mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The problem with `is_escaping_closure` was that it didn't consume its operand and therefore reference count checks were unreliable. For example, copy-propagation could break it. As this instruction was always used together with an immediately following `destroy_value` of the closure, it makes sense to combine both into a `destroy_not_escaped_closure`. It 1. checks the reference count and returns true if it is 1 2. consumes and destroys the operand
1048 lines
37 KiB
C++
1048 lines
37 KiB
C++
//===--- ARCAnalysis.cpp - SIL ARC Analysis -------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-arc-analysis"
|
|
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
using BasicBlockRetainValue = std::pair<SILBasicBlock *, SILValue>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool swift::isRetainInstruction(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
case SILInstructionKind::Name##RetainInst:
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
case SILInstructionKind::StrongRetainInst:
|
|
case SILInstructionKind::RetainValueInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool swift::isReleaseInstruction(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
case SILInstructionKind::Name##ReleaseInst:
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
case SILInstructionKind::StrongReleaseInst:
|
|
case SILInstructionKind::ReleaseValueInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Decrement Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool swift::mayDecrementRefCount(SILInstruction *User,
|
|
SILValue Ptr, AliasAnalysis *AA) {
|
|
// First do a basic check, mainly based on the type of instruction.
|
|
// Reading the RC is as "bad" as releasing.
|
|
if (!User->mayReleaseOrReadRefCount())
|
|
return false;
|
|
|
|
// Ok, this instruction may have ref counts. If it is an apply, attempt to
|
|
// prove that the callee is unable to affect Ptr.
|
|
if (auto *AI = dyn_cast<ApplyInst>(User))
|
|
return AA->canApplyDecrementRefCount(AI, Ptr);
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(User))
|
|
return AA->canApplyDecrementRefCount(TAI, Ptr);
|
|
if (auto *BI = dyn_cast<BuiltinInst>(User))
|
|
return AA->canBuiltinDecrementRefCount(BI, Ptr);
|
|
|
|
// We cannot conservatively prove that this instruction cannot decrement the
|
|
// ref count of Ptr. So assume that it does.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if a builtin apply can use reference counted values.
|
|
///
|
|
/// The main case that this handles here are builtins that via read none imply
|
|
/// that they cannot read globals and at the same time do not take any
|
|
/// non-trivial types via the arguments. The reason why we care about taking
|
|
/// non-trivial types as arguments is that we want to be careful in the face of
|
|
/// intrinsics that may be equivalent to bitcast and inttoptr operations.
|
|
static bool canApplyOfBuiltinUseNonTrivialValues(BuiltinInst *BInst) {
|
|
auto *F = BInst->getFunction();
|
|
|
|
auto &II = BInst->getIntrinsicInfo();
|
|
if (II.ID != llvm::Intrinsic::not_intrinsic) {
|
|
auto attrs = II.getOrCreateAttributes(F->getASTContext());
|
|
if (attrs.getMemoryEffects().doesNotAccessMemory()) {
|
|
for (auto &Op : BInst->getAllOperands()) {
|
|
if (!Op.get()->getType().isTrivial(*F)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
auto &BI = BInst->getBuiltinInfo();
|
|
if (!BI.isReadNone())
|
|
return true;
|
|
|
|
for (auto &Op : BInst->getAllOperands()) {
|
|
if (!Op.get()->getType().isTrivial(*F)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if \p Inst may access any indirect object either via an address
|
|
/// or reference.
|
|
///
|
|
/// If these instructions do have an address or reference type operand, then
|
|
/// they only operate on the value of the address itself, not the
|
|
/// memory. i.e. they don't dereference the address.
|
|
bool swift::canUseObject(SILInstruction *Inst) {
|
|
switch (Inst->getKind()) {
|
|
// These instructions do not use other values.
|
|
case SILInstructionKind::FunctionRefInst:
|
|
case SILInstructionKind::DynamicFunctionRefInst:
|
|
case SILInstructionKind::PreviousDynamicFunctionRefInst:
|
|
case SILInstructionKind::IntegerLiteralInst:
|
|
case SILInstructionKind::FloatLiteralInst:
|
|
case SILInstructionKind::StringLiteralInst:
|
|
case SILInstructionKind::AllocStackInst:
|
|
case SILInstructionKind::AllocRefInst:
|
|
case SILInstructionKind::AllocRefDynamicInst:
|
|
case SILInstructionKind::AllocBoxInst:
|
|
case SILInstructionKind::MetatypeInst:
|
|
case SILInstructionKind::WitnessMethodInst:
|
|
return false;
|
|
|
|
// DeallocStackInst do not use reference counted values.
|
|
case SILInstructionKind::DeallocStackInst:
|
|
return false;
|
|
|
|
// Debug values do not use referenced counted values in a manner we care
|
|
// about.
