Files
swift-mirror/lib/SIL/Utils/OwnershipUtils.cpp
Nate Chandler cbe383524c [NFC] OwnershipUtils: Add a UsePoint type.
The type is a union of an Operand (a real use) and a SILInstruction (an
implicit use).  Such a type is needed to reflect the fact that with
incomplete lifetimes, values can be implicitly destroyed at the
terminators of blocks in dead end regions (along the vaule's
availability boundary).
2025-08-08 15:08:20 -07:00

2446 lines
85 KiB
C++

//===--- OwnershipUtils.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/OwnershipUtils.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/GraphNodeWorklist.h"
#include "swift/Basic/SmallPtrSetVector.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/Test.h"
using namespace swift;
bool swift::findPointerEscape(SILValue original) {
if (original->getOwnershipKind() != OwnershipKind::Owned &&
original->getOwnershipKind() != OwnershipKind::Guaranteed) {
return false;
}
ValueWorklist worklist(original->getFunction());
worklist.push(original);
if (auto *phi = SILArgument::asPhi(lookThroughBorrowedFromDef(original))) {
phi->visitTransitiveIncomingPhiOperands([&](auto *phi, auto *operand) {
worklist.pushIfNotVisited(operand->get());
return true;
});
}
while (auto value = worklist.pop()) {
for (auto use : value->getUses()) {
switch (use->getOperandOwnership()) {
case OperandOwnership::PointerEscape:
case OperandOwnership::ForwardingUnowned:
return true;
case OperandOwnership::ForwardingConsume: {
auto *branch = dyn_cast<BranchInst>(use->getUser());
if (!branch) {
// Non-phi forwarding consumes end the lifetime of an owned value.
break;
}
auto *phi = branch->getDestBB()->getArgument(use->getOperandNumber());
worklist.pushIfNotVisited(phi);
break;
}
case OperandOwnership::Borrow: {
auto borrowOp = BorrowingOperand(use);
if (auto result = borrowOp.getBorrowIntroducingUserResult()) {
worklist.pushIfNotVisited(result);
}
break;
}
case OperandOwnership::Reborrow: {
SILArgument *phi = PhiOperand(use).getValue();
worklist.pushIfNotVisited(phi);
break;
}
case OperandOwnership::GuaranteedForwarding: {
// This may follow guaranteed phis.
ForwardingOperand(use).visitForwardedValues([&](SILValue result) {
// Do not include transitive uses with 'none' ownership
if (result->getOwnershipKind() == OwnershipKind::None)
return true;
worklist.pushIfNotVisited(result);
return true;
});
break;
}
case OperandOwnership::InteriorPointer:
case OperandOwnership::AnyInteriorPointer: {
if (InteriorPointerOperand(use).findTransitiveUses() !=
AddressUseKind::NonEscaping) {
return true;
}
break;
}
default:
break;
}
}
}
return false;
}
namespace swift::test {
// Arguments:
// - value: the value to check for escaping
// Dumps:
// - the value
// - whether it has a pointer escape
static FunctionTest OwnershipUtilsHasPointerEscape(
"has_pointer_escape", [](auto &function, auto &arguments, auto &test) {
auto value = arguments.takeValue();
auto has = findPointerEscape(value);
value->print(llvm::outs());
auto *boolString = has ? "true" : "false";
llvm::outs() << boolString << "\n";
});
} // end namespace swift::test
bool swift::canOpcodeForwardInnerGuaranteedValues(SILValue value) {
if (auto *inst = value->getDefiningInstructionOrTerminator()) {
if (auto fwdOp = ForwardingOperation(inst)) {
return fwdOp.preservesOwnership() &&
!fwdOp.canForwardOwnedCompatibleValuesOnly();
}
}
return false;
}
bool swift::canOpcodeForwardInnerGuaranteedValues(Operand *use) {
if (auto fwdOp = ForwardingOperation(use->getUser()))
return fwdOp.preservesOwnership() &&
!fwdOp.canForwardOwnedCompatibleValuesOnly();
return false;
}
bool swift::canOpcodeForwardOwnedValues(SILValue value) {
if (auto *inst = value->getDefiningInstructionOrTerminator()) {
if (auto fwdOp = ForwardingOperation(inst)) {
return fwdOp.preservesOwnership() &&
!fwdOp.canForwardGuaranteedCompatibleValuesOnly();
}
}
return false;
}
bool swift::canOpcodeForwardOwnedValues(Operand *use) {
if (auto fwdOp = ForwardingOperation(use->getUser()))
return fwdOp.preservesOwnership() &&
!fwdOp.canForwardGuaranteedCompatibleValuesOnly();
return false;
}
BorrowedFromInst *swift::getBorrowedFromUser(SILValue v) {
for (auto *use : v->getUses()) {
if (auto *bfi = dyn_cast<BorrowedFromInst>(use->getUser())) {
if (use->getOperandNumber() == 0) {
return bfi;
}
}
}
return nullptr;
}
SILValue swift::lookThroughBorrowedFromUser(SILValue v) {
if (BorrowedFromInst *bfi = getBorrowedFromUser(v))
return bfi;
return v;
}
SILValue swift::lookThroughBorrowedFromDef(SILValue v) {
while (auto *bfi = dyn_cast<BorrowedFromInst>(v)) {
v = bfi->getBorrowedValue();
}
return v;
}
//===----------------------------------------------------------------------===//
// Guaranteed Use-Point (Lifetime) Discovery
//===----------------------------------------------------------------------===//
// Find all use points of \p guaranteedValue within its borrow scope. All uses
// are naturally dominated by \p guaranteedValue. If a PointerEscape is found,
// then no assumption can be made about \p guaranteedValue's lifetime. Therefore
// the use points are incomplete and this returns false. The escape point that
// was found must still be in \p usePoints to distinguish from dead addresses.
//
// Accumulate results in \p usePoints, ignoring existing elements.
//
// Skip over nested borrow scopes. Their scope-ending instructions are their use
// points. Transitively find all nested scope-ending instructions by looking
// through nested reborrows. Nested reborrows are not use points.
//
// FIXME: handle inner reborrows, which aren't dominated by
// guaranteedValue. Audit all users to handle reborrows.
//
// TODO: Replace this with OwnershipUseVisitor.
bool swift::findInnerTransitiveGuaranteedUses(
SILValue guaranteedValue, SmallVectorImpl<Operand *> *usePoints) {
bool foundPointerEscape = false;
auto leafUse = [&](Operand *use) {
if (usePoints && use->getOperandOwnership() != OperandOwnership::NonUse) {
usePoints->push_back(use);
}
return true;
};
// Push the value's immediate uses.
//
// TODO: The worklist can be a simple vector without any a membership check if
// destructures are changed to be represented as reborrows. Currently a
// destructure forwards multiple results! This means that the worklist could
// grow exponentially without the membership check. It's fine to do this
// membership check locally in this function (within a borrow scope) because
// it isn't needed for the immediate uses, only the transitive uses.
GraphNodeWorklist<Operand *, 8> worklist;
for (Operand *use : guaranteedValue->getUses()) {
if (use->getOperandOwnership() != OperandOwnership::NonUse)
worklist.insert(use);
}
// --- Transitively follow forwarded uses and look for escapes.
// usePoints grows in this loop.
while (Operand *use = worklist.pop()) {
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
case OperandOwnership::TrivialUse:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::DestroyingConsume:
llvm_unreachable("this operand cannot handle an inner guaranteed use");
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
leafUse(use);
foundPointerEscape = true;
break;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
// Reborrow only happens when this is called on a value that creates a
// borrow scope.
case OperandOwnership::Reborrow:
// EndBorrow either happens when this is called on a value that creates a
// borrow scope, or when it is pushed as a use when processing a nested
// borrow.
case OperandOwnership::EndBorrow:
leafUse(use);
break;
case OperandOwnership::InteriorPointer:
case OperandOwnership::AnyInteriorPointer:
#if 0 // FIXME!!! Enable in a following commit that fixes RAUW
// If our base guaranteed value does not have any consuming uses
// (consider function arguments), we need to be sure to include interior
// pointer operands since we may not get a use from a end_scope
// instruction.
if (InteriorPointerOperand(use).findTransitiveUses(usePoints)
!= AddressUseKind::NonEscaping) {
foundPointerEscape = true;
}
#endif
leafUse(use);
foundPointerEscape = true;
break;
case OperandOwnership::GuaranteedForwarding: {
bool nonLeaf = false;
ForwardingOperand(use).visitForwardedValues([&](SILValue result) {
// Do not include transitive uses with 'none' ownership
if (result->getOwnershipKind() == OwnershipKind::None)
return true;
// Bailout on guaranteed phis because the caller may assume dominance.
if (SILArgument::asPhi(result)) {
leafUse(use);
foundPointerEscape = true;
return true;
}
for (auto *resultUse : result->getUses()) {
if (resultUse->getOperandOwnership() != OperandOwnership::NonUse) {
nonLeaf = true;
worklist.insert(resultUse);
}
}
return true;
});
// e.g. A dead forwarded value, e.g. a switch_enum with only trivial uses,
// must itself be a leaf use.
if (!nonLeaf) {
leafUse(use);
}
break;
}
case OperandOwnership::Borrow:
// FIXME: Use visitExtendedScopeEndingUses and audit all clients to handle
// reborrows.
//
// FIXME: visit[Extended]ScopeEndingUses can't return false here once dead
// borrows are disallowed.
BorrowingOperand(use).visitScopeEndingUses(
[&](Operand *endUse) {
if (endUse->getOperandOwnership() == OperandOwnership::Reborrow) {
foundPointerEscape = true;
}
leafUse(endUse);
return true;
},
[&](Operand *unknownUse) {
foundPointerEscape = true;
leafUse(unknownUse);
return true;
});
break;
}
}
return !foundPointerEscape;
}
/// Find all uses in the extended lifetime (i.e. including copies) of a simple
/// (i.e. not reborrowed) borrow scope and its transitive uses.
bool swift::findExtendedUsesOfSimpleBorrowedValue(
BorrowedValue borrowedValue, SmallVectorImpl<Operand *> *usePoints) {
auto recordUse = [&](Operand *use) {
if (usePoints && use->getOperandOwnership() != OperandOwnership::NonUse) {
usePoints->push_back(use);
}
};
// Push the value's immediate uses.
