mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Implements SE-0460 -- the non-underscored version of @specialized. It allows to specify "internal" (not abi affecting) specializations. rdar://150033316
203 lines
7.4 KiB
C++
203 lines
7.4 KiB
C++
//===--- GenericSpecializer.cpp - Specialization of generic functions -----===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Specialize calls to generic functions by substituting static type
|
|
// information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-generic-specializer"
|
|
|
|
#include "swift/AST/AvailabilityInference.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SIL/OptimizationRemark.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/ConstantFolding.h"
|
|
#include "swift/SILOptimizer/Utils/Devirtualize.h"
|
|
#include "swift/SILOptimizer/Utils/Generics.h"
|
|
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
|
|
#include "swift/SILOptimizer/Utils/SILInliner.h"
|
|
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
|
|
#include "swift/SILOptimizer/Utils/StackNesting.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
using namespace swift;
|
|
|
|
namespace {
|
|
static void transferSpecializeAttributeTargets(SILModule &M,
|
|
SILOptFunctionBuilder &builder,
|
|
Decl *d) {
|
|
auto *vd = cast<AbstractFunctionDecl>(d);
|
|
for (auto *A : vd->getAttrs().getAttributes<AbstractSpecializeAttr>()) {
|
|
auto *SA = cast<AbstractSpecializeAttr>(A);
|
|
// Filter _spi.
|
|
auto spiGroups = SA->getSPIGroups();
|
|
auto hasSPIGroup = !spiGroups.empty();
|
|
if (hasSPIGroup) {
|
|
if (vd->getModuleContext() != M.getSwiftModule() &&
|
|
!M.getSwiftModule()->isImportedAsSPI(SA, vd)) {
|
|
continue;
|
|
}
|
|
}
|
|
if (auto *targetFunctionDecl = SA->getTargetFunctionDecl(vd)) {
|
|
auto kind = SA->getSpecializationKind() ==
|
|
SpecializeAttr::SpecializationKind::Full
|
|
? SILSpecializeAttr::SpecializationKind::Full
|
|
: SILSpecializeAttr::SpecializationKind::Partial;
|
|
Identifier spiGroupIdent;
|
|
if (hasSPIGroup) {
|
|
spiGroupIdent = spiGroups[0];
|
|
}
|
|
auto availability = AvailabilityInference::annotatedAvailableRangeForAttr(
|
|
vd, SA, M.getSwiftModule()->getASTContext());
|
|
|
|
auto *attr = SILSpecializeAttr::create(
|
|
M, SA->getSpecializedSignature(vd), SA->getTypeErasedParams(),
|
|
SA->isExported(), kind, nullptr,
|
|
spiGroupIdent, vd->getModuleContext(), availability);
|
|
|
|
auto target = SILDeclRef(targetFunctionDecl);
|
|
std::string targetName = target.mangle();
|
|
if (SILFunction *targetSILFunction = M.lookUpFunction(targetName)) {
|
|
targetSILFunction->addSpecializeAttr(attr);
|
|
} else {
|
|
M.addPendingSpecializeAttr(targetName, attr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // end anonymous namespace
|
|
|
|
bool swift::specializeAppliesInFunction(SILFunction &F,
|
|
SILTransform *transform,
|
|
bool isMandatory) {
|
|
SILOptFunctionBuilder FunctionBuilder(*transform);
|
|
DeadInstructionSet DeadApplies;
|
|
llvm::SmallSetVector<SILInstruction *, 8> Applies;
|
|
OptRemark::Emitter ORE(DEBUG_TYPE, F);
|
|
|
|
bool Changed = false;
|
|
for (auto &BB : F) {
|
|
// Collect the applies for this block in reverse order so that we
|
|
// can pop them off the end of our vector and process them in
|
|
// forward order.
|
|
for (auto &I : llvm::reverse(BB)) {
|
|
|
|
// Skip non-apply instructions, apply instructions with no
|
|
// substitutions, apply instructions where we do not statically
|
|
// know the called function, and apply instructions where we do
|
|
// not have the body of the called function.
|
|
ApplySite Apply = ApplySite::isa(&I);
|
|
if (!Apply || !Apply.hasSubstitutions())
|
|
continue;
|
|
|
|
auto *Callee = Apply.getReferencedFunctionOrNull();
|
|
if (!Callee)
|
|
continue;
|
|
|
|
FunctionBuilder.getModule().performOnceForPrespecializedImportedExtensions(
|
|
[&FunctionBuilder](AbstractFunctionDecl *pre) {
|
|
transferSpecializeAttributeTargets(FunctionBuilder.getModule(), FunctionBuilder,
|
|
pre);
|
|
});
|
|
|
|
if (!Callee->isDefinition() && !Callee->hasPrespecialization()) {
|
|
ORE.emit([&]() {
|
|
using namespace OptRemark;
|
|
return RemarkMissed("NoDef", I)
|
|
<< "Unable to specialize generic function "
|
|
<< NV("Callee", Callee) << " since definition is not visible";
|
|
});
|
|
continue;
|
|
}
|
|
|
|
Applies.insert(Apply.getInstruction());
|
|
}
|
|
|
|
// Attempt to specialize each apply we collected, deleting any
|
|
// that we do specialize (along with other instructions we clone
|
|
// in the process of doing so). We pop from the end of the list to
|
|
// avoid tricky iterator invalidation issues.
|
|
while (!Applies.empty()) {
|
|
auto *I = Applies.pop_back_val();
|
|
auto Apply = ApplySite::isa(I);
|
|
assert(Apply && "Expected an apply!");
|
|
SILFunction *Callee = Apply.getReferencedFunctionOrNull();
|
|
assert(Callee && "Expected to have a known callee");
|
|
|
|
if (!Apply.canOptimize())
|
|
continue;
|
|
|
|
if (!isMandatory && !Callee->shouldOptimize())
|
|
continue;
|
|
|
|
// We have a call that can potentially be specialized, so
|
|
// attempt to do so.
|
|
llvm::SmallVector<SILFunction *, 2> NewFunctions;
|
|
trySpecializeApplyOfGeneric(FunctionBuilder, Apply, DeadApplies,
|
|
NewFunctions, ORE, isMandatory);
|
|
|
|
// Remove all the now-dead applies. We must do this immediately
|
|
// rather than defer it in order to avoid problems with cloning
|
|
// dead instructions when doing recursive specialization.
|
|
while (!DeadApplies.empty()) {
|
|
auto *AI = DeadApplies.pop_back_val();
|
|
|
|
// Remove any applies we are deleting so that we don't attempt
|
|
// to specialize them.
|
|
Applies.remove(AI);
|
|
|
|
recursivelyDeleteTriviallyDeadInstructions(AI, true);
|
|
Changed = true;
|
|
}
|
|
|
|
if (auto *sft = dyn_cast<SILFunctionTransform>(transform)) {
|
|
// If calling the specialization utility resulted in new functions
|
|
// (as opposed to returning a previous specialization), we need to notify
|
|
// the pass manager so that the new functions get optimized.
|
|
for (SILFunction *NewF : reverse(NewFunctions)) {
|
|
sft->addFunctionToPassManagerWorklist(NewF, Callee);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// The generic specializer, used in the optimization pipeline.
|
|
class GenericSpecializer : public SILFunctionTransform {
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
SILFunction &F = *getFunction();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "***** GenericSpecializer on function:"
|
|
<< F.getName() << " *****\n");
|
|
|
|
if (specializeAppliesInFunction(F, this, /*isMandatory*/ false)) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createGenericSpecializer() {
|
|
return new GenericSpecializer();
|
|
}
|