|
|
case SILInstructionKind::DebugValueInst:
|
|
return false;
|
|
|
|
// Casts do not use pointers in a manner that we care about since we strip
|
|
// them during our analysis. The reason for this is if the cast is not dead
|
|
// then there must be some other use after the cast that we will protect if a
|
|
// release is not in between the cast and the use.
|
|
//
|
|
// Note: UncheckedRefCastAddrInst moves a reference into a new object. While
|
|
// the net reference count should be zero, there's no guarantee it won't
|
|
// access the object.
|
|
case SILInstructionKind::UpcastInst:
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
case SILInstructionKind::PointerToAddressInst:
|
|
case SILInstructionKind::UncheckedRefCastInst:
|
|
case SILInstructionKind::UncheckedAddrCastInst:
|
|
case SILInstructionKind::RefToRawPointerInst:
|
|
case SILInstructionKind::RawPointerToRefInst:
|
|
case SILInstructionKind::UncheckedBitwiseCastInst:
|
|
case SILInstructionKind::EndInitLetRefInst:
|
|
case SILInstructionKind::BeginDeallocRefInst:
|
|
return false;
|
|
|
|
// If we have a trivial bit cast between trivial types, it is not something
|
|
// that can use ref count ops in a way we care about. We do need to be careful
|
|
// with uses with ref count inputs. In such a case, we assume conservatively
|
|
// that the bit cast could use it.
|
|
//
|
|
// The reason why this is different from the ref bitcast is b/c the use of a
|
|
// ref bit cast is still a ref typed value implying that our ARC dataflow will
|
|
// properly handle its users. A conversion of a reference count value to a
|
|
// trivial value though could be used as a trivial value in ways that ARC
|
|
// dataflow will not understand implying we need to treat it as a use to be
|
|
// safe.
|
|
case SILInstructionKind::UncheckedTrivialBitCastInst: {
|
|
SILValue Op = cast<UncheckedTrivialBitCastInst>(Inst)->getOperand();
|
|
return !Op->getType().isTrivial(*Inst->getFunction());
|
|
}
|
|
|
|
// Typed GEPs do not use pointers. The user of the typed GEP may but we will
|
|
// catch that via the dataflow.
|
|
case SILInstructionKind::StructExtractInst:
|
|
case SILInstructionKind::TupleExtractInst:
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst:
|
|
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
|
|
case SILInstructionKind::RefElementAddrInst:
|
|
case SILInstructionKind::RefTailAddrInst:
|
|
case SILInstructionKind::UncheckedEnumDataInst:
|
|
case SILInstructionKind::IndexAddrInst:
|
|
case SILInstructionKind::IndexRawPointerInst:
|
|
return false;
|
|
|
|
// Aggregate formation by themselves do not create new uses since it is their
|
|
// users that would create the appropriate uses.
|
|
case SILInstructionKind::EnumInst:
|
|
case SILInstructionKind::StructInst:
|
|
case SILInstructionKind::TupleInst:
|
|
return false;
|
|
|
|
// Only uses non reference counted values.
|
|
case SILInstructionKind::CondFailInst:
|
|
return false;
|
|
|
|
case SILInstructionKind::BuiltinInst: {
|
|
auto *BI = cast<BuiltinInst>(Inst);
|
|
|
|
// Certain builtin function refs we know can never use non-trivial values.
|
|
return canApplyOfBuiltinUseNonTrivialValues(BI);
|
|
}
|
|
// We do not care about branch inst, since if the branch inst's argument is
|
|
// dead, LLVM will clean it up.
|
|
case SILInstructionKind::BranchInst:
|
|
case SILInstructionKind::CondBranchInst:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool doOperandsAlias(ArrayRef<Operand> Ops, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// If any are not no alias, we have a use.
|
|
return std::any_of(Ops.begin(), Ops.end(),
|
|
[&AA, &Ptr](const Operand &Op) -> bool {
|
|
return AA->mayAlias(Ptr, Op.get());
|
|
});
|
|
}
|
|
|
|
static bool canTerminatorUseValue(TermInst *TI, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
if (auto *BI = dyn_cast<BranchInst>(TI)) {
|
|
return doOperandsAlias(BI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
if (auto *CBI = dyn_cast<CondBranchInst>(TI)) {
|
|
bool First = doOperandsAlias(CBI->getTrueOperands(), Ptr, AA);
|
|
bool Second = doOperandsAlias(CBI->getFalseOperands(), Ptr, AA);
|
|
return First || Second;
|
|
}
|
|
|
|
if (auto *SWEI = dyn_cast<SwitchEnumInst>(TI)) {
|
|
return doOperandsAlias(SWEI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
if (auto *SWVI = dyn_cast<SwitchValueInst>(TI)) {
|
|
return doOperandsAlias(SWVI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
auto *CCBI = dyn_cast<CheckedCastBranchInst>(TI);
|
|
// If we don't have this last case, be conservative and assume that we can use
|
|
// the value.
|
|
if (!CCBI)
|
|
return true;
|
|
|
|
// Otherwise, look at the operands.