//
// TODO: The worklist can be a simple vector without any a membership check if
// destructures are changed to be represented as reborrows. Currently a
// destructure forwards multiple results! This means that the worklist could
// grow exponentially without the membership check. It's fine to do this
// membership check locally in this function (within a borrow scope) because
// it isn't needed for the immediate uses, only the transitive uses.
GraphNodeWorklist<Operand *, 8> worklist;
auto addUsesToWorklist = [&worklist](SILValue value) {
for (Operand *use : value->getUses()) {
if (use->getOperandOwnership() != OperandOwnership::NonUse)
worklist.insert(use);
}
};
addUsesToWorklist(borrowedValue.value);
// --- Transitively follow forwarded uses and look for escapes.
// usePoints grows in this loop.
while (Operand *use = worklist.pop()) {
if (auto *cvi = dyn_cast<CopyValueInst>(use->getUser())) {
addUsesToWorklist(cvi);
}
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
break;
case OperandOwnership::TrivialUse:
case OperandOwnership::DestroyingConsume:
recordUse(use);
break;
case OperandOwnership::ForwardingConsume: {
if (PhiOperand(use)) {
return false;
}
recordUse(use);
break;
}
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
case OperandOwnership::Reborrow:
return false;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
// EndBorrow either happens when this is called on a value that creates a
// borrow scope, or when it is pushed as a use when processing a nested
// borrow.
case OperandOwnership::EndBorrow:
recordUse(use);
break;
case OperandOwnership::InteriorPointer:
case OperandOwnership::AnyInteriorPointer:
if (InteriorPointerOperandKind::get(use) ==
InteriorPointerOperandKind::Invalid)
return false;
// If our base guaranteed value does not have any consuming uses (consider
// function arguments), we need to be sure to include interior pointer
// operands since we may not get a use from a end_scope instruction.
if (InteriorPointerOperand(use).findTransitiveUses(usePoints) !=
AddressUseKind::NonEscaping) {
return false;
}
recordUse(use);
break;
case OperandOwnership::GuaranteedForwarding: {
// Conservatively assume that a forwarding phi is not dominated by the
// initial borrowed value and bailout.
if (PhiOperand(use)) {
return false;
}
ForwardingOperand(use).visitForwardedValues([&](SILValue result) {
// Do not include transitive uses with 'none' ownership
if (result->getOwnershipKind() == OwnershipKind::None)
return true;
for (auto *resultUse : result->getUses()) {
if (resultUse->getOperandOwnership() != OperandOwnership::NonUse) {
worklist.insert(resultUse);
}
}
return true;
});
recordUse(use);
break;
}
case OperandOwnership::Borrow:
if (!BorrowingOperand(use).visitExtendedScopeEndingUses(
[&](Operand *endUse) {
recordUse(endUse);
return true;
})) {
return false;
}
break;
}
}
return true;
}
// TODO: refactor this with SSAPrunedLiveness::computeLiveness.
bool swift::findUsesOfSimpleValue(SILValue value,
SmallVectorImpl<Operand *> *usePoints) {
for (auto *use : value->getUses()) {
switch (use->getOperandOwnership()) {
case OperandOwnership::PointerEscape:
return false;
case OperandOwnership::Borrow:
if (!BorrowingOperand(use).visitScopeEndingUses([&](Operand *end) {
if (end->getOperandOwnership() == OperandOwnership::Reborrow) {
return false;
}
usePoints->push_back(end);
return true;
})) {
return false;
}
break;
default:
break;
}
usePoints->push_back(use);
}
return true;
}
bool swift::visitGuaranteedForwardingPhisForSSAValue(
SILValue value, function_ref<bool(Operand *)> visitor) {
assert(isa<BeginBorrowInst>(value) || isa<LoadBorrowInst>(value) ||
(isa<SILPhiArgument>(value) &&
value->getOwnershipKind() == OwnershipKind::Guaranteed));
// guaranteedForwardingOps is a collection of all transitive
// GuaranteedForwarding uses of \p value. It is a set, to avoid repeated
// processing of structs and tuples which are GuaranteedForwarding.
llvm::SmallSetVector<Operand *, 4> guaranteedForwardingOps;
// Collect first-level GuaranteedForwarding uses, and call the visitor on any
// GuaranteedForwardingPhi uses.
for (auto *use : value->getUses()) {
if (use->getOperandOwnership() == OperandOwnership::GuaranteedForwarding) {
if (PhiOperand(use)) {
if (!visitor(use)) {
return false;
}
}
guaranteedForwardingOps.insert(use);
}
}
// Transitively, collect GuaranteedForwarding uses.
for (unsigned i = 0; i < guaranteedForwardingOps.size(); i++) {
for (auto val : guaranteedForwardingOps[i]->getUser()->getResults()) {
for (auto *valUse : val->getUses()) {
if (valUse->getOperandOwnership() ==
OperandOwnership::GuaranteedForwarding) {
if (PhiOperand(valUse)) {
if (!visitor(valUse)) {
return false;
}
}
guaranteedForwardingOps.insert(valUse);
}
}
}
}
return true;
}
// Find all use points of \p guaranteedValue within its borrow scope. All use
// points will be dominated by \p guaranteedValue.
//
// Record (non-nested) reborrows as uses.
//
// BorrowedValues (which introduce a borrow scope) are fundamentally different
// than "inner" guaranteed values. Their only use points are their scope-ending
// uses. There is no need to transitively process uses. However, unlike inner
// guaranteed values, they can have reborrows. To transitively process
// reborrows, use findExtendedTransitiveBorrowedUses.
bool swift::findTransitiveGuaranteedUses(
SILValue guaranteedValue, SmallVectorImpl<Operand *> &usePoints,
function_ref<void(Operand *)> visitReborrow) {
// Handle local borrow introducers without following uses.
// SILFunctionArguments are *not* borrow introducers in this context--we're
// trying to find lifetime of values within a function.
if (auto borrowedValue = BorrowedValue(guaranteedValue)) {
if (borrowedValue.isLocalScope()) {
borrowedValue.visitLocalScopeEndingUses([&](Operand *scopeEnd) {
// Initially push the reborrow as a use point. visitReborrow may pop it
// if it only wants to compute the extended lifetime's use points.
usePoints.push_back(scopeEnd);
if (scopeEnd->getOperandOwnership() == OperandOwnership::Reborrow)
visitReborrow(scopeEnd);
return true;
});
}
return true;
}
return findInnerTransitiveGuaranteedUses(guaranteedValue, &usePoints);
}
// Find all use points of \p guaranteedValue within its borrow scope. If the
// guaranteed value introduces a borrow scope, then this includes the extended
// borrow scope by following reborrows.
bool swift::
findExtendedTransitiveGuaranteedUses(SILValue guaranteedValue,
SmallVectorImpl<Operand *> &usePoints) {
// Multiple paths may reach the same reborrows, and reborrow may even be
// recursive, so the working set requires a membership check.
SmallPtrSetVector<SILValue, 4> reborrows;
auto visitReborrow = [&](Operand *reborrow) {
// Pop the reborrow. It should not appear in the use points of the
// extend lifetime.
assert(reborrow == usePoints.back());
usePoints.pop_back();
auto borrowedPhi =
BorrowingOperand(reborrow).getBorrowIntroducingUserResult();
reborrows.insert(borrowedPhi);
};
if (!findTransitiveGuaranteedUses(guaranteedValue, usePoints, visitReborrow))
return false;
// For guaranteed values that do not introduce a borrow scope, reborrows will
// be empty at this point.
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
bool result =
findTransitiveGuaranteedUses(reborrows[idx], usePoints, visitReborrow);
// It is impossible to find a Pointer escape while traversing reborrows.
assert(result && "visiting reborrows always succeeds");
(void)result;
}
return true;
}
//===----------------------------------------------------------------------===//
// Borrowing Operand
//===----------------------------------------------------------------------===//
void BorrowingOperandKind::print(llvm::raw_ostream &os) const {
switch (value) {
case Kind::Invalid:
llvm_unreachable("Using an unreachable?!");
case Kind::BeginBorrow:
os << "BeginBorrow";
return;
case Kind::BorrowedFrom:
os << "BorrowedFrom";
return;
case Kind::StoreBorrow:
os << "StoreBorrow";
return;
case Kind::BeginApply:
os << "BeginApply";
return;
case Kind::Branch:
os << "Branch";
return;
case Kind::Apply:
os << "Apply";
return;
case Kind::TryApply:
os << "TryApply";
return;
case Kind::Yield:
os << "Yield";
return;
case Kind::PartialApplyStack:
os << "PartialApply [stack]";
return;
case Kind::MarkDependenceNonEscaping:
os << "MarkDependence [nonescaping]";
return;
case Kind::BeginAsyncLet:
os << "BeginAsyncLet";
return;
}
llvm_unreachable("Covered switch isn't covered?!");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
BorrowingOperandKind kind) {
kind.print(os);
return os;
}
void BorrowingOperand::print(llvm::raw_ostream &os) const {
os << "BorrowScopeOperand:\n"
"Kind: " << kind << "\n"
"Value: " << op->get()
<< "User: " << *op->getUser();
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const BorrowingOperand &operand) {
operand.print(os);
return os;
}
bool BorrowingOperand::hasEmptyRequiredEndingUses() const {
switch (kind) {
case BorrowingOperandKind::Invalid:
llvm_unreachable("Using invalid case");
case BorrowingOperandKind::BeginBorrow:
case BorrowingOperandKind::BorrowedFrom:
case BorrowingOperandKind::StoreBorrow:
case BorrowingOperandKind::BeginApply:
case BorrowingOperandKind::BeginAsyncLet:
case BorrowingOperandKind::PartialApplyStack:
case BorrowingOperandKind::MarkDependenceNonEscaping: {
return op->getUser()->hasUsesOfAnyResult();
}
case BorrowingOperandKind::Branch: {
auto *br = cast<BranchInst>(op->getUser());
return br->getArgForOperand(op)->use_empty();
}
// These are instantaneous borrow scopes so there aren't any special end
// scope instructions.
