimize
/// it down to <T where T : C> on account of the (T.[P] => T) conformance
/// rule being redundantly expressed via [P].[concrete: C : P].
bool Rule::isCircularConformanceRule() const {
if (LHS.size() != 2 || RHS.size() != 1 || LHS[0] != RHS[0])
return false;
if (LHS[0].getKind() != Symbol::Kind::Protocol ||
LHS[1].getKind() != Symbol::Kind::ConcreteConformance)
return false;
return true;
}
/// Returns \c true if this rule is prefixed with the \c [element] symbol.
bool Rule::isSameElementRule() const {
return LHS[0].getKind() == Symbol::Kind::PackElement;
}
/// A protocol typealias rule takes one of the following two forms,
/// where T is a name symbol:
///
/// 1) [P].T => X
/// 2) [P].T.[concrete: C] => [P].T
///
/// The first case is where the protocol's underlying type is another
/// type parameter. The second case is where the protocol's underlying
/// type is a concrete type.
///
/// In the first case, X must be fully resolved, that is, it must not
/// contain any name symbols.
///
/// If this rule is a protocol typealias rule, returns its name. Otherwise
/// returns None.
std::optional<Identifier> Rule::isProtocolTypeAliasRule() const {
if (LHS.size() != 2 && LHS.size() != 3)
return std::nullopt;
if (LHS[0].getKind() != Symbol::Kind::Protocol ||
LHS[1].getKind() != Symbol::Kind::Name)
return std::nullopt;
if (LHS.size() == 2) {
// This is the case where the underlying type is a type parameter.
//
// We shouldn't have name symbols on the right hand side; they
// should have been simplified away.
if (RHS.containsNameSymbols()) {
if (RHS.size() != 2 ||
RHS[0] != LHS[0] ||
RHS[1].getKind() != Symbol::Kind::Name) {
return std::nullopt;
}
}
} else {
// This is the case where the underlying type is concrete.
ASSERT(LHS.size() == 3);
auto prop = isPropertyRule();
if (!prop || prop->getKind() != Symbol::Kind::ConcreteType)
return std::nullopt;
}
return LHS[1].getName();
}
/// A rule was derived from a concrete protocol typealias if it
/// takes the following form:
///
/// T.A.[concrete: C] => T.A
///
/// Where the prefix term T does not contain any name symbols, and
/// A is a name symbol.
bool Rule::isDerivedFromConcreteProtocolTypeAliasRule() const {
auto optSymbol = isPropertyRule();
if (!optSymbol || optSymbol->getKind() != Symbol::Kind::ConcreteType)
return false;
for (unsigned i = 0, e = RHS.size() - 1; i < e; ++i) {
if (RHS[i].getKind() == Symbol::Kind::Name)
return false;
}
if (RHS.back().getKind() != Symbol::Kind::Name)
return false;
return true;
}
/// Returns the maximum among the length of the left-hand side,
/// and the length of any substitution terms that appear in a
/// property symbol at the end of the left-hand side.
///
/// This is a measure of the complexity of the rule, which stops
/// completion from running forever.
unsigned Rule::getDepth() const {
auto result = LHS.size();
if (LHS.back().hasSubstitutions()) {
for (auto substitution : LHS.back().getSubstitutions()) {
result = std::max(result, substitution.size());
}
}
return result;
}
/// Returns the complexity of the concrete type in the property symbol
/// at the end of the left-hand side, if there is one.
///
/// This is a measure of the complexity of the rule, which stops
/// completion from running forever.
std::pair<unsigned, unsigned>
Rule::getNestingAndSize() const {
if (LHS.back().hasSubstitutions()) {
auto type = LHS.back().getConcreteType();
struct Walker : TypeWalker {
unsigned Nesting = 0;
unsigned MaxNesting = 0;
unsigned Size = 0;
Action walkToTypePre(Type ty) override {
++Size;
++Nesting;
MaxNesting = std::max(MaxNesting, Nesting);
return Action::Continue;
}
Action walkToTypePost(Type ty) override {
--Nesting;
return Action::Continue;
}
};
Walker walker;
type.walk(walker);
return std::make_pair(walker.MaxNesting, walker.Size);
}
return std::make_pair(0, 0);
}
/// Linear order on rules; compares LHS followed by RHS.
std::optional<int> Rule::compare(const Rule &other, RewriteContext &ctx) const {
std::optional<int> compare = LHS.compare(other.LHS, ctx);
if (!compare.has_value() || *compare != 0)
return compare;
return RHS.compare(other.RHS, ctx);
}
void Rule::dump(llvm::raw_ostream &out) const {
out << LHS << " => " << RHS;
if (Permanent)
out << " [permanent]";
if (Explicit)
out << " [explicit]";
if (LHSSimplified)
out << " [lhs↓]";
if (RHSSimplified)
out << " [rhs↓]";
if (SubstitutionSimplified)
out << " [subst↓]";
if (Redundant)
out << " [redundant]";
if (Conflicting)
out << " [conflicting]";
if (Recursive)
out << " [recursive]";
}