|
|
return doOperandsAlias(CCBI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
|
|
bool swift::mayHaveSymmetricInterference(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) {
|
|
// If Inst is an instruction that we know can never use values with reference
|
|
// semantics, return true. Check this before AliasAnalysis because some memory
|
|
// operations, like dealloc_stack, don't use ref counted values.
|
|
if (!canUseObject(User))
|
|
return false;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(User)) {
|
|
return AA->isAddrVisibleFromObject(LI->getOperand(), Ptr);
|
|
}
|
|
if (auto *SI = dyn_cast<StoreInst>(User)) {
|
|
return AA->isAddrVisibleFromObject(SI->getDest(), Ptr);
|
|
}
|
|
if (User->mayReadOrWriteMemory())
|
|
return true;
|
|
|
|
// If we have a terminator instruction, see if it can use ptr. This currently
|
|
// means that we first show that TI cannot indirectly use Ptr and then use
|
|
// alias analysis on the arguments.
|
|
if (auto *TI = dyn_cast<TermInst>(User))
|
|
return canTerminatorUseValue(TI, Ptr, AA);
|
|
|
|
// TODO: If we add in alias analysis support here for apply inst, we will need
|
|
// to check that the pointer does not escape.
|
|
|
|
// Otherwise, assume that Inst can use Target.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Must Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if User must use Ptr.
|
|
///
|
|
/// In terms of ARC this means that if we do not remove User, all releases post
|
|
/// dominated by User are known safe.
|
|
bool swift::mustUseValue(SILInstruction *User, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// Right now just pattern match applies.
|
|
auto *AI = dyn_cast<ApplyInst>(User);
|
|
if (!AI)
|
|
return false;
|
|
|
|
// If any of AI's arguments must alias Ptr, return true.
|
|
for (SILValue Arg : AI->getArguments())
|
|
if (Arg == Ptr)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if User must use Ptr in a guaranteed way.
|
|
///
|
|
/// This means that assuming that everything is conservative, we can ignore the
|
|
/// ref count effects of User on Ptr since we will only remove things over
|
|
/// guaranteed parameters if we are known safe in both directions.
|
|
bool swift::mustGuaranteedUseValue(SILInstruction *User, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// Right now just pattern match applies.
|
|
auto *AI = dyn_cast<ApplyInst>(User);
|
|
if (!AI)
|
|
return false;
|
|
|
|
// For now just look for guaranteed self.
|
|
//
|
|
// TODO: Expand this to handle *any* guaranteed parameter.
|
|
if (!AI->hasGuaranteedSelfArgument())
|
|
return false;
|
|
|
|
// Return true if Ptr alias's self.
|
|
return AI->getSelfArgument() == Ptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Methods for determining use, decrement of values in a contiguous
|
|
// instruction range in one BB.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// If \p Op has arc uses in the instruction range [Start, End), return the
|
|
/// first such instruction. Otherwise return None. We assume that
|
|
/// Start and End are both in the same basic block.
|
|
std::optional<SILBasicBlock::iterator> swift::valueHasARCUsesInInstructionRange(
|
|
SILValue Op, SILBasicBlock::iterator Start, SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
|
|
// If Start == End, then we have an empty range, return false.
|
|
if (Start == End)
|
|
return std::nullopt;
|
|
|
|
// Otherwise, until Start != End.
|
|
while (Start != End) {
|
|
// Check if Start can use Op in an ARC relevant way. If so, return true.
|
|
if (mayHaveSymmetricInterference(&*Start, Op, AA))
|
|
return Start;
|
|
|
|
// Otherwise, increment our iterator.
|
|
++Start;
|
|
}
|
|
|
|
// If all such instructions cannot use Op, return false.
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// If \p Op has arc uses in the instruction range (Start, End], return the
|
|
/// first such instruction. Otherwise return None. We assume that Start and End
|
|
/// are both in the same basic block.
|
|
std::optional<SILBasicBlock::iterator>
|
|
swift::valueHasARCUsesInReverseInstructionRange(SILValue Op,
|
|
SILBasicBlock::iterator Start,
|
|
SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
assert(End != End->getParent()->end() &&
|
|
"End should be mapped to an actual instruction");
|
|
|
|
// If Start == End, then we have an empty range, return false.
|
|
if (Start == End)
|
|
return std::nullopt;
|
|
|
|
// Otherwise, until End == Start.
|
|
while (Start != End) {
|
|
// Check if Start can use Op in an ARC relevant way. If so, return true.
|
|
if (mayHaveSymmetricInterference(&*End, Op, AA))
|
|
return End;
|
|
|
|
// Otherwise, decrement our iterator.
|
|
--End;
|
|
}
|
|
|
|
// If all such instructions cannot use Op, return false.