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::Yield:
return false;
}
llvm_unreachable("Covered switch isn't covered");
}
bool BorrowingOperand::visitScopeEndingUses(
function_ref<bool(Operand *)> visitScopeEnd,
function_ref<bool(Operand *)> visitUnknownUse) const {
switch (kind) {
case BorrowingOperandKind::Invalid:
llvm_unreachable("Using invalid case");
case BorrowingOperandKind::BorrowedFrom:
if (!cast<BorrowedFromInst>(op->getUser())->isReborrow()) {
return visitUnknownUse(op);
}
LLVM_FALLTHROUGH;
case BorrowingOperandKind::BeginBorrow: {
bool deadBorrow = true;
for (auto *use : cast<SingleValueInstruction>(op->getUser())->getUses()) {
if (use->isLifetimeEnding()) {
deadBorrow = false;
if (!visitScopeEnd(use))
return false;
}
}
// Note: special case for dead borrows. This is dangerous because it could
// cause unsuspecting clients to infinitely recurse.
if (deadBorrow) {
return visitUnknownUse(op);
}
return true;
}
case BorrowingOperandKind::StoreBorrow: {
bool deadBorrow = true;
for (auto *use : cast<StoreBorrowInst>(op->getUser())->getUses()) {
if (isa<EndBorrowInst>(use->getUser())) {
deadBorrow = false;
if (!visitScopeEnd(use))
return false;
}
}
// Note: special case for dead borrows. This is dangerous because it could
// cause unsuspecting clients to infinitely recurse.
if (deadBorrow) {
return visitUnknownUse(op);
}
return true;
}
case BorrowingOperandKind::BeginApply: {
bool deadApply = true;
for (auto *use : cast<BeginApplyInst>(op->getUser())->getEndApplyUses()) {
deadApply = false;
if (!visitScopeEnd(use))
return false;
}
return !deadApply;
}
case BorrowingOperandKind::PartialApplyStack: {
auto *user = cast<PartialApplyInst>(op->getUser());
assert(user->isOnStack() && "escaping closures can't borrow");
// The closure's borrow lifetimes end when the closure itself ends its
// lifetime. That may happen transitively through conversions that forward
// ownership of the closure.
return user->visitOnStackLifetimeEnds(visitScopeEnd);
}
case BorrowingOperandKind::MarkDependenceNonEscaping: {
auto *mdi = cast<MarkDependenceInst>(op->getUser());
assert(mdi->isNonEscaping() && "escaping dependencies don't borrow");
// MarkDependenceInst::visitNonEscapingLifetimeEnds only makes sense for
// owned, escapable, non-address values.
if (mdi->getOwnershipKind() == OwnershipKind::Owned
&& mdi->getType().isObject()
&& mdi->getType().isEscapable(*mdi->getFunction())) {
return mdi->visitNonEscapingLifetimeEnds(visitScopeEnd, visitUnknownUse);
}
return visitUnknownUse(op);
}
case BorrowingOperandKind::BeginAsyncLet: {
auto user = cast<BuiltinInst>(op->getUser());
// The async let ends its borrow when the task is ended.
bool dead = true;
for (auto *use : user->getUses()) {
dead = false;
auto builtinUser = dyn_cast<BuiltinInst>(use->getUser());
if (!builtinUser
|| builtinUser->getBuiltinKind() != BuiltinValueKind::EndAsyncLetLifetime)
continue;
if (!visitScopeEnd(use)) {
return false;
}
}
if (dead) {
return visitUnknownUse(op);
}
return true;
}
// These are instantaneous borrow scopes so there aren't any special end
// scope instructions.
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::Yield:
return true;
case BorrowingOperandKind::Branch: {
bool deadBranch = true;
auto *br = cast<BranchInst>(op->getUser());
for (auto *use : br->getArgForOperand(op)->getUses()) {
if (use->isLifetimeEnding()) {
deadBranch = false;
if (!visitScopeEnd(use))
return false;
}
}
if (deadBranch) {
return visitUnknownUse(op);
}
return true;
}
}
llvm_unreachable("Covered switch isn't covered");
}
bool BorrowingOperand::visitExtendedScopeEndingUses(
function_ref<bool(Operand *)> visitor,
function_ref<bool(Operand *)> visitUnknownUse) const {
if (hasBorrowIntroducingUser()) {
auto result = getBorrowIntroducingUserResult();
if (auto borrowedValue = BorrowedValue(result)) {
return borrowedValue.visitExtendedScopeEndingUses(visitor);
}
}
return visitScopeEndingUses(visitor, visitUnknownUse);
}
// This should be equivalent to SwiftCompilerSources, BorrowedValue.
SILValue BorrowingOperand::getBorrowIntroducingUserResult() const {
switch (kind) {
case BorrowingOperandKind::Invalid:
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::BeginApply:
case BorrowingOperandKind::Yield:
case BorrowingOperandKind::PartialApplyStack:
case BorrowingOperandKind::MarkDependenceNonEscaping:
case BorrowingOperandKind::BeginAsyncLet:
case BorrowingOperandKind::StoreBorrow:
return SILValue();
case BorrowingOperandKind::BeginBorrow:
return cast<SingleValueInstruction>(op->getUser());
case BorrowingOperandKind::BorrowedFrom: {
// A reborrow introduces a new borrow scope, a guaranteed forwarding phi
// does not.
auto *bfi = cast<BorrowedFromInst>(op->getUser());
if (bfi->isReborrow()) {
return bfi->getBorrowedValue();
}
return SILValue();
}
case BorrowingOperandKind::Branch: {
auto *bi = cast<BranchInst>(op->getUser());
return bi->getDestBB()->getArgument(op->getOperandNumber());
}
}
llvm_unreachable("covered switch");
}
SILValue BorrowingOperand::getScopeIntroducingUserResult() const {
switch (kind) {
case BorrowingOperandKind::BeginAsyncLet:
case BorrowingOperandKind::PartialApplyStack:
case BorrowingOperandKind::StoreBorrow:
return cast<SingleValueInstruction>(op->getUser());
case BorrowingOperandKind::MarkDependenceNonEscaping:
if (auto *mdi = cast<MarkDependenceInst>(op->getUser())) {
if (mdi->hasScopedLifetime())
return mdi;
}
return SILValue();
case BorrowingOperandKind::BeginApply:
return cast<BeginApplyInst>(op->getUser())->getTokenResult();
default:
return getBorrowIntroducingUserResult();
}
llvm_unreachable("covered switch");
}
SILValue BorrowingOperand::getDependentUserResult() const {
switch (kind) {
case BorrowingOperandKind::BorrowedFrom: {
auto *bfi = cast<BorrowedFromInst>(op->getUser());
if (!bfi->isReborrow())
return bfi;
return SILValue();
}
case BorrowingOperandKind::MarkDependenceNonEscaping: {
auto *mdi = cast<MarkDependenceInst>(op->getUser());
assert(mdi->isNonEscaping() && "escaping dependencies don't borrow");
if (!mdi->hasScopedLifetime())
return mdi;
return SILValue();
}
case BorrowingOperandKind::Invalid:
case BorrowingOperandKind::BeginBorrow:
case BorrowingOperandKind::StoreBorrow:
case BorrowingOperandKind::BeginApply:
case BorrowingOperandKind::Branch:
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::Yield:
case BorrowingOperandKind::PartialApplyStack:
case BorrowingOperandKind::BeginAsyncLet:
return SILValue();
}
llvm_unreachable("covered switch");
}
//===----------------------------------------------------------------------===//
// Borrow Introducers
//===----------------------------------------------------------------------===//
void BorrowedValueKind::print(llvm::raw_ostream &os) const {
switch (value) {
case BorrowedValueKind::Invalid:
llvm_unreachable("Using invalid case?!");
case BorrowedValueKind::SILFunctionArgument:
os << "SILFunctionArgument";
return;
case BorrowedValueKind::BeginBorrow:
os << "BeginBorrowInst";
return;
case BorrowedValueKind::LoadBorrow:
os << "LoadBorrowInst";
return;
case BorrowedValueKind::Phi:
os << "Phi";
return;
case BorrowedValueKind::BeginApplyToken:
os << "BeginApply";
return;
}
llvm_unreachable("Covered switch isn't covered?!");
}
void BorrowedValue::print(llvm::raw_ostream &os) const {
os << "BorrowScopeIntroducingValue:\n"
"Kind: " << kind << "\n"
"Value: " << value;
}
void BorrowedValue::getLocalScopeEndingInstructions(
SmallVectorImpl<SILInstruction *> &scopeEndingInsts) const {
visitLocalScopeEndingUses([&](auto *use) {
scopeEndingInsts.push_back(use->getUser());
return true;
});
}
// Note: BorrowedLifetimeExtender assumes no intermediate values between a
// borrow introducer and its reborrow. The borrowed value must be an operand of
// the reborrow. Exception: it looks through `borrowed-from` of a reborrow phi.
bool BorrowedValue::visitLocalScopeEndingUses(
function_ref<bool(Operand *)> visitor) const {
assert(isLocalScope() && "Should only call this given a local scope");
switch (kind) {
case BorrowedValueKind::Invalid:
llvm_unreachable("Using invalid case?!");
case BorrowedValueKind::SILFunctionArgument:
llvm_unreachable("Should only call this with a local scope");
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::BeginBorrow:
case BorrowedValueKind::Phi:
case BorrowedValueKind::BeginApplyToken:
for (auto *use : lookThroughBorrowedFromUser(value)->getUses()) {
if (isa<ExtendLifetimeInst>(use->getUser())) {
if (!visitor(use))
return false;
}
if (use->isLifetimeEnding()) {
if (!visitor(use))
return false;
}
}
return true;
}
llvm_unreachable("Covered switch isn't covered?!");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
BorrowedValueKind kind) {
kind.print(os);
return os;
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const BorrowedValue &value) {
value.print(os);
return os;
}
/// Add this scopes live blocks into the PrunedLiveness result.
void BorrowedValue::
computeTransitiveLiveness(MultiDefPrunedLiveness &liveness) const {
liveness.initializeDef(value);
visitTransitiveLifetimeEndingUses([&](Operand *endOp) {
if (endOp->getOperandOwnership() == OperandOwnership::EndBorrow) {
liveness.updateForUse(endOp->getUser(), /*lifetimeEnding*/ true);
return true;
}
assert(endOp->getOperandOwnership() == OperandOwnership::Reborrow);
PhiOperand phiOper(endOp);
liveness.initializeDef(phiOper.getValue());
liveness.updateForUse(endOp->getUser(), /*lifetimeEnding*/ false);
return true;
});
}
template <typename Instructions>
bool BorrowedValue::areWithinExtendedScope(Instructions insts,
DeadEndBlocks *deadEndBlocks) const {
// First make sure that we actually have a local scope. If we have a non-local
// scope, then we have something (like a SILFunctionArgument) where a larger
// semantic construct (in the case of SILFunctionArgument, the function
// itself) acts as the scope. So we already know that our passed in
// instructions must be in the same scope.
if (!isLocalScope())
return true;
// Compute the local scope's liveness.
