Files
swift-mirror/lib/SIL/Utils/BasicBlockUtils.cpp
Jamie 1f3f830fc7 [SILOptimizer]: slow OSSA lifetime canonicalization mitigation
OSSA lifetime canonicalization can take a very long time in certain
cases in which there are large basic blocks. to mitigate this, add logic
to skip walking the liveness boundary for extending liveness to dead
ends when there aren't any dead ends in the function.

Updates `DeadEndBlocks` with a new `isEmpty` method and cache to
determine if there are any dead-end blocks in a given function.
2025-06-18 17:52:14 -05:00

606 lines
21 KiB
C++

//===--- BasicBlockUtils.cpp - Utilities for SILBasicBlock ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/LoopInfo.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/TerminatorUtils.h"
#include "swift/SIL/Test.h"
#include "llvm/ADT/STLExtras.h"
using namespace swift;
static bool hasBranchArguments(TermInst *T, unsigned edgeIdx) {
if (auto *BI = dyn_cast<BranchInst>(T)) {
assert(edgeIdx == 0);
return BI->getNumArgs() != 0;
}
if (auto CBI = dyn_cast<CondBranchInst>(T)) {
assert(edgeIdx <= 1);
return edgeIdx == CondBranchInst::TrueIdx ? !CBI->getTrueArgs().empty()
: !CBI->getFalseArgs().empty();
}
// No other terminator have branch arguments.
return false;
}
void swift::changeBranchTarget(TermInst *T, unsigned edgeIdx,
SILBasicBlock *newDest, bool preserveArgs) {
// In many cases, we can just rewrite the successor in place.
if (preserveArgs || !hasBranchArguments(T, edgeIdx)) {
T->getSuccessors()[edgeIdx] = newDest;
return;
}
// Otherwise, we have to build a new branch instruction.
SILBuilderWithScope B(T);
switch (T->getTermKind()) {
// Only Branch and CondBranch may have arguments.
case TermKind::BranchInst: {
auto *BI = cast<BranchInst>(T);
SmallVector<SILValue, 8> args;
if (preserveArgs) {
for (auto arg : BI->getArgs())
args.push_back(arg);
}
B.createBranch(T->getLoc(), newDest, args);
BI->dropAllReferences();
BI->eraseFromParent();
return;
}
case TermKind::CondBranchInst: {
auto CBI = cast<CondBranchInst>(T);
SILBasicBlock *trueDest = CBI->getTrueBB();
SILBasicBlock *falseDest = CBI->getFalseBB();
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
if (edgeIdx == CondBranchInst::FalseIdx) {
falseDest = newDest;
for (auto arg : CBI->getTrueArgs())
trueArgs.push_back(arg);
} else {
trueDest = newDest;
for (auto arg : CBI->getFalseArgs())
falseArgs.push_back(arg);
}
B.createCondBranch(CBI->getLoc(), CBI->getCondition(), trueDest, trueArgs,
falseDest, falseArgs, CBI->getTrueBBCount(),
CBI->getFalseBBCount());
CBI->dropAllReferences();
CBI->eraseFromParent();
return;
}
default:
llvm_unreachable("only branch and cond_branch have branch arguments");
}
}
template <class SwitchInstTy>
static SILBasicBlock *getNthEdgeBlock(SwitchInstTy *S, unsigned edgeIdx) {
if (S->getNumCases() == edgeIdx)
return S->getDefaultBB();
return S->getCase(edgeIdx).second;
}
static SILBasicBlock *getNthEdgeBlock(SwitchEnumTermInst S, unsigned edgeIdx) {
if (S.getNumCases() == edgeIdx)
return S.getDefaultBB();
return S.getCase(edgeIdx).second;
}
void swift::getEdgeArgs(TermInst *T, unsigned edgeIdx, SILBasicBlock *newEdgeBB,
llvm::SmallVectorImpl<SILValue> &args) {
switch (T->getKind()) {
case SILInstructionKind::BranchInst: {
auto *B = cast<BranchInst>(T);
for (auto V : B->getArgs())
args.push_back(V);
return;
}