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// If \p Op has instructions in the instruction range (Start, End] which may
|
|
/// decrement it, return the first such instruction. Returns None
|
|
/// if no such instruction exists. We assume that Start and End are both in the
|
|
/// same basic block.
|
|
std::optional<SILBasicBlock::iterator>
|
|
swift::valueHasARCDecrementOrCheckInInstructionRange(
|
|
SILValue Op, SILBasicBlock::iterator Start, SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
|
|
// If Start == End, then we have an empty range, return nothing.
|
|
if (Start == End)
|
|
return std::nullopt;
|
|
|
|
// Otherwise, until Start != End.
|
|
while (Start != End) {
|
|
// Check if Start can decrement or check Op's ref count. If so, return
|
|
// Start. Ref count checks do not have side effects, but are barriers for
|
|
// retains.
|
|
if (mayDecrementRefCount(&*Start, Op, AA) || mayCheckRefCount(&*Start))
|
|
return Start;
|
|
// Otherwise, increment our iterator.
|
|
++Start;
|
|
}
|
|
|
|
// If all such instructions cannot decrement Op, return nothing.
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool
|
|
swift::
|
|
mayGuaranteedUseValue(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) {
|
|
// Instructions that check the ref count are modeled as both a potential
|
|
// decrement and a use.
|
|
if (mayCheckRefCount(User)) {
|
|
switch (User->getKind()) {
|
|
case SILInstructionKind::IsUniqueInst:
|
|
// This instruction takes the address of its referent, so there's no way
|
|
// for the optimizer to reuse the reference across it (it appears to
|
|
// mutate the reference itself). In fact it's operand's RC root would be
|
|
// the parent object. This means we can ignore it as a direct RC user.
|
|
return false;
|
|
case SILInstructionKind::DestroyNotEscapedClosureInst:
|
|
// FIXME: this is overly conservative. It should return true only of the
|
|
// RC identity of the single operand matches Ptr.
|
|
return true;
|
|
case SILInstructionKind::BeginCOWMutationInst:
|
|
// begin_cow_mutation takes the argument as owned and produces a new
|
|
// owned result.
|
|
return false;
|
|
default:
|
|
llvm_unreachable("Unexpected check-ref-count instruction.");
|
|
}
|
|
}
|
|
|
|
// Only full apply sites can require a guaranteed lifetime. If we don't have
|
|
// one, bail.
|
|
if (!isa<FullApplySite>(User))
|
|
return false;
|
|
|
|
FullApplySite FAS(User);
|
|
|
|
// Ok, we have a full apply site. Check if the callee is callee_guaranteed. In
|
|
// such a case, if we can not prove no alias, we need to be conservative and
|
|
// return true.
|
|
CanSILFunctionType FType = FAS.getSubstCalleeType();
|
|
if (FType->isCalleeGuaranteed() && AA->mayAlias(FAS.getCallee(), Ptr)) {
|
|
return true;
|
|
}
|
|
|
|
// Ok, we have a full apply site and our callee is a normal use. Thus if the
|
|
// apply does not have any normal arguments, we don't need to worry about any
|
|
// guaranteed parameters and return early.
|
|
if (!FAS.getNumArguments())
|
|
return false;
|
|
|
|
// Ok, we have an apply site with arguments. Look at the function type and
|
|
// iterate through the function parameters. If any of the parameters are
|
|
// guaranteed, attempt to prove that the passed in parameter cannot alias
|
|
// Ptr. If we fail, return true.
|
|
auto Params = FType->getParameters();
|
|
for (unsigned i : indices(Params)) {
|
|
if (!Params[i].isGuaranteedInCaller())
|
|
continue;
|
|
SILValue Op = FAS.getArgumentsWithoutIndirectResults()[i];
|
|
if (AA->mayAlias(Op, Ptr))
|
|
return true;
|
|
}
|
|
|
|
// Ok, we were able to prove that all arguments to the apply that were
|
|
// guaranteed do not alias Ptr. Return false.
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Owned Result Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
ConsumedResultToEpilogueRetainMatcher(RCIdentityFunctionInfo *RCFI,
|
|
AliasAnalysis *AA,
|
|
SILFunction *F)
|
|
: F(F), RCFI(RCFI), AA(AA) {
|
|
recompute();
|
|
}
|
|
|
|
void ConsumedResultToEpilogueRetainMatcher::recompute() {
|
|
EpilogueRetainInsts.clear();
|
|
|
|
// Find the return BB of F. If we fail, then bail.
|
|
SILFunction::iterator BB = F->findReturnBB();
|
|
if (BB == F->end())
|
|
return;
|
|
findMatchingRetains(&*BB);
|
|
}
|
|
|
|
bool ConsumedResultToEpilogueRetainMatcher::isTransitiveSuccessorsRetainFree(
|
|
const llvm::DenseSet<SILBasicBlock *> &BBs) {
|
|
// For every block with retain, we need to check the transitive
|
|
// closure of its successors are retain-free.
|
|
for (auto &I : EpilogueRetainInsts) {
|
|
for (auto &Succ : I->getParent()->getSuccessors()) {
|
|
if (BBs.count(Succ))
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// FIXME: We are iterating over a DenseSet. That can lead to non-determinism
|
|
// and is in general pretty inefficient since we are iterating over a hash
|
|
// table.