MultiDefPrunedLiveness liveness(value->getFunction());
computeTransitiveLiveness(liveness);
return liveness.areWithinBoundary(insts, deadEndBlocks);
}
template bool BorrowedValue::areWithinExtendedScope<UsePointInstructionRange>(
UsePointInstructionRange insts, DeadEndBlocks *deadEndBlocks) const;
template bool
BorrowedValue::areWithinExtendedScope<SILInstruction::OperandUserRange>(
SILInstruction::OperandUserRange insts, DeadEndBlocks *deadEndBlocks) const;
bool BorrowedValue::areUsesWithinExtendedScope(
ArrayRef<Operand *> uses, DeadEndBlocks *deadEndBlocks) const {
SILInstruction::OperandUserRange users(uses, SILInstruction::OperandToUser());
return areWithinExtendedScope(users, deadEndBlocks);
}
// The visitor \p func is only called on final scope-ending uses, not reborrows.
bool BorrowedValue::visitExtendedScopeEndingUses(
function_ref<bool(Operand *)> visitor) const {
assert(isLocalScope());
SmallPtrSetVector<SILValue, 4> reborrows;
auto visitEnd = [&](Operand *scopeEndingUse) {
if (scopeEndingUse->getOperandOwnership() == OperandOwnership::Reborrow) {
auto result =
BorrowingOperand(scopeEndingUse).getBorrowIntroducingUserResult();
reborrows.insert(result);
return true;
}
return visitor(scopeEndingUse);
};
if (!visitLocalScopeEndingUses(visitEnd))
return false;
// reborrows grows in this loop.
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
if (!BorrowedValue(reborrows[idx]).visitLocalScopeEndingUses(visitEnd))
return false;
}
return true;
}
bool BorrowedValue::visitTransitiveLifetimeEndingUses(
function_ref<bool(Operand *)> visitor) const {
assert(isLocalScope());
SmallPtrSetVector<SILValue, 4> reborrows;
auto visitEnd = [&](Operand *scopeEndingUse) {
if (scopeEndingUse->getOperandOwnership() == OperandOwnership::Reborrow) {
auto result =
BorrowingOperand(scopeEndingUse).getBorrowIntroducingUserResult();
reborrows.insert(result);
// visitor on the reborrow
return visitor(scopeEndingUse);
}
// visitor on the end_borrow
return visitor(scopeEndingUse);
};
if (!visitLocalScopeEndingUses(visitEnd))
return false;
// reborrows grows in this loop.
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
if (!BorrowedValue(reborrows[idx]).visitLocalScopeEndingUses(visitEnd))
return false;
}
return true;
}
bool BorrowedValue::visitInteriorPointerOperandHelper(
function_ref<void(InteriorPointerOperand)> func,
BorrowedValue::InteriorPointerOperandVisitorKind kind) const {
using Kind = BorrowedValue::InteriorPointerOperandVisitorKind;
SmallVector<Operand *, 32> worklist(value->getUses());
while (!worklist.empty()) {
auto *op = worklist.pop_back_val();
if (auto interiorPointer = InteriorPointerOperand(op)) {
func(interiorPointer);
continue;
}
if (auto borrowingOperand = BorrowingOperand(op)) {
switch (kind) {
case Kind::NoNestedNoReborrows:
// We do not look through nested things and or reborrows, so just
// continue.
continue;
case Kind::YesNestedNoReborrows:
// We only look through nested borrowing operands, we never look through
// reborrows though.
if (borrowingOperand.isReborrow())
continue;
break;
case Kind::YesNestedYesReborrows:
// Look through everything!
break;
}
auto result = borrowingOperand.getBorrowIntroducingUserResult();
if (!result) {
result = borrowingOperand.getDependentUserResult();
}
for (auto *use : result->getUses()) {
if (auto intPtrOperand = InteriorPointerOperand(use)) {
func(intPtrOperand);
continue;
}
worklist.push_back(use);
}
continue;
}
auto *user = op->getUser();
if (isa<DebugValueInst>(user) || isa<SuperMethodInst>(user) ||
isa<ClassMethodInst>(user) || isa<CopyValueInst>(user) ||
isa<EndBorrowInst>(user) || isa<ApplyInst>(user) ||
isa<StoreInst>(user) || isa<PartialApplyInst>(user) ||
isa<UnmanagedRetainValueInst>(user) ||
isa<UnmanagedReleaseValueInst>(user) ||
isa<UnmanagedAutoreleaseValueInst>(user)) {
continue;
}
// These are interior pointers that have not had support yet added for them.
if (isa<ProjectExistentialBoxInst>(user)) {
continue;
}
// Look through object. SingleValueInstruction is overly restrictive but
// rules out any interesting corner cases.
if (auto *svi = dyn_cast<SingleValueInstruction>(user)) {
if (ForwardingInstruction::isa(user)) {
for (auto *use : svi->getUses()) {
worklist.push_back(use);
}
continue;
}
}
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// AddressOwnership
//===----------------------------------------------------------------------===//
bool AddressOwnership::areUsesWithinLifetime(
ArrayRef<Operand *> uses, DeadEndBlocks &deadEndBlocks) const {
if (!base.hasLocalOwnershipLifetime())
return true;
SILValue root = base.getOwnershipReferenceAggregate();
BorrowedValue borrow(root);
if (borrow)
return borrow.areUsesWithinExtendedScope(uses, &deadEndBlocks);
// --- A reference with no borrow scope! Currently happens for project_box.
// Compute the reference value's liveness.
SSAPrunedLiveness liveness(root->getFunction());
liveness.initializeDef(root);
LiveRangeSummary summary = liveness.computeSimple();
// Conservatively ignore InnerBorrowKind::Reborrowed and
// AddressUseKind::PointerEscape and Reborrowed. The resulting liveness at
// least covers the known uses.
(void)summary;
// FIXME (implicit borrow): handle reborrows transitively just like above so
// we don't bail out if a uses is within the reborrowed scope.
return liveness.areUsesWithinBoundary(uses, &deadEndBlocks);
}
//===----------------------------------------------------------------------===//
// Owned Value Introducers
//===----------------------------------------------------------------------===//
void OwnedValueIntroducerKind::print(llvm::raw_ostream &os) const {
switch (value) {
case OwnedValueIntroducerKind::Invalid:
llvm_unreachable("Using invalid case?!");
case OwnedValueIntroducerKind::Apply:
os << "Apply";
return;
case OwnedValueIntroducerKind::BeginApply:
os << "BeginApply";
return;
case OwnedValueIntroducerKind::TryApply:
os << "TryApply";
return;
case OwnedValueIntroducerKind::Copy:
os << "Copy";
return;
case OwnedValueIntroducerKind::LoadCopy:
os << "LoadCopy";
return;
case OwnedValueIntroducerKind::LoadTake:
os << "LoadTake";
return;
case OwnedValueIntroducerKind::Move:
os << "Move";
return;
case OwnedValueIntroducerKind::Phi:
os << "Phi";
return;
case OwnedValueIntroducerKind::Struct:
os << "Struct";
return;
case OwnedValueIntroducerKind::Tuple:
os << "Tuple";
return;
case OwnedValueIntroducerKind::FunctionArgument:
os << "FunctionArgument";
return;
case OwnedValueIntroducerKind::PartialApplyInit:
os << "PartialApplyInit";
return;
case OwnedValueIntroducerKind::AllocBoxInit:
os << "AllocBoxInit";
return;
case OwnedValueIntroducerKind::AllocRefInit:
os << "AllocRefInit";
return;
}
llvm_unreachable("Covered switch isn't covered");
}
//===----------------------------------------------------------------------===//
// Introducer Searching Routines
//===----------------------------------------------------------------------===//
bool swift::getAllBorrowIntroducingValues(SILValue inputValue,
SmallVectorImpl<BorrowedValue> &out) {
if (inputValue->getOwnershipKind() != OwnershipKind::Guaranteed)
return false;
llvm::SmallSetVector<SILValue, 32> worklist;
worklist.insert(inputValue);
// worklist grows in this loop.
for (unsigned idx = 0; idx < worklist.size(); idx++) {
SILValue value = worklist[idx];
// First check if v is an introducer. If so, stash it and continue.
if (auto scopeIntroducer = BorrowedValue(value)) {
out.push_back(scopeIntroducer);
continue;
}
// If v produces .none ownership, then we can ignore it. It is important
// that we put this before checking for guaranteed forwarding instructions,
// since we want to ignore guaranteed forwarding instructions that in this
// specific case produce a .none value.
if (value->getOwnershipKind() == OwnershipKind::None)
continue;
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (value->isGuaranteedForwarding()) {
if (auto *i = value->getDefiningInstruction()) {
for (SILValue opValue : i->getNonTypeDependentOperandValues()) {
worklist.insert(opValue);
}
continue;
}
// Otherwise, we should have a block argument that is defined by a single
// predecessor terminator.
auto *arg = cast<SILPhiArgument>(value);
if (arg->isTerminatorResult()) {
if (auto *forwardedOper = arg->forwardedTerminatorResultOperand()) {
worklist.insert(forwardedOper->get());
continue;
}
}
arg->visitIncomingPhiOperands([&](auto *operand) {
worklist.insert(operand->get());
return true;
});
}
// Otherwise, this is an introducer we do not understand. Bail and return
// false.
return false;
}
return true;
}
// FIXME: replace this logic with AccessBase::findOwnershipReferenceRoot.
