mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
If there is a "constant" enum argument to a synthesized enum comparison, we can always inline it, because most of it will be constant folded anyway.
This ensures the compiler is not creating terrible code for very simple enum comparisons, like
```
if someEnum == .someCase {
...
}
```
rdar://85677499
1507 lines
57 KiB
C++
1507 lines
57 KiB
C++
//===--- PerformanceInliner.cpp - Basic cost based performance inlining ---===//
|
||
//
|
||
// This source file is part of the Swift.org open source project
|
||
//
|
||
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
||
// Licensed under Apache License v2.0 with Runtime Library Exception
|
||
//
|
||
// See https://swift.org/LICENSE.txt for license information
|
||
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#define DEBUG_TYPE "sil-inliner"
|
||
#include "swift/AST/Module.h"
|
||
#include "swift/AST/SemanticAttrs.h"
|
||
#include "swift/Basic/Assertions.h"
|
||
#include "swift/SIL/MemAccessUtils.h"
|
||
#include "swift/SIL/OptimizationRemark.h"
|
||
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
|
||
#include "swift/SILOptimizer/Analysis/IsSelfRecursiveAnalysis.h"
|
||
#include "swift/SILOptimizer/PassManager/Passes.h"
|
||
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
||
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
|
||
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
||
#include "swift/SILOptimizer/Utils/Devirtualize.h"
|
||
#include "swift/SILOptimizer/Utils/Generics.h"
|
||
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
|
||
#include "swift/SILOptimizer/Utils/PerformanceInlinerUtils.h"
|
||
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
|
||
#include "swift/SILOptimizer/Utils/StackNesting.h"
|
||
#include "llvm/ADT/Statistic.h"
|
||
#include "llvm/Support/CommandLine.h"
|
||
#include "llvm/Support/Debug.h"
|
||
|
||
using namespace swift;
|
||
|
||
STATISTIC(NumFunctionsInlined, "Number of functions inlined");
|
||
|
||
llvm::cl::opt<bool> PrintShortestPathInfo(
|
||
"print-shortest-path-info", llvm::cl::init(false),
|
||
llvm::cl::desc("Print shortest-path information for inlining"));
|
||
|
||
llvm::cl::opt<bool> EnableSILInliningOfGenerics(
|
||
"sil-inline-generics", llvm::cl::init(false),
|
||
llvm::cl::desc("Enable inlining of generics"));
|
||
|
||
llvm::cl::opt<bool>
|
||
EnableSILAggressiveInlining("sil-aggressive-inline", llvm::cl::init(false),
|
||
llvm::cl::desc("Enable aggressive inlining"));
|
||
|
||
llvm::cl::opt<bool> EnableVerifyAfterInlining(
|
||
"sil-inline-verify-after-inline", llvm::cl::init(false),
|
||
llvm::cl::desc("Run sil verification after inlining all found callee apply "
|
||
"sites into a caller."));
|
||
|
||
llvm::cl::opt<bool> SILPrintInliningCallee(
|
||
"sil-print-inlining-callee", llvm::cl::init(false),
|
||
llvm::cl::desc("Print functions that are inlined into other functions."));
|
||
|
||
llvm::cl::opt<bool> SILPrintInliningCallerBefore(
|
||
"sil-print-inlining-caller-before", llvm::cl::init(false),
|
||
llvm::cl::desc(
|
||
"Print functions into which another function is about to be inlined."));
|
||
|
||
llvm::cl::opt<bool> SILPrintInliningCallerAfter(
|
||
"sil-print-inlining-caller-after", llvm::cl::init(false),
|
||
llvm::cl::desc(
|
||
"Print functions into which another function has been inlined."));
|
||
|
||
llvm::cl::opt<bool> EnableVerifyAfterEachInlining(
|
||
"sil-inline-verify-after-each-inline", llvm::cl::init(false),
|
||
llvm::cl::desc(
|
||
"Run sil verification after inlining each found callee apply "
|
||
"site into a caller."));
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Heuristics
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// The following constants define the cost model for inlining. Some constants
|
||
/// are also defined in ShortestPathAnalysis.