case SILInstructionKind::CondBranchInst: {
auto CBI = cast<CondBranchInst>(T);
assert(edgeIdx < 2);
auto OpdArgs = edgeIdx ? CBI->getFalseArgs() : CBI->getTrueArgs();
for (auto V : OpdArgs)
args.push_back(V);
return;
}
case SILInstructionKind::AwaitAsyncContinuationInst: {
auto AACI = cast<AwaitAsyncContinuationInst>(T);
switch (edgeIdx) {
case 0:
// resume BB. this takes the resume value argument if the operand is
// GetAsyncContinuation, or no argument if the operand is
// GetAsyncContinuationAddr
if (auto contOperand = dyn_cast<GetAsyncContinuationInst>(AACI->getOperand())) {
args.push_back(newEdgeBB->createPhiArgument(
contOperand->getLoweredResumeType(), OwnershipKind::Owned));
}
return;
case 1: {
assert(AACI->getErrorBB());
auto &C = AACI->getFunction()->getASTContext();
auto errorTy = C.getErrorExistentialType();
auto errorSILTy = SILType::getPrimitiveObjectType(errorTy);
// error BB. this takes the error value argument
args.push_back(
newEdgeBB->createPhiArgument(errorSILTy, OwnershipKind::Owned));
return;
}
default:
llvm_unreachable("only has at most two edges");
}
}
case SILInstructionKind::SwitchValueInst: {
auto SEI = cast<SwitchValueInst>(T);
auto *succBB = getNthEdgeBlock(SEI, edgeIdx);
assert(succBB->getNumArguments() == 0 && "Can't take an argument");
(void)succBB;
return;
}
// A switch_enum can implicitly pass the enum payload. We need to look at the
// destination block to figure this out.
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::SwitchEnumAddrInst: {
SwitchEnumTermInst branch(T);
auto *succBB = getNthEdgeBlock(branch, edgeIdx);
assert(succBB->getNumArguments() < 2 && "Can take at most one argument");
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
// A dynamic_method_br passes the function to the first basic block.
case SILInstructionKind::DynamicMethodBranchInst: {
auto DMBI = cast<DynamicMethodBranchInst>(T);
auto *succBB =
(edgeIdx == 0) ? DMBI->getHasMethodBB() : DMBI->getNoMethodBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
/// A checked_cast_br passes the result of the cast to the first basic block.
case SILInstructionKind::CheckedCastBranchInst: {
auto CBI = cast<CheckedCastBranchInst>(T);
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::CheckedCastAddrBranchInst: {
auto CBI = cast<CheckedCastAddrBranchInst>(T);
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::TryApplyInst: {
auto *TAI = cast<TryApplyInst>(T);
auto *succBB = edgeIdx == 0 ? TAI->getNormalBB() : TAI->getErrorBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::YieldInst:
// The edges from 'yield' never have branch arguments.
return;
case SILInstructionKind::ReturnInst:
case SILInstructionKind::ThrowInst:
case SILInstructionKind::ThrowAddrInst:
case SILInstructionKind::UnwindInst:
case SILInstructionKind::UnreachableInst:
llvm_unreachable("terminator never has successors");
#define TERMINATOR(ID, ...)
#define INST(ID, BASE) case SILInstructionKind::ID:
#include "swift/SIL/SILNodes.def"
llvm_unreachable("not a terminator");
}
llvm_unreachable("bad instruction kind");
}
SILBasicBlock *swift::splitEdge(TermInst *T, unsigned edgeIdx,
DominanceInfo *DT, SILLoopInfo *LI) {
auto *srcBB = T->getParent();
auto *F = srcBB->getParent();
SILBasicBlock *destBB = T->getSuccessors()[edgeIdx];
// Create a new basic block in the edge, and insert it after the srcBB.