BorrowedValue swift::getSingleBorrowIntroducingValue(SILValue inputValue) {
if (inputValue->getOwnershipKind() != OwnershipKind::Guaranteed)
return {};
SILValue currentValue = inputValue;
while (true) {
// First check if our initial value is an introducer. If we have one, just
// return it.
if (auto scopeIntroducer = BorrowedValue(currentValue)) {
return scopeIntroducer;
}
if (currentValue->getOwnershipKind() == OwnershipKind::None)
return {};
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (currentValue->isGuaranteedForwarding()) {
if (auto *i = currentValue->getDefiningInstructionOrTerminator()) {
auto instOps = i->getNonTypeDependentOperandValues();
// If we have multiple incoming values, return .None. We can't handle
// this.
auto begin = instOps.begin();
if (std::next(begin) != instOps.end()) {
return {};
}
// Otherwise, set currentOp to the single operand and continue.
currentValue = *begin;
continue;
}
}
// Otherwise, this is an introducer we do not understand. Bail and return
// None.
return {};
}
llvm_unreachable("Should never hit this");
}
bool swift::getAllOwnedValueIntroducers(
SILValue inputValue, SmallVectorImpl<OwnedValueIntroducer> &out) {
if (inputValue->getOwnershipKind() != OwnershipKind::Owned)
return false;
SmallVector<SILValue, 32> worklist;
worklist.emplace_back(inputValue);
while (!worklist.empty()) {
SILValue value = worklist.pop_back_val();
// First check if v is an introducer. If so, stash it and continue.
if (auto introducer = OwnedValueIntroducer::get(value)) {
out.push_back(introducer);
continue;
}
// If v produces .none ownership, then we can ignore it. It is important
// that we put this before checking for guaranteed forwarding instructions,
// since we want to ignore guaranteed forwarding instructions that in this
// specific case produce a .none value.
if (value->getOwnershipKind() == OwnershipKind::None)
continue;
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isForwardingConsume(value)) {
if (auto *i = value->getDefiningInstructionOrTerminator()) {
llvm::copy(i->getNonTypeDependentOperandValues(),
std::back_inserter(worklist));
continue;
}
}
// Otherwise, this is an introducer we do not understand. Bail and return
// false.
return false;
}
return true;
}
OwnedValueIntroducer swift::getSingleOwnedValueIntroducer(SILValue inputValue) {
if (inputValue->getOwnershipKind() != OwnershipKind::Owned)
return {};
SILValue currentValue = inputValue;
while (true) {
// First check if our initial value is an introducer. If we have one, just
// return it.
if (auto introducer = OwnedValueIntroducer::get(currentValue)) {
return introducer;
}
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isForwardingConsume(currentValue)) {
if (auto *i = currentValue->getDefiningInstructionOrTerminator()) {
auto instOps = i->getNonTypeDependentOperandValues();
// If we have multiple incoming values, return .None. We can't handle
// this.
auto begin = instOps.begin();
if (std::next(begin) != instOps.end()) {
return {};
}
// Otherwise, set currentOp to the single operand and continue.
currentValue = *begin;
continue;
}
}
// Otherwise, this is an introducer we do not understand. Bail and return
// None.
return {};
}
llvm_unreachable("Should never hit this");
}
//===----------------------------------------------------------------------===//
// Forwarding Operand
//===----------------------------------------------------------------------===//
ForwardingOperand::ForwardingOperand(Operand *use) {
if (use->isTypeDependent())
return;
switch (use->getOperandOwnership()) {
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::GuaranteedForwarding:
this->use = use;
break;
default:
this->use = nullptr;
return;
}
}
ValueOwnershipKind ForwardingOperand::getForwardingOwnershipKind() const {
auto *user = use->getUser();
// NOTE: This if chain is meant to be a covered switch, so make sure to return
// in each if itself since we have an unreachable at the bottom to ensure if a
// new subclass of OwnershipForwardingInst is added
if (auto *ofsvi = dyn_cast<OwnershipForwardingSingleValueInstruction>(user))
return ofsvi->getForwardingOwnershipKind();
if (auto *ofmvi =
dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
assert(ofmvi->getNumOperands() == 1);
return ofmvi->getForwardingOwnershipKind();
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
assert(ofti->getNumOperands() == 1);
return ofti->getForwardingOwnershipKind();
}
llvm_unreachable("Unhandled forwarding inst?!");
}
void ForwardingOperand::setForwardingOwnershipKind(
ValueOwnershipKind newKind) const {
auto *user = use->getUser();
// NOTE: This if chain is meant to be a covered switch, so make sure to return
// in each if itself since we have an unreachable at the bottom to ensure if a
// new subclass of OwnershipForwardingInst is added
if (auto *ofsvi = dyn_cast<OwnershipForwardingSingleValueInstruction>(user))
return ofsvi->setForwardingOwnershipKind(newKind);
if (auto *ofmvi = dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
assert(ofmvi->getNumOperands() == 1);
if (!ofmvi->getOperand(0)->getType().isTrivial(*ofmvi->getFunction())) {
ofmvi->setForwardingOwnershipKind(newKind);
// TODO: Refactor this better.
if (auto *dsi = dyn_cast<DestructureStructInst>(ofmvi)) {
for (auto &result : dsi->getAllResultsBuffer()) {
if (result.getType().isTrivial(*dsi->getFunction()))
continue;
result.setOwnershipKind(newKind);
}
} else {
auto *dti = cast<DestructureTupleInst>(ofmvi);
for (auto &result : dti->getAllResultsBuffer()) {
if (result.getType().isTrivial(*dti->getFunction()))
continue;
result.setOwnershipKind(newKind);
}
}
}
return;
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
assert(ofti->getNumOperands() == 1);
if (!ofti->getOperand()->getType().isTrivial(*ofti->getFunction())) {
ofti->setForwardingOwnershipKind(newKind);
// Then convert all of its incoming values that are owned to be guaranteed.
for (auto &succ : ofti->getSuccessors()) {
auto *succBlock = succ.getBB();
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
continue;
for (auto *succArg : succBlock->getSILPhiArguments()) {
// If we have an any value, just continue.
if (!succArg->getType().isTrivial(*ofti->getFunction()))
continue;
succArg->setOwnershipKind(newKind);
}
}
}
return;
}
assert(
!isa<MoveOnlyWrapperToCopyableValueInst>(user) &&
"MoveOnlyWrapperToCopyableValueInst can not have its ownership changed");
llvm_unreachable("Out of sync with OperandOwnership");
}
void ForwardingOperand::replaceOwnershipKind(ValueOwnershipKind oldKind,
ValueOwnershipKind newKind) const {
auto *user = use->getUser();
if (auto *fInst = dyn_cast<OwnershipForwardingSingleValueInstruction>(user))
if (fInst->getForwardingOwnershipKind() == oldKind)
return fInst->setForwardingOwnershipKind(newKind);
if (auto *ofmvi = dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
if (ofmvi->getForwardingOwnershipKind() == oldKind) {
ofmvi->setForwardingOwnershipKind(newKind);
}
// TODO: Refactor this better.
if (auto *dsi = dyn_cast<DestructureStructInst>(ofmvi)) {
for (auto &result : dsi->getAllResultsBuffer()) {
if (result.getOwnershipKind() != oldKind)
continue;
result.setOwnershipKind(newKind);
}
} else {
auto *dti = cast<DestructureTupleInst>(ofmvi);
for (auto &result : dti->getAllResultsBuffer()) {
if (result.getOwnershipKind() != oldKind)
continue;
result.setOwnershipKind(newKind);
}
}
return;
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
if (ofti->getForwardingOwnershipKind() == oldKind) {
ofti->setForwardingOwnershipKind(newKind);
// Then convert all of its incoming values that are owned to be guaranteed.
for (auto &succ : ofti->getSuccessors()) {
auto *succBlock = succ.getBB();
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
continue;
for (auto *succArg : succBlock->getSILPhiArguments()) {
// If we have an any value, just continue.
if (succArg->getOwnershipKind() == oldKind) {
succArg->setOwnershipKind(newKind);
}
}
}
}
return;
}
assert(
!isa<MoveOnlyWrapperToCopyableValueInst>(user) &&
"MoveOnlyWrapperToCopyableValueInst can not have its ownership changed");
llvm_unreachable("Missing Case! Out of sync with OperandOwnership");
}
SILValue ForwardingOperand::getSingleForwardedValue() const {
if (auto *svi = dyn_cast<SingleValueInstruction>(use->getUser()))
return svi;
return SILValue();
}
bool ForwardingOperand::visitForwardedValues(
function_ref<bool(SILValue)> visitor) {
auto *user = use->getUser();
// See if we have a single value instruction... if we do that is always the
// transitive result.
if (auto *svi = dyn_cast<SingleValueInstruction>(user)) {
return visitor(svi);
}
if (auto *mvri = dyn_cast<MultipleValueInstruction>(user)) {
return llvm::all_of(mvri->getResults(), [&](SILValue value) {
if (value->getOwnershipKind() == OwnershipKind::None)
return true;
return visitor(value);
});
}
// This is an instruction like switch_enum and checked_cast_br that are
// "transforming terminators"... We know that this means that we should at
// most have a single phi argument.
auto *ti = cast<TermInst>(user);
if (ti->mayHaveTerminatorResult()) {
return llvm::all_of(
ti->getSuccessorBlocks(), [&](SILBasicBlock *succBlock) {
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
return true;
auto args = succBlock->getSILPhiArguments();
assert(args.size() == 1 &&
"Transforming terminator with multiple args?!");
return visitor(args[0]);
});
}
// If our terminator is function exiting, we do not have a value to visit, so
// just return.
if (ti->isFunctionExiting())
return true;
auto *succArg = PhiOperand(use).getValue();
return visitor(succArg);
}
void swift::visitExtendedReborrowPhiBaseValuePairs(
BeginBorrowInst *borrowInst, function_ref<void(SILPhiArgument *, SILValue)>
visitReborrowPhiBaseValuePair) {
// A Reborrow can have different base values on different control flow
// paths.