|
|
for (auto CBB : BBs) {
|
|
for (auto &Succ : CBB->getSuccessors()) {
|
|
if (BBs.count(Succ))
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ConsumedResultToEpilogueRetainMatcher::RetainKindValue
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
findMatchingRetainsInBasicBlock(SILBasicBlock *BB, SILValue V) {
|
|
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
// Handle self-recursion.
|
|
if (auto *AI = dyn_cast<ApplyInst>(&*II))
|
|
if (AI->getCalleeFunction() == BB->getParent())
|
|
return std::make_pair(FindRetainKind::Recursion, AI);
|
|
|
|
// If we do not have a retain_value or strong_retain...
|
|
if (!isa<RetainValueInst>(*II) && !isa<StrongRetainInst>(*II)) {
|
|
// we can ignore it if it can not decrement the reference count of the
|
|
// return value.
|
|
if (!mayDecrementRefCount(&*II, V, AA))
|
|
continue;
|
|
|
|
// Otherwise, we need to stop computing since we do not want to create
|
|
// lifetime gap.
|
|
return std::make_pair(FindRetainKind::Blocked, nullptr);
|
|
}
|
|
|
|
// Ok, we have a retain_value or strong_retain. Grab Target and find the
|
|
// RC identity root of its operand.
|
|
SILInstruction *Target = &*II;
|
|
SILValue RetainValue = RCFI->getRCIdentityRoot(Target->getOperand(0));
|
|
SILValue ReturnValue = RCFI->getRCIdentityRoot(V);
|
|
|
|
// Is this the epilogue retain we are looking for ?.
|
|
// We break here as we do not know whether this is a part of the epilogue
|
|
// retain for the @own return value.
|
|
if (RetainValue != ReturnValue)
|
|
break;
|
|
|
|
return std::make_pair(FindRetainKind::Found, &*II);
|
|
}
|
|
|
|
// Did not find retain in this block.
|
|
return std::make_pair(FindRetainKind::None, nullptr);
|
|
}
|
|
|
|
void
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
findMatchingRetains(SILBasicBlock *BB) {
|
|
// Iterate over the instructions post-order and find retains associated with
|
|
// return value.
|
|
SILValue RV = SILValue();
|
|
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
if (auto *RI = dyn_cast<ReturnInst>(&*II)) {
|
|
RV = RI->getOperand();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Somehow, we managed not to find a return value.
|
|
if (!RV)
|
|
return;
|
|
|
|
// OK. we've found the return value, now iterate on the CFG to find all the
|
|
// post-dominating retains.
|
|
//
|
|
// The ConsumedResultToEpilogueRetainMatcher finds the final releases
|
|
// in the following way.
|
|
//
|
|
// 1. If an instruction, which is not releaseinst nor releasevalue, that
|
|
// could decrement reference count is found. bail out.
|
|
//
|
|
// 2. If a release is found and the release that can not be mapped to any
|
|
// @owned argument. bail as this release may well be the final release of
|
|
// an @owned argument, but somehow rc-identity fails to prove that.
|
|
//
|
|
// 3. A release that is mapped to an argument which already has a release
|
|
// that overlaps with this release. This release for sure is not the final
|
|
// release.
|
|
constexpr unsigned WorkListMaxSize = 4;
|
|
|
|
llvm::DenseSet<SILBasicBlock *> RetainFrees;
|
|
llvm::SmallVector<BasicBlockRetainValue, 4> WorkList;
|
|
llvm::DenseSet<SILBasicBlock *> HandledBBs;
|
|
WorkList.push_back(std::make_pair(BB, RV));
|
|
HandledBBs.insert(BB);
|
|
while (!WorkList.empty()) {
|
|
// Too many blocks ?.
|
|
if (WorkList.size() > WorkListMaxSize) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// Try to find a retain %value in this basic block.
|
|
auto R = WorkList.pop_back_val();
|
|
RetainKindValue Kind = findMatchingRetainsInBasicBlock(R.first, R.second);
|
|
|
|
// We've found a retain on this path.
|
|
if (Kind.first == FindRetainKind::Found) {
|
|
EpilogueRetainInsts.push_back(Kind.second);
|
|
continue;
|
|
}
|
|
|
|
// There is a MayDecrement instruction.
|
|
if (Kind.first == FindRetainKind::Blocked) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// There is a self-recursion. Use the apply instruction as the retain.
|
|
if (Kind.first == FindRetainKind::Recursion) {
|
|
EpilogueRetainInsts.push_back(Kind.second);
|
|
continue;
|
|
}
|
|
|
|
// Did not find a retain in this block, try to go to its predecessors.
|
|
if (Kind.first == FindRetainKind::None) {
|
|
// We can not find a retain in a block with no predecessors.
|
|
if (R.first->getPredecessorBlocks().begin() ==
|
|
R.first->getPredecessorBlocks().end()) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// This block does not have a retain.