auto *edgeBB = F->createBasicBlockAfter(srcBB);
SmallVector<SILValue, 16> args;
getEdgeArgs(T, edgeIdx, edgeBB, args);
SILBuilderWithScope(edgeBB, T).createBranch(T->getLoc(), destBB, args);
// Strip the arguments and rewire the branch in the source block.
changeBranchTarget(T, edgeIdx, edgeBB, /*PreserveArgs=*/false);
if (!DT && !LI)
return edgeBB;
// Update the dominator tree.
if (DT) {
auto *srcBBNode = DT->getNode(srcBB);
// Unreachable code could result in a null return here.
if (srcBBNode) {
// The new block is dominated by the srcBB.
auto *edgeBBNode = DT->addNewBlock(edgeBB, srcBB);
// Are all predecessors of destBB dominated by destBB?
auto *destBBNode = DT->getNode(destBB);
bool oldSrcBBDominatesAllPreds = std::all_of(
destBB->pred_begin(), destBB->pred_end(), [=](SILBasicBlock *B) {
if (B == edgeBB)
return true;
auto *PredNode = DT->getNode(B);
if (!PredNode)
return true;
if (DT->dominates(destBBNode, PredNode))
return true;
return false;
});
// If so, the new bb dominates destBB now.
if (oldSrcBBDominatesAllPreds)
DT->changeImmediateDominator(destBBNode, edgeBBNode);
}
}
if (!LI)
return edgeBB;
// Update loop info. Both blocks must be in a loop otherwise the split block
// is outside the loop.
SILLoop *srcBBLoop = LI->getLoopFor(srcBB);
if (!srcBBLoop)
return edgeBB;
SILLoop *DstBBLoop = LI->getLoopFor(destBB);
if (!DstBBLoop)
return edgeBB;
// Same loop.
if (DstBBLoop == srcBBLoop) {
DstBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Edge from inner to outer loop.
if (DstBBLoop->contains(srcBBLoop)) {
DstBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Edge from outer to inner loop.
if (srcBBLoop->contains(DstBBLoop)) {
srcBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Neither loop contains the other. The destination must be the header of its
// loop. Otherwise, we would be creating irreducible control flow.
assert(DstBBLoop->getHeader() == destBB
&& "Creating irreducible control flow?");
// Add to outer loop if there is one.
if (auto *parent = DstBBLoop->getParentLoop())
parent->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
/// Merge the basic block with its successor if possible.
void swift::mergeBasicBlockWithSingleSuccessor(SILBasicBlock *BB,
SILBasicBlock *succBB) {
auto *BI = cast<BranchInst>(BB->getTerminator());
assert(succBB->getSinglePredecessorBlock());
// If there are any BB arguments in the destination, replace them with the
// branch operands, since they must dominate the dest block.
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i) {
SILArgument *arg = succBB->getArgument(i);
if (auto *bfi = getBorrowedFromUser(arg)) {
bfi->replaceAllUsesWith(arg);
bfi->eraseFromParent();
}
arg->replaceAllUsesWith(BI->getArg(i));
}
BI->eraseFromParent();
// Move the instruction from the successor block to the current block.
BB->spliceAtEnd(succBB);
succBB->eraseFromParent();
}
//===----------------------------------------------------------------------===//
// DeadEndBlocks
//===----------------------------------------------------------------------===//
// Force the compiler to generate the destructor in this C++ file.
// Otherwise it can happen that it is generated in a SwiftCompilerSources module
// and that results in unresolved-symbols linker errors.
DeadEndBlocks::~DeadEndBlocks() {}
// Propagate the reachability up the control flow graph.
void DeadEndBlocks::propagateNewlyReachableBlocks(unsigned startIdx) {
for (unsigned idx = startIdx; idx < reachableBlocks.size(); ++idx) {
const SILBasicBlock *bb = reachableBlocks[idx];
for (SILBasicBlock *predBB : bb->getPredecessorBlocks())
reachableBlocks.insert(predBB);
}
}
void DeadEndBlocks::compute() {
assert(reachableBlocks.empty() && "Computed twice");
// First step: find blocks which end up in a no-return block (terminated by
// an unreachable instruction).