// For that reason, worklist stores (reborrow, base value) pairs.
// We need a SetVector to make sure we don't revisit the same pair again.
llvm::SmallSetVector<std::tuple<PhiOperand, SILValue>, 4> worklist;
// Find all reborrows of value and insert the (reborrow, base value) pair into
// the worklist.
auto collectReborrows = [&](SILValue value, SILValue baseValue) {
BorrowedValue(value).visitLocalScopeEndingUses([&](Operand *op) {
if (op->getOperandOwnership() == OperandOwnership::Reborrow) {
worklist.insert(std::make_tuple(PhiOperand(op), baseValue));
}
return true;
});
};
// Initialize the worklist.
collectReborrows(borrowInst, borrowInst->getOperand());
// For every (reborrow, base value) pair in the worklist:
// - Find phi value and new base value
// - Call the visitor on the phi value and new base value pair
// - Populate the worklist with pairs of reborrows of phi value and the new
// base.
for (unsigned idx = 0; idx < worklist.size(); idx++) {
PhiOperand phiOp;
SILValue currentBaseValue;
std::tie(phiOp, currentBaseValue) = worklist[idx];
auto *phiValue = phiOp.getValue();
SILValue newBaseValue = currentBaseValue;
// If the previous base value was also passed as a phi operand along with
// the reborrow, its phi value will be the new base value.
for (auto &op : phiOp.getBranch()->getAllOperands()) {
PhiOperand otherPhiOp(&op);
auto *borrowedFromUser = getBorrowedFromUser(currentBaseValue);
if (borrowedFromUser && borrowedFromUser == otherPhiOp.getSource()) {
newBaseValue = otherPhiOp.getValue();
continue;
}
if (otherPhiOp.getSource() == currentBaseValue) {
newBaseValue = otherPhiOp.getValue();
continue;
}
}
// Call the visitor function
visitReborrowPhiBaseValuePair(phiValue, newBaseValue);
collectReborrows(phiValue, newBaseValue);
}
}
void swift::visitExtendedGuaranteedForwardingPhiBaseValuePairs(
BorrowedValue borrow, function_ref<void(SILPhiArgument *, SILValue)>
visitGuaranteedForwardingPhiBaseValuePair) {
assert(borrow.kind == BorrowedValueKind::BeginBorrow ||
borrow.kind == BorrowedValueKind::LoadBorrow);
// A GuaranteedForwardingPhi can have different base values on different
// control flow paths.
// For that reason, worklist stores (GuaranteedForwardingPhi operand, base
// value) pairs. We need a SetVector to make sure we don't revisit the same
// pair again.
llvm::SmallSetVector<std::tuple<PhiOperand, SILValue>, 4> worklist;
auto collectGuaranteedForwardingPhis = [&](SILValue value,
SILValue baseValue) {
visitGuaranteedForwardingPhisForSSAValue(value, [&](Operand *op) {
worklist.insert(std::make_tuple(PhiOperand(op), baseValue));
return true;
});
};
// Collect all GuaranteedForwardingPhis
collectGuaranteedForwardingPhis(borrow.value, borrow.value);
borrow.visitTransitiveLifetimeEndingUses([&](Operand *endUse) {
if (endUse->getOperandOwnership() == OperandOwnership::Reborrow) {
auto *phiValue = PhiOperand(endUse).getValue();
collectGuaranteedForwardingPhis(phiValue, phiValue);
}
return true;
});
// For every (GuaranteedForwardingPhi operand, base value) pair in the
// worklist:
// - Find phi value and new base value
// - Call the visitor on the phi value and new base value pair
// - Populate the worklist with pairs of GuaranteedForwardingPhi ops of phi
// value and the new base.
for (unsigned idx = 0; idx < worklist.size(); idx++) {
PhiOperand phiOp;
SILValue currentBaseValue;
std::tie(phiOp, currentBaseValue) = worklist[idx];
auto *phiValue = phiOp.getValue();
SILValue newBaseValue = currentBaseValue;
// If an adjacent reborrow is found in the same block as the guaranteed phi,
// then set newBaseValue to the reborrow.
for (auto &op : phiOp.getBranch()->getAllOperands()) {
PhiOperand otherPhiOp(&op);
if (lookThroughBorrowedFromDef(otherPhiOp.getSource()) != currentBaseValue) {
continue;
}
newBaseValue = otherPhiOp.getValue();
}
// Call the visitor function
visitGuaranteedForwardingPhiBaseValuePair(phiValue, newBaseValue);
collectGuaranteedForwardingPhis(phiValue, newBaseValue);
}
}
/// If \p instruction forwards guaranteed values to its results, visit each
/// forwarded operand. The visitor must check whether the forwarded value is
/// guaranteed.
///
/// Return true \p visitOperand was called at least once.
///
/// \p visitOperand should always recheck for Guaranteed owernship if it
/// matters, in case a cast forwards a trivial type to a nontrivial type.
///
/// This intentionally does not handle phis, which require recursive traversal
/// to determine `isGuaranteedForwardingPhi`.
bool swift::visitForwardedGuaranteedOperands(
SILValue value, function_ref<void(Operand *)> visitOperand) {
assert(!SILArgument::asPhi(value) && "phis are handled separately");
if (auto *termResult = SILArgument::isTerminatorResult(value)) {
if (auto *oper = termResult->forwardedTerminatorResultOperand()) {
visitOperand(oper);
return true;
}
return false;
}
auto *inst = value->getDefiningInstruction();
if (!inst)
return false;
// Bypass conversions that produce a guarantee value out of thin air.
if (inst->getNumRealOperands() == 0) {
return false;
}
auto fwdOp = ForwardingOperation(inst);
if (!fwdOp) {
return false;
}
for (auto &operand : fwdOp.getForwardedOperands()) {
visitOperand(&operand);
}
return true;
}
namespace {
// Find the definitions of the scopes that enclose guaranteed values, handling
// all combinations of aggregation, guaranteed forwarding phis, and reborrows.
class FindEnclosingDefs {
// A separately allocated set-vector is used for each level of recursion
// across block boundaries (NodeSet cannot be used recursively).
using LocalValueSetVector = SmallPtrSetVector<SILValue, 8>;
SILFunction *function;
ValueSet visitedPhis;
public:
FindEnclosingDefs(SILFunction *function) : function(function),
visitedPhis(function) {}
// Visit each definition of a scope that immediately encloses a guaranteed
// value. The guaranteed value effectively keeps these scopes alive.
//
// This means something different depending on whether \p value is itself a
// borrow introducer vs. a forwarded guaranteed value. If \p value is an
// introducer, then this disovers the enclosing borrow scope and visits all
// introducers of that scope. If \p value is a forwarded value, then this
// visits the introducers of the current borrow scope.
bool visitEnclosingDefs(SILValue value,
function_ref<bool(SILValue)> visitor) && {
if (value->getOwnershipKind() != OwnershipKind::Guaranteed)
return true;
if (auto borrowedValue = BorrowedValue(value)) {
switch (borrowedValue.kind) {
case BorrowedValueKind::Invalid:
llvm_unreachable("checked above");
case BorrowedValueKind::Phi: {
StackList<SILValue> enclosingDefs(function);
recursivelyFindDefsOfReborrow(SILArgument::asPhi(value), enclosingDefs);
for (SILValue def : enclosingDefs) {
if (!visitor(def))
return false;
}
return true;
}
case BorrowedValueKind::BeginBorrow:
return std::move(*this).visitBorrowIntroducers(
cast<BeginBorrowInst>(value)->getOperand(), visitor);
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::SILFunctionArgument:
case BorrowedValueKind::BeginApplyToken:
// There is no enclosing def on this path.
return true;
}
}
// Handle forwarded guaranteed values.
return std::move(*this).visitBorrowIntroducers(value, visitor);
}
// Visit the values that introduce the borrow scopes that includes \p
// value. If value is owned, or introduces a borrow scope, then this only
// visits \p value.
bool visitBorrowIntroducers(SILValue value,
function_ref<bool(SILValue)> visitor) && {
StackList<SILValue> introducers(function);
LocalValueSetVector visitedValues;
recursivelyFindBorrowIntroducers(value, introducers, visitedValues);
for (SILValue introducer : introducers) {
if (!visitor(introducer))
return false;
}
return true;
}
protected:
// This is the identity function (i.e. just adds \p value to \p introducers)
// when:
// - \p value is owned
// - \p value introduces a borrow scope (begin_borrow, load_borrow, reborrow)
//
// Otherwise recurse up the use-def chain to find all introducers.