|
|
RetainFrees.insert(R.first);
|
|
|
|
// If this is a SILArgument of current basic block, we can split it up to
|
|
// values in the predecessors.
|
|
auto *SA = dyn_cast<SILPhiArgument>(R.second);
|
|
if (SA && SA->getParent() != R.first)
|
|
SA = nullptr;
|
|
|
|
for (auto X : R.first->getPredecessorBlocks()) {
|
|
if (HandledBBs.contains(X))
|
|
continue;
|
|
// Try to use the predecessor edge-value.
|
|
if (SA && SA->getIncomingPhiValue(X)) {
|
|
WorkList.push_back(std::make_pair(X, SA->getIncomingPhiValue(X)));
|
|
} else
|
|
WorkList.push_back(std::make_pair(X, R.second));
|
|
|
|
HandledBBs.insert(X);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Lastly, check whether all the successor blocks are retain-free.
|
|
if (!isTransitiveSuccessorsRetainFree(RetainFrees))
|
|
EpilogueRetainInsts.clear();
|
|
|
|
// At this point, we've either failed to find any epilogue retains or
|
|
// all the post-dominating epilogue retains.
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Owned Argument Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConsumedArgToEpilogueReleaseMatcher::ConsumedArgToEpilogueReleaseMatcher(
|
|
RCIdentityFunctionInfo *RCFI,
|
|
SILFunction *F,
|
|
ArrayRef<SILArgumentConvention> ArgumentConventions,
|
|
ExitKind Kind)
|
|
: F(F), RCFI(RCFI), Kind(Kind), ArgumentConventions(ArgumentConventions),
|
|
ProcessedBlock(nullptr) {
|
|
recompute();
|
|
}
|
|
|
|
void ConsumedArgToEpilogueReleaseMatcher::recompute() {
|
|
ArgInstMap.clear();
|
|
|
|
// Find the return BB of F. If we fail, then bail.
|
|
SILFunction::iterator BB;
|
|
switch (Kind) {
|
|
case ExitKind::Return:
|
|
BB = F->findReturnBB();
|
|
break;
|
|
case ExitKind::Throw:
|
|
BB = F->findThrowBB();
|
|
break;
|
|
}
|
|
|
|
if (BB == F->end()) {
|
|
ProcessedBlock = nullptr;
|
|
return;
|
|
}
|
|
ProcessedBlock = &*BB;
|
|
findMatchingReleases(&*BB);
|
|
}
|
|
|
|
bool ConsumedArgToEpilogueReleaseMatcher::isRedundantRelease(
|
|
ArrayRef<SILInstruction *> Insts, SILValue Base, SILValue Derived) {
|
|
// We use projection path to analyze the relation.
|
|
auto POp = ProjectionPath::getProjectionPath(Base, Derived);
|
|
// We can not build a projection path from the base to the derived, bail out.
|
|
// and return true so that we can stop the epilogue walking sequence.
|
|
if (!POp.has_value())
|
|
return true;
|
|
|
|
for (auto &R : Insts) {
|
|
SILValue ROp = R->getOperand(0);
|
|
auto PROp = ProjectionPath::getProjectionPath(Base, ROp);
|
|
if (!PROp.has_value())
|
|
return true;
|
|
// If Op is a part of ROp or Rop is a part of Op. then we have seen
|
|
// a redundant release.
|
|
if (!PROp.value().hasNonEmptySymmetricDifference(POp.value()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ConsumedArgToEpilogueReleaseMatcher::releaseArgument(
|
|
ArrayRef<SILInstruction *> Insts, SILValue Arg) {
|
|
// Reason about whether all parts are released.
|
|
auto *F = (*Insts.begin())->getFunction();
|
|
|
|
// These are the list of SILValues that are actually released.
|
|
ProjectionPathSet Paths;
|
|
for (auto &I : Insts) {
|
|
auto PP = ProjectionPath::getProjectionPath(Arg, I->getOperand(0));
|
|
if (!PP)
|
|
return false;
|
|
Paths.insert(PP.value());
|
|
}
|
|
|
|
// Is there an uncovered non-trivial type.
|
|
return !ProjectionPath::hasUncoveredNonTrivials(Arg->getType(), *F, Paths);
|
|
}
|
|
|
|
void
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
processMatchingReleases() {
|
|
// If we can not find a release for all parts with reference semantics
|
|
// that means we did not find all releases for the base.
|
|
for (auto &pair : ArgInstMap) {
|
|
// We do not know if we have a fully post dominating release set
|
|
// so all release sets should be considered partially post
|
|
// dominated.
|
|
auto releaseSet = pair.second.getPartiallyPostDomReleases();
|
|
if (!releaseSet)
|
|
continue;
|
|
|
|
// If an argument has a single release and it is rc-identical to the
|
|
// SILArgument. Then we do not need to use projection to check for whether
|
|
// all non-trivial fields are covered.