// Search for function-exiting blocks, i.e. return and throw.
for (const SILBasicBlock &BB : *f) {
const TermInst *TI = BB.getTerminator();
if (TI->isFunctionExiting())
reachableBlocks.insert(&BB);
}
propagateNewlyReachableBlocks(0);
}
void DeadEndBlocks::updateForReachableBlock(SILBasicBlock *reachableBB) {
if (!didComputeValue)
return;
assert(reachableBlocks.count(reachableBB));
unsigned numReachable = reachableBlocks.size();
for (SILBasicBlock *predBB : reachableBB->getPredecessorBlocks()) {
reachableBlocks.insert(predBB);
}
propagateNewlyReachableBlocks(numReachable);
}
void DeadEndBlocks::updateForNewBlock(SILBasicBlock *newBB) {
if (!didComputeValue)
return;
assert(reachableBlocks.count(newBB) == 0);
unsigned numReachable = reachableBlocks.size();
reachableBlocks.insert(newBB);
propagateNewlyReachableBlocks(numReachable);
}
bool DeadEndBlocks::triviallyEndsInUnreachable(SILBasicBlock *block) {
// Handle the case where a single "unreachable" block (e.g. containing a call
// to fatalError()), is jumped to from multiple source blocks.
if (SILBasicBlock *singleSucc = block->getSingleSuccessorBlock())
block = singleSucc;
return isa<UnreachableInst>(block->getTerminator());
}
namespace swift::test {
// Arguments:
// - none
// Dumps:
// - the function
// - the blocks which are dead-end blocks
static FunctionTest DeadEndBlocksTest("dead_end_blocks", [](auto &function,
auto &arguments,
auto &test) {
std::unique_ptr<DeadEndBlocks> DeadEnds;
DeadEnds.reset(new DeadEndBlocks(&function));
function.print(llvm::outs());
#ifndef NDEBUG
for (auto &block : function) {
if (DeadEnds->isDeadEnd(&block))
block.printID(llvm::outs(), true);
}
#endif
});
// Arguments:
// - none
// Dumps:
// - message
static FunctionTest HasAnyDeadEndBlocksTest(
"has_any_dead_ends", [](auto &function, auto &arguments, auto &test) {
auto deb = test.getDeadEndBlocks();
llvm::outs() << (deb->isEmpty() ? "no dead ends\n" : "has dead ends\n");
});
} // end namespace swift::test
//===----------------------------------------------------------------------===//
// Post Dominance Set Completion Utilities
//===----------------------------------------------------------------------===//
void swift::findJointPostDominatingSet(
SILBasicBlock *dominatingBlock, ArrayRef<SILBasicBlock *> dominatedBlockSet,
function_ref<void(SILBasicBlock *)> inputBlocksFoundDuringWalk,
function_ref<void(SILBasicBlock *)> foundJointPostDomSetCompletionBlocks,
function_ref<void(SILBasicBlock *)> inputBlocksInJointPostDomSet) {
// If our reachable block set is empty, assert. This is most likely programmer
// error.
assert(dominatedBlockSet.size() != 0);
// If we have a reachable block set with a single block and that block is
// dominatingBlock, then we return success since a block post-doms its self so
// it is already complete.
//
// NOTE: We do not consider this a visited
if (dominatedBlockSet.size() == 1 && dominatingBlock == dominatedBlockSet[0]) {
if (inputBlocksInJointPostDomSet)
inputBlocksInJointPostDomSet(dominatingBlock);
return;
}
/// The worklist that drives the algorithm.
SmallVector<SILBasicBlock *, 32> worklist;
/// All blocks visited during the backwards walk of the CFG, but not including
/// the initial blocks in `dominatedBlockSet`.
BasicBlockSet visitedBlocks(dominatingBlock->getParent());
/// All blocks in `dominatedBlockSet` (= blocks where we begin our walk).