//
// Returns false if \p forwardingPhi was already encountered, either because
// of a phi cycle or because of reconvergent control flow. Similarly, return
// false if all incoming values were encountered.
bool recursivelyFindBorrowIntroducers(SILValue value,
StackList<SILValue> &introducers,
LocalValueSetVector &visitedValues) {
// Check if this value's introducers have already been added to
// 'introducers' to avoid duplicates and avoid exponential recursion on
// aggregates.
if (!visitedValues.insert(value))
return false;
switch (value->getOwnershipKind()) {
case OwnershipKind::Any:
case OwnershipKind::None:
case OwnershipKind::Unowned:
return false;
case OwnershipKind::Owned:
introducers.push_back(value);
return true;
case OwnershipKind::Guaranteed:
break;
}
// BorrowedValue handles the initial scope introducers: begin_borrow,
// load_borrow, & reborrow.
if (BorrowedValue(value)) {
introducers.push_back(value);
return true;
}
bool foundNewIntroducer = false;
// Handle forwarding phis.
if (auto *phi = SILArgument::asPhi(value)) {
foundNewIntroducer = recursivelyFindForwardingPhiIntroducers(
phi, introducers, visitedValues);
} else {
// Recurse through guaranteed forwarding instructions.
visitForwardedGuaranteedOperands(value, [&](Operand *operand) {
SILValue forwardedVal = operand->get();
if (forwardedVal->getOwnershipKind() == OwnershipKind::Guaranteed) {
foundNewIntroducer |=
recursivelyFindBorrowIntroducers(forwardedVal, introducers,
visitedValues);
}
});
}
return foundNewIntroducer;
}
// Given the enclosing definition on a predecessor path, identify the
// enclosing definitions on the successor block. Each enclosing predecessor
// def is either used by an outer-adjacent phi in the successor block, or it
// must dominate the successor block.
static SILValue findSuccessorDefFromPredDef(SILBasicBlock *predecessor,
SILValue enclosingPredDef) {
SILBasicBlock *successor = predecessor->getSingleSuccessorBlock();
assert(successor && "phi predecessor must have a single successor in OSSA");
for (auto *candidatePhi : successor->getArguments()) {
SILValue candidateValue =
candidatePhi->getIncomingPhiValue(predecessor);
// Find the outer adjacent phi in the successor block.
// the 'enclosingDef' from the 'pred' block.
if (candidateValue == enclosingPredDef)
return candidatePhi;
}
// No candidates phi are outer-adjacent phis. The incoming enclosingDef
// must dominate the current guaranteed phi. So it remains the enclosing
// scope.
return enclosingPredDef;
}
// Given the enclosing definitions on a predecessor path, identify the
// enclosing definitions on the successor block.
void findSuccessorDefsFromPredDefs(
SILBasicBlock *predecessor, const StackList<SILValue> &predDefs,
StackList<SILValue> &successorDefs,
LocalValueSetVector &visitedSuccessorValues) {
// Gather the new introducers for the successor block.
for (SILValue predDef : predDefs) {
SILValue succDef = findSuccessorDefFromPredDef(predecessor, predDef);
if (visitedSuccessorValues.insert(succDef))
successorDefs.push_back(succDef);
}
}
// Find the introducers of a forwarding phi's borrow scope. The introducers
// are either dominating values, or reborrows in the same block as the
// forwarding phi.
//
// Recurse along the use-def phi web until a begin_borrow is reached. At each
// level, find the outer-adjacent phi, if one exists, otherwise return the
// dominating definition.
//
// Returns false if \p forwardingPhi was already encountered, either because
// of a phi cycle or because of reconvergent control flow. Similarly, returns
// false if all incoming values were encountered.
//
// one(%reborrow_1 : @guaranteed)
// %field = struct_extract %reborrow_1
// br two(%reborrow_1, %field)
// two(%reborrow_2 : @guaranteed, %forward_2 : @guaranteed)
// end_borrow %reborrow_2
//
// Calling recursivelyFindForwardingPhiIntroducers(%forward_2)
// recursively computes these introducers:
//
// %field is the only value incoming to %forward_2.
//
// %field is introduced by %reborrow_1 via
// recursivelyFindBorrowIntroducers(%field).
//
// %reborrow_1 is introduced by %reborrow_2 in block "two" via
// findSuccessorDefsFromPredDefs(%reborrow_1)).
//
// %reborrow_2 is returned.
//
bool
recursivelyFindForwardingPhiIntroducers(SILPhiArgument *forwardingPhi,
StackList<SILValue> &introducers,
LocalValueSetVector &visitedValues) {
// Phi cycles are skipped. They cannot contribute any new enclosing defs.
if (!visitedPhis.insert(forwardingPhi))
return false;
bool foundIntroducer = false;
SILBasicBlock *block = forwardingPhi->getParent();
for (auto *pred : block->getPredecessorBlocks()) {
SILValue incomingValue = forwardingPhi->getIncomingPhiValue(pred);
// Each phi operand requires a new introducer list and visited values
// set. These values will be remapped to successor phis before adding them
// to the caller's introducer list. It may be necessary to revisit a value
// that was already visited by the caller before remapping to phis.
StackList<SILValue> incomingIntroducers(function);
LocalValueSetVector incomingVisitedValues;
if (!recursivelyFindBorrowIntroducers(incomingValue, incomingIntroducers,
incomingVisitedValues))
continue;
foundIntroducer = true;
findSuccessorDefsFromPredDefs(pred, incomingIntroducers, introducers,
visitedValues);
}
return foundIntroducer;
}
// Given a reborrow operand's incoming value, find the enclosing definition.
void recursivelyFindDefsOfReborrowOperand(
SILValue incomingValue,
StackList<SILValue> &enclosingDefs) {
if (incomingValue->getOwnershipKind() == OwnershipKind::None)
return;
assert(incomingValue->getOwnershipKind() == OwnershipKind::Guaranteed);
incomingValue = lookThroughBorrowedFromDef(incomingValue);
// Avoid repeatedly constructing BorrowedValue during use-def
// traversal. That would be quadratic if it checks all uses for reborrows.
if (auto *predPhi = dyn_cast<SILPhiArgument>(incomingValue)) {
recursivelyFindDefsOfReborrow(predPhi, enclosingDefs);
return;
}
// Handle non-phi borrow introducers.
BorrowedValue borrowedValue(incomingValue);
switch (borrowedValue.kind) {
case BorrowedValueKind::Phi:
llvm_unreachable("phis are short-curcuited above");
case BorrowedValueKind::Invalid:
llvm_unreachable("A reborrow immediate operand must be a BorrowedValue.");
case BorrowedValueKind::BeginBorrow: {
LocalValueSetVector visitedValues;
recursivelyFindBorrowIntroducers(
cast<BeginBorrowInst>(incomingValue)->getOperand(), enclosingDefs,
visitedValues);
break;
}
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::SILFunctionArgument:
case BorrowedValueKind::BeginApplyToken:
// There is no enclosing def on this path.
break;
}
}
// Given a reborrow, find the definitions of the enclosing borrow scopes. Each
// enclosing borrow scope is represented by one of the following cases, which
// refer to the example below:
//
// dominating owned value -> %value encloses %reborrow_1
// owned outer-adjacent phi -> %phi_3 encloses %reborrow_3
// dominating outer borrow introducer -> %outerBorrowB encloses %reborrow
// outer-adjacent reborrow -> %outerReborrow encloses %reborrow
//
// Recurse along the use-def phi web until a begin_borrow is reached. Then
// find all introducers of the begin_borrow's operand. At each level, find
// the outer adjacent phi, if one exists, otherwise return the most recently
// found dominating definition.
//
// If \p reborrow was already encountered because of a phi cycle, then no
// enclosingDefs are added.
//
// Example:
//
// %value = ...
// %borrow = begin_borrow %value
// br one(%borrow)
// one(%reborrow_1 : @guaranteed)
// br two(%value, %reborrow_1)
// two(%phi_2 : @owned, %reborrow_2 : @guaranteed)
// br three(%value, %reborrow_1)
// three(%phi_3 : @owned, %reborrow_3 : @guaranteed)
// end_borrow %reborrow_3
// destroy_value %phi_3
//
// recursivelyFindDefsOfReborrow(%reborrow_3) returns %phi_3 by
// computing enclosing defs (inner -> outer) in this order:
//
// %reborrow_1 -> %value
// %reborrow_2 -> %phi_2
// %reborrow_3 -> %phi_3
//
// Example:
//
// %outerBorrowA = begin_borrow
// %outerBorrowB = begin_borrow
// %struct = struct (%outerBorrowA, outerBorrowB)
// %borrow = begin_borrow %struct
// br one(%outerBorrowA, %borrow)
// one(%outerReborrow : @guaranteed, %reborrow : @guaranteed)
//
// recursivelyFindDefsOfReborrow(%reborrow) returns
// (%outerReborrow, %outerBorrowB).
//
void recursivelyFindDefsOfReborrow(SILPhiArgument *reborrow,
StackList<SILValue> &enclosingDefs) {
assert(enclosingDefs.empty());
LocalValueSetVector visitedDefs;
// phi cycles can be skipped. They cannot contribute any new enclosing defs.
if (!visitedPhis.insert(reborrow))
return;
SILBasicBlock *block = reborrow->getParent();
for (auto *pred : block->getPredecessorBlocks()) {
SILValue incomingValue = reborrow->getIncomingPhiValue(pred);
// Each phi operand requires a new enclosing def list. These values will
// be remapped to successor phis before adding them to the caller's
// enclosing def list. It may be necessary to revisit a value that was
// already visited by the caller before remapping to phis.
StackList<SILValue> enclosingPredDefs(function);
recursivelyFindDefsOfReborrowOperand(incomingValue, enclosingPredDefs);
findSuccessorDefsFromPredDefs(pred, enclosingPredDefs, enclosingDefs,
visitedDefs);
}
}
};
} // end namespace
bool swift::visitEnclosingDefs(SILValue value,
function_ref<bool(SILValue)> visitor) {
if (isa<SILUndef>(value))
return true;
return FindEnclosingDefs(value->getFunction())
.visitEnclosingDefs(value, visitor);
}
namespace swift::test {
// Arguments:
// - SILValue: value
// Dumps:
// - function
// - the enclosing defs
static FunctionTest FindEnclosingDefsTest(
"find_enclosing_defs", [](auto &function, auto &arguments, auto &test) {
function.print(llvm::outs());
llvm::outs() << "Enclosing Defs:\n";
visitEnclosingDefs(arguments.takeValue(), [](SILValue def) {
def->print(llvm::outs());
return true;
});
});
} // end namespace swift::test
bool swift::visitBorrowIntroducers(SILValue value,
function_ref<bool(SILValue)> visitor) {
if (isa<SILUndef>(value))
return true;
return FindEnclosingDefs(value->getFunction())
.visitBorrowIntroducers(value, visitor);
}
namespace swift::test {
// Arguments:
// - SILValue: value
// Dumps:
// - function
// - the borrow introducers
static FunctionTest FindBorrowIntroducers(
"find_borrow_introducers", [](auto &function, auto &arguments, auto &test) {
function.print(llvm::outs());
llvm::outs() << "Introducers:\n";
visitBorrowIntroducers(arguments.takeValue(), [](SILValue def) {
def->print(llvm::outs());
return true;
});
});
} // end namespace swift::test
/// Return true of the lifetime of \p innerPhiVal depends on \p outerPhiVal.