|
|
if (releaseSet->size() == 1) {
|
|
SILInstruction *inst = *releaseSet->begin();
|
|
SILValue rv = inst->getOperand(0);
|
|
if (pair.first == RCFI->getRCIdentityRoot(rv)) {
|
|
pair.second.setHasJointPostDominatingReleaseSet();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// OK. we have multiple epilogue releases for this argument, check whether
|
|
// it has covered all fields with reference semantic in the argument.
|
|
if (!releaseArgument(*releaseSet, pair.first))
|
|
continue;
|
|
|
|
// OK. At this point we know that we found a joint post dominating
|
|
// set of releases. Mark our argument as such.
|
|
pair.second.setHasJointPostDominatingReleaseSet();
|
|
}
|
|
}
|
|
|
|
/// Check if a given argument convention is in the list
|
|
/// of possible argument conventions.
|
|
static bool
|
|
isOneOfConventions(SILArgumentConvention Convention,
|
|
ArrayRef<SILArgumentConvention> ArgumentConventions) {
|
|
for (auto ArgumentConvention : ArgumentConventions) {
|
|
if (Convention == ArgumentConvention)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ConsumedArgToEpilogueReleaseMatcher::collectMatchingDestroyAddresses(
|
|
SILBasicBlock *block) {
|
|
// Check if we can find destroy_addr for each @in argument.
|
|
SILFunction::iterator anotherEpilogueBB =
|
|
(Kind == ExitKind::Return) ? F->findThrowBB() : F->findReturnBB();
|
|
|
|
for (auto *arg : F->begin()->getSILFunctionArguments()) {
|
|
if (arg->isIndirectResult())
|
|
continue;
|
|
if (arg->getArgumentConvention() != SILArgumentConvention::Indirect_In)
|
|
continue;
|
|
bool hasDestroyAddrOutsideEpilogueBB = false;
|
|
// This is an @in argument. Check if there are any destroy_addr
|
|
// instructions for it.
|
|
for (Operand *op : getNonDebugUses(arg)) {
|
|
auto *user = op->getUser();
|
|
if (!isa<DestroyAddrInst>(user))
|
|
continue;
|
|
// Do not take into account any uses in the other
|
|
// epilogue BB.
|
|
if (anotherEpilogueBB != F->end() &&
|
|
user->getParent() == &*anotherEpilogueBB)
|
|
continue;
|
|
if (user->getParent() != block)
|
|
hasDestroyAddrOutsideEpilogueBB = true;
|
|
|
|
// Since ArgumentState uses a TinyPtrVector, creating
|
|
// temporaries containing one element is cheap.
|
|
auto iter = ArgInstMap.insert({arg, ArgumentState(user)});
|
|
// We inserted the value.
|
|
if (iter.second)
|
|
continue;
|
|
// Otherwise, add this release to the set.
|
|
iter.first->second.addRelease(user);
|
|
}
|
|
|
|
// Don't know how to handle destroy_addr outside of the epilogue.
|
|
if (hasDestroyAddrOutsideEpilogueBB)
|
|
ArgInstMap.erase(arg);
|
|
}
|
|
}
|
|
|
|
void ConsumedArgToEpilogueReleaseMatcher::collectMatchingReleases(
|
|
SILBasicBlock *block) {
|
|
// Iterate over the instructions post-order and find final releases
|
|
// associated with each arguments.
|
|
//
|
|
// The ConsumedArgToEpilogueReleaseMatcher finds the final releases
|
|
// in the following way.
|
|
//
|
|
// 1. If an instruction, which is not releaseinst nor releasevalue, that
|
|
// could decrement reference count is found. bail out.
|
|
//
|
|
// 2. If a release is found and the release that can not be mapped to any
|
|
// @owned argument. bail as this release may well be the final release of
|
|
// an @owned argument, but somehow rc-identity fails to prove that.
|
|
//
|
|
// 3. A release that is mapped to an argument which already has a release
|
|
// that overlaps with this release. This release for sure is not the final
|
|
// release.
|
|
bool isTrackingInArgs = isOneOfConventions(SILArgumentConvention::Indirect_In,
|
|
ArgumentConventions);
|
|
for (auto &inst : llvm::reverse(*block)) {
|
|
if (isTrackingInArgs && isa<DestroyAddrInst>(inst)) {
|
|
// It is probably a destroy addr for an @in argument.
|
|
continue;
|
|
}
|
|
// If we do not have a release_value or strong_release. We can continue
|
|
if (!isa<ReleaseValueInst>(inst) && !isa<StrongReleaseInst>(inst)) {
|
|
// We cannot match a final release if it is followed by a dealloc_ref.
|
|
if (isa<DeallocRefInst>(inst) || isa<DeallocPartialRefInst>(inst))
|
|
break;
|
|
|
|
// We do not know what this instruction is, do a simple check to make sure
|
|
// that it does not decrement the reference count of any of its operand.
|
|
//
|
|
// TODO: we could make the logic here more complicated to handle each type
|
|
// of instructions in a more precise manner.