BasicBlockSet initialBlocks(visitedBlocks.getFunction());
// Compute our joint post dominating set. We do this by performing a backwards
// walk up the CFG tracking back liveness until we find our dominating block.
for (auto *block : dominatedBlockSet) {
// We require dominatedBlockSet to be a set and thus assert if we hit it to
// flag user error to our caller.
assert(!initialBlocks.contains(block) &&
"dominatedBlockSet must not contain duplicate elements");
initialBlocks.insert(block);
worklist.push_back(block);
}
// Then until we run out of blocks...
while (!worklist.empty()) {
auto *block = worklist.pop_back_val();
// If we are the dominating block, we are done.
if (dominatingBlock == block)
continue;
for (auto *predBlock : block->getPredecessorBlocks()) {
if (visitedBlocks.insert(predBlock))
worklist.push_back(predBlock);
}
}
// Do the same walk over all visited blocks again to find the "leaking"
// blocks. These leaking blocks are the completion of the post dom set.
//
// Note that we could also keep all visited blocks in a SmallVector in the
// first run. But the worklist algorithm is fast and we don't want
// to risk that the small vector overflows (the set of visited blocks can be
// much larger than the maximum worklist size).
BasicBlockSet visitedBlocksInSecondRun(visitedBlocks.getFunction());
assert(worklist.empty());
worklist.append(dominatedBlockSet.begin(), dominatedBlockSet.end());
while (!worklist.empty()) {
auto *block = worklist.pop_back_val();
if (dominatingBlock == block)
continue;
for (auto *predBlock : block->getPredecessorBlocks()) {
assert(visitedBlocks.contains(predBlock));
if (visitedBlocksInSecondRun.insert(predBlock)) {
worklist.push_back(predBlock);
for (auto *succBlock : predBlock->getSuccessorBlocks()) {
// All not-visited successors of a visited block are "leaking" blocks.
if (!visitedBlocks.contains(succBlock) &&
// For this purpose also the initial blocks count as "visited",
// although they are not added to the visitedBlocks set.
!initialBlocks.contains(succBlock) &&
// Ignore blocks which end in an unreachable. This is a very
// simple check, but covers most of the cases, e.g. block which
// calls fatalError().
!DeadEndBlocks::triviallyEndsInUnreachable(succBlock)) {
assert(succBlock->getSinglePredecessorBlock() == predBlock &&
"CFG must not contain critical edge");
// Note that since there are no critical edges in the CFG, we are
// not calling the closure for a leaking successor block twice.
foundJointPostDomSetCompletionBlocks(succBlock);
}
}
}
}
}
// Pass back the reachable input blocks that were not reachable from other
// input blocks to.
for (auto *block : dominatedBlockSet) {
if (visitedBlocks.contains(block)) {
inputBlocksFoundDuringWalk(block);
} else if (inputBlocksInJointPostDomSet) {
inputBlocksInJointPostDomSet(block);
}
}
}
//===----------------------------------------------------------------------===//
// checkReachingBlockDominance
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
/// Check that \p sourceBlock dominates \p destBlock.
///
/// Useful for *temporary* assertions when Dominance is unavailable. This is
/// worst case O(numberOfBlocksInFunction). It should only be used when \p
/// sourceBlock is expected to be "close to" \p destBlock in almost all
/// cases. Because of the potential for quadratic behavior, it should only be
/// used during feature development, never as a permanent check. If a dominance
/// check is required for correctness, then DominanceInfo should be passed down
/// to the utility function that needs this check.
bool
swift::checkDominates(SILBasicBlock *sourceBlock, SILBasicBlock *destBlock) {
SILBasicBlock *entryBlock = sourceBlock->getParent()->getEntryBlock();
BasicBlockWorklist worklist(destBlock);
bool reaches = false;
while (SILBasicBlock *block = worklist.pop()) {
if (block == sourceBlock) {
reaches = true;
continue;
}
if (block == entryBlock) {
return false; // does not dominate
}
for (auto *predBlock : block->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
return reaches;
}
#endif