///
/// This handles SIL values with nested lifetimes that cross a control flow
/// merge.
///
/// When an owned value is passed to a phi, it is consumed. So any
/// "inner" scope borrowing that owned value must end no later than that
/// branch instruction. Either such a borrow scope ends before the branch that
/// represents the owned phi operand:
/// %lifetime = begin_borrow %value
/// ...
/// end_borrow %lifetime <-- borrow scope ends here
/// br block(%value) <-- owned value consumed here
/// or the borrow scope ends in another phi in the same block as (adjacent to)
/// the owned phi:
/// %lifetime = begin_borrow %value
/// ...
/// end_borrow %lifetime
/// br block(%value, %lifetime) <-- borrow scope ends here
/// <-- adjacent to the consume
/// A phi corresponding to a value nested within another phi's lifetime is an
/// "inner adjacent phi".
///
/// A guaranteed phi that ends a borrow scope is a special kind of phi called a
/// "reborrow". In the above example, the reborrow is an inner adjacent to the
/// owned phi and the owned phi is outer adjacent to the reborrow.
///
/// Note that an inner lifetime cannot extend beyond the outer lifetime's scope,
/// even of the outer value is forwarded. In particular, the following is
/// invalid:
/// %lifetime = begin_borrow %value
/// ...
/// br block(%value)
/// block(%value_2 : @owned):
/// end_borrow %lifetime
/// destroy_value %value_2
/// because %lifetime depends on %value but %value is consumed at `br two`.
///
/// Similarly, a reborrow ends its borrow scope and begins a new borrow
/// scope. So any open nested borrow of the original outer borrow must end no
/// later than in that branch instruction.
///
/// This extends to guaranteed forwarding phis, whose lifetimes are nested
/// within a borrow scope.
///
/// Currently, an owned phi's inner adjacent phi must be a reborrow. A
/// reborrow's adjacent phi may be either a nested reborrow, or a guaranteed
/// forwarding phi. In the future, we remove the requirement that all guaranteed
/// values have borrow scopes; then an owned phi's inner adjacent phi may be a
/// guaranteed forwarding phi.
///
/// Given a phi, 'outerPhi', it can be determined to have an inner adjacent phi,
/// 'innerPhi' if and only if: on any path, the operand of 'outerPhi' is the
/// enclosing definition of the operand of 'innerPhi' on the same path.
///
bool swift::isInnerAdjacentPhi(SILArgument *innerPhiVal,
SILArgument *outerPhiVal) {
auto innerPhi = PhiValue(innerPhiVal);
auto outerPhi = PhiValue(outerPhiVal);
assert(innerPhi.phiBlock == outerPhi.phiBlock && "precondition");
for (SILBasicBlock *predBlock : innerPhi.phiBlock->getPredecessorBlocks()) {
SILValue innerValue = innerPhi.getOperand(predBlock)->get();
SILValue outerValue = outerPhi.getOperand(predBlock)->get();
// Visitor returns false to stop visiting when a match is found.
if (!visitEnclosingDefs(innerValue, [&](SILValue def) {
// If innerValue's enclosing 'def' is 'outerValue', then we found an inner
// adjacent phi.
return def != outerValue;
})) {
// outerPhi ends the lifetime of an enclosing def for this predecessor.
return true;
}
}
return false;
}
/// Visit the phis in the same block as \p phi whose lifetime depends on \p
/// phi.
///
/// See isInnerAdjacentPhi() comments.
///
/// If the visitor returns false, stops visiting and returns false. Otherwise,
/// returns true.
bool swift::visitInnerAdjacentPhis(SILArgument *phi,
function_ref<bool(SILArgument *)> visitor) {
SILBasicBlock *block = phi->getParentBlock();
if (block->pred_empty())
return true;
for (auto *adjacentPhi : block->getArguments()) {
if (adjacentPhi == phi)
continue;
if (isInnerAdjacentPhi(adjacentPhi, phi)) {
if (!visitor(adjacentPhi))
return false;
}
}
return true;
}
namespace swift::test {
// Arguments:
// - SILValue: phi
// Dumps:
// - function
// - the adjacent phis
static FunctionTest VisitInnerAdjacentPhisTest(
"visit_inner_adjacent_phis",
[](auto &function, auto &arguments, auto &test) {
function.print(llvm::outs());
visitInnerAdjacentPhis(cast<SILPhiArgument>(arguments.takeValue()),
[](auto *argument) -> bool {
argument->print(llvm::outs());
return true;
});
});
} // end namespace swift::test
void swift::visitTransitiveEndBorrows(
SILValue value,
function_ref<void(EndBorrowInst *)> visitEndBorrow) {
GraphNodeWorklist<SILValue, 4> worklist;
worklist.insert(value);
while (!worklist.empty()) {
auto val = worklist.pop();
for (auto *consumingUse : lookThroughBorrowedFromUser(val)->getConsumingUses()) {
auto *consumingUser = consumingUse->getUser();
if (auto *branch = dyn_cast<BranchInst>(consumingUser)) {
auto *succBlock = branch->getSingleSuccessorBlock();
auto *phiArg = cast<SILPhiArgument>(
succBlock->getArgument(consumingUse->getOperandNumber()));
worklist.insert(phiArg);
} else {
visitEndBorrow(cast<EndBorrowInst>(consumingUser));
}
}
}
}
/// Whether the specified lexical begin_borrow instruction is nested.
///
/// A begin_borrow [lexical] is nested if the borrowed value's lifetime is
/// guaranteed by another lexical scope. That happens if:
/// - the non-guaranteed borrowee's value is lexical
/// - the guaranteed borrowee's value's reference roots are lexical
/// - for example, the borrowee is itself a begin_borrow [lexical]
bool swift::isNestedLexicalBeginBorrow(BeginBorrowInst *bbi) {
assert(bbi->isLexical());
auto value = bbi->getOperand();
if (value->getOwnershipKind() != OwnershipKind::Guaranteed) {
return value->isLexical();
}
SmallVector<SILValue, 8> roots;
findGuaranteedReferenceRoots(value, /*lookThroughNestedBorrows=*/false,
roots);
return llvm::all_of(roots, [](auto root) {
if (auto *outerBBI = dyn_cast<BeginBorrowInst>(root)) {
return (bool)outerBBI->isLexical();
}
if (auto *arg = dyn_cast<SILFunctionArgument>(root)) {
return arg->getOwnershipKind() == OwnershipKind::Guaranteed;
}
return false;
});
}
bool swift::isRedundantMoveValue(MoveValueInst *mvi) {
// Given: %moved_to_value = move_value %original_value
//
// Check whether the original value's lifetime and the moved-to value's
// lifetime have the same (1) ownership, (2) lexicality, and (3) escaping.
//
// Along the way, also check for cases where they have different values for
// those characteristics but it doesn't matter because of how limited the uses
// of the original value are (for now, whether the move is the only consuming
// use).
auto original = mvi->getOperand();
// (1) Ownership matches?
// (The new value always has owned ownership.)
if (original->getOwnershipKind() != OwnershipKind::Owned) {
return false;
}
// (2) Lexicality matches?
if (mvi->isLexical() != original->isLexical()) {
return false;
}
// The move doesn't alter constraints: ownership and lexicality match.
// Before checking whether escaping matches, check whether the move_value is
// redundant regardless on account of how its uses are limited.
//
// At this point, ownership and lexicality are known to match. If the
// original value doesn't escape, then merging the two lifetimes won't make
// it harder to optimize the portion of the merged lifetime corresponding to
// the moved-to value. If the original's only consuming use is the
// move_value, then the original value's lifetime couldn't be shortened
// anyway.
//
// Summary: !escaping(original)
// && singleConsumingUser(original) == move
// => redundant(mvi)
//
// Check this in two ways, one cheaper than the other.
// First, avoid calling findPointerEscape(original).
//
// If the original value is not a phi (a phi's incoming values might have
// escaping uses) and its only user is the move, then it doesn't escape. Also
// if its only user is the move, then its only _consuming_ user is the move.
auto *singleUser =
original->getSingleUse() ? original->getSingleUse()->getUser() : nullptr;
if (mvi == singleUser && !SILArgument::asPhi(original)) {
assert(!findPointerEscape(original));
assert(original->getSingleConsumingUse()->getUser() == mvi);
// - !escaping(original)
// - singleConsumingUser(original) == move
return true;
}
// Second, call findPointerEscape(original).
//
// Explicitly check both
// - !escaping(original)
// - singleConsumingUser(original) == move
auto originalHasEscape = findPointerEscape(original);
auto *singleConsumingUser = original->getSingleConsumingUse()
? original->getSingleConsumingUse()->getUser()
: nullptr;
if (mvi == singleConsumingUser && !originalHasEscape) {
return true;
}
// (3) Escaping matches? (Expensive check, saved for last.)
auto moveHasEscape = findPointerEscape(mvi);
return moveHasEscape == originalHasEscape;
}
void swift::updateReborrowFlags(SILValue forEndBorrowValue) {
ValueWorklist worklist(forEndBorrowValue);
while (SILValue v = worklist.pop()) {
if (auto *bfi = dyn_cast<BorrowedFromInst>(v)) {
v = bfi->getBorrowedValue();
}
if (auto *arg = dyn_cast<SILPhiArgument>(v)) {
if (arg->isPhi() && !arg->isReborrow()) {
arg->setReborrow(true);
for (auto *predBlock : arg->getParent()->getPredecessorBlocks()) {
worklist.pushIfNotVisited(arg->getIncomingPhiValue(predBlock));
}
}
}
}
}