|
|
if (!inst.mayRelease())
|
|
continue;
|
|
// This instruction may release something, bail out conservatively.
|
|
break;
|
|
}
|
|
|
|
// Ok, we have a release_value or strong_release. Grab Target and find the
|
|
// RC identity root of its operand.
|
|
SILValue origOp = inst.getOperand(0);
|
|
SILValue op = RCFI->getRCIdentityRoot(origOp);
|
|
|
|
// Check whether this is a SILArgument or a part of a SILArgument. This is
|
|
// possible after we expand release instructions in SILLowerAgg pass.
|
|
auto *arg = dyn_cast<SILFunctionArgument>(stripValueProjections(op));
|
|
if (!arg)
|
|
break;
|
|
|
|
// If Op is not a consumed argument, we must break since this is not an Op
|
|
// that is a part of a return sequence. We are being conservative here since
|
|
// we could make this more general by allowing for intervening non-arg
|
|
// releases in the sense that we do not allow for race conditions in between
|
|
// destructors.
|
|
if (!isOneOfConventions(arg->getArgumentConvention(), ArgumentConventions))
|
|
break;
|
|
|
|
// Ok, we have a release on a SILArgument that has a consuming convention.
|
|
// Attempt to put it into our arc opts map. If we already have it, we have
|
|
// exited the return value sequence so break. Otherwise, continue looking
|
|
// for more arc operations.
|
|
auto iter = ArgInstMap.find(arg);
|
|
if (iter == ArgInstMap.end()) {
|
|
ArgInstMap.insert({arg, {&inst}});
|
|
continue;
|
|
}
|
|
|
|
// We've already seen at least part of this base. Check to see whether we
|
|
// are seeing a redundant release.
|
|
//
|
|
// If we are seeing a redundant release we have exited the return value
|
|
// sequence, so break.
|
|
if (!isa<DestroyAddrInst>(inst)) {
|
|
// We do not know if we have a fully post dominating release
|
|
// set, so we use the partial post dom entry point.
|
|
if (auto partialReleases = iter->second.getPartiallyPostDomReleases()) {
|
|
if (isRedundantRelease(*partialReleases, arg, origOp)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've seen part of this base, but this is a part we've have not seen.
|
|
// Record it.
|
|
iter->second.addRelease(&inst);
|
|
}
|
|
|
|
if (isTrackingInArgs) {
|
|
// Find destroy_addr for each @in argument.
|
|
collectMatchingDestroyAddresses(block);
|
|
}
|
|
}
|
|
|
|
void
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
findMatchingReleases(SILBasicBlock *BB) {
|
|
// Walk the given basic block to find all the epilogue releases.
|
|
collectMatchingReleases(BB);
|
|
// We've exited the epilogue sequence, try to find out which parameter we
|
|
// have all the epilogue releases for and which one we did not.
|
|
processMatchingReleases();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Leaking BB Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool ignorableApplyInstInUnreachableBlock(const ApplyInst *AI) {
|
|
auto applySite = FullApplySite(const_cast<ApplyInst *>(AI));
|
|
return applySite.isCalleeKnownProgramTerminationPoint();
|
|
}
|
|
|
|
static bool ignorableBuiltinInstInUnreachableBlock(const BuiltinInst *BI) {
|
|
const BuiltinInfo &BInfo = BI->getBuiltinInfo();
|
|
if (BInfo.ID == BuiltinValueKind::CondUnreachable)
|
|
return true;
|
|
|
|
const IntrinsicInfo &IInfo = BI->getIntrinsicInfo();
|
|
if (IInfo.ID == llvm::Intrinsic::trap)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Match a call to a trap BB with no ARC relevant side effects.
|
|
bool swift::isARCInertTrapBB(const SILBasicBlock *BB) {
|
|
// Do a quick check at the beginning to make sure that our terminator is
|
|
// actually an unreachable. This ensures that in many cases this function will
|
|
// exit early and quickly.
|
|
auto II = BB->rbegin();
|
|
if (!isa<UnreachableInst>(*II))
|
|
return false;
|
|
|
|
auto IE = BB->rend();
|
|
while (II != IE) {
|
|
// Ignore any instructions without side effects.
|
|
if (!II->mayHaveSideEffects()) {
|
|
++II;
|
|
continue;
|
|
}
|
|
|
|
// Ignore cond fail.
|
|
if (isa<CondFailInst>(*II)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
|
|
// Check for apply insts that we can ignore.
|
|
if (auto *AI = dyn_cast<ApplyInst>(&*II)) {
|
|
if (ignorableApplyInstInUnreachableBlock(AI)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check for builtins that we can ignore.
|
|
if (auto *BI = dyn_cast<BuiltinInst>(&*II)) {
|
|
if (ignorableBuiltinInstInUnreachableBlock(BI)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we can't ignore the instruction, return false.
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we have an unreachable and every instruction is inert from an
|
|
// ARC perspective in an unreachable BB.
|
|
return true;
|
|
}
|