|
||
|
||
llvm::cl::opt<int> RemovedCallBenefit(
|
||
"sil-inline-removed-call-benefit", llvm::cl::init(20),
|
||
llvm::cl::desc("The base value for every call: it represents the benefit "
|
||
"of removing the call overhead itself."));
|
||
|
||
llvm::cl::opt<int> RemovedCoroutineCallBenefit(
|
||
"sil-inline-removed-coroutine-call-benefit", llvm::cl::init(300),
|
||
llvm::cl::desc("The benefit of inlining a `begin_apply`."));
|
||
|
||
llvm::cl::opt<int> RemovedClosureBenefit(
|
||
"sil-inline-removed-closure-benefit",
|
||
llvm::cl::init(RemovedCallBenefit + 50),
|
||
llvm::cl::desc(
|
||
"The benefit if the operand of an apply gets constant e.g. if a "
|
||
"closure is passed to an apply instruction in the callee."));
|
||
|
||
llvm::cl::opt<int> RemovedLoadBenefit(
|
||
"sil-inline-removed-load-benefit", llvm::cl::init(RemovedCallBenefit + 5),
|
||
llvm::cl::desc("The benefit if a load can (probably) eliminated because it "
|
||
"loads from a stack location in the caller."));
|
||
|
||
llvm::cl::opt<int> RemovedStoreBenefit(
|
||
"sil-inline-removed-store-benefit", llvm::cl::init(RemovedCallBenefit + 10),
|
||
llvm::cl::desc("The benefit if a store can (probably) eliminated because "
|
||
"it stores to a stack location in the caller."));
|
||
|
||
llvm::cl::opt<int> RemovedTerminatorBenefit(
|
||
"sil-inline-removed-terminator-benefit",
|
||
llvm::cl::init(RemovedCallBenefit + 10),
|
||
llvm::cl::desc("The benefit if the condition of a terminator instruction "
|
||
"gets constant due to inlining."));
|
||
|
||
llvm::cl::opt<int>
|
||
RefCountBenefit("sil-inline-ref-count-benefit",
|
||
llvm::cl::init(RemovedCallBenefit + 20),
|
||
llvm::cl::desc("The benefit if a retain/release can "
|
||
"(probably) be eliminated after inlining."));
|
||
|
||
llvm::cl::opt<int> FastPathBuiltinBenefit(
|
||
"sil-inline-fast-path-builtin-benefit",
|
||
llvm::cl::init(RemovedCallBenefit + 40),
|
||
llvm::cl::desc("The benefit of a onFastPath builtin."));
|
||
|
||
llvm::cl::opt<int> DevirtualizedCallBenefit(
|
||
"sil-inline-devirtualized-call-benefit",
|
||
llvm::cl::init(RemovedCallBenefit + 300),
|
||
llvm::cl::desc("The benefit of being able to devirtualize a call."));
|
||
|
||
llvm::cl::opt<int> GenericSpecializationBenefit(
|
||
"sil-inline-generic-specialization-benefit",
|
||
llvm::cl::init(RemovedCallBenefit + 300),
|
||
llvm::cl::desc("The benefit of being able to produce a generic "
|
||
"specialization for a call."));
|
||
|
||
llvm::cl::opt<int> ExclusivityBenefit(
|
||
"sil-inline-exclusivity-benefit", llvm::cl::init(RemovedCallBenefit + 10),
|
||
llvm::cl::desc("The benefit of inlining an exclusivity-containing callee. "
|
||
"The exclusivity needs to be: dynamic, has no nested "
|
||
"conflict and addresses known storage"));
|
||
|
||
llvm::cl::opt<int> OSizeClassMethodBenefit(
|
||
"sil-inline-o-size-class-method-benefit", llvm::cl::init(5),
|
||
llvm::cl::desc("The benefit of inlining class methods with -Osize. We only "
|
||
"inline very small class methods with -Osize."));
|
||
|
||
llvm::cl::opt<int> GlobalInitBenefit(
|
||
"sil-inline-global-init-benefit", llvm::cl::init(100),
|
||
llvm::cl::desc("The benefit of inlining constructors into global initializers."));
|
||
|
||
llvm::cl::opt<int> TrivialFunctionThreshold(
|
||
"sil-inline-trivial-function-threshold", llvm::cl::init(18),
|
||
llvm::cl::desc("Approximately up to this cost level a function can be "
|
||
"inlined without increasing the code size."));
|
||
|
||
llvm::cl::opt<int> BlockLimitDenominator(
|
||
"sil-inline-block-limit-denominator", llvm::cl::init(3000),
|
||
llvm::cl::desc("Configuration for the \"soft\" caller block limit. When "
|
||
"changing make sure you update BlockLimitMaxIntNumerator."));
|
||
|
||
llvm::cl::opt<int> BlockLimitMaxIntNumerator(
|
||
"sil-inline-block-limit-max-int-numerator", llvm::cl::init(18608),
|
||
llvm::cl::desc("Computations with BlockLimitDenominator will overflow with "
|
||
"numerators >= this value. This equals cbrt(INT_MAX) * "
|
||
"cbrt(BlockLimitDenominator); we hardcode its value because "
|
||
"std::cbrt() is not constexpr."));
|
||
|
||
llvm::cl::opt<int> OverallCallerBlockLimit(
|
||
"sil-inline-overall-caller-block-limit", llvm::cl::init(400),
|
||
llvm::cl::desc("No inlining is done if the caller has more than this "
|
||
"number of blocks."));
|
||
|
||
llvm::cl::opt<int> DefaultApplyLength(
|
||
"sil-inline-default-apply-length", llvm::cl::init(10),
|
||
llvm::cl::desc("The assumed execution length of a function call."));
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Printing Helpers
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
extern void printInliningDetailsCallee(StringRef passName, SILFunction *caller,
|
||
SILFunction *callee);
|
||
|
||
extern void printInliningDetailsCallerBefore(StringRef passName,
|
||
SILFunction *caller,
|
||
SILFunction *callee);
|
||
|
||
extern void printInliningDetailsCallerAfter(StringRef passName,
|
||
SILFunction *caller,
|
||
SILFunction *callee);
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Performance Inliner
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
|
||
using Weight = ShortestPathAnalysis::Weight;
|
||
|
||
class SILPerformanceInliner {
|
||
StringRef PassName;
|
||
SILOptFunctionBuilder &FuncBuilder;
|
||
|
||
/// Specifies which functions not to inline, based on @_semantics and
|
||
/// global_init attributes.
|
||
InlineSelection WhatToInline;
|
||
|
||
SILPassManager *pm;
|
||
DominanceAnalysis *DA;
|
||
SILLoopAnalysis *LA;
|
||
BasicCalleeAnalysis *BCA;
|
||
IsSelfRecursiveAnalysis *SRA;
|
||
|
||
// For keys of SILFunction and SILLoop.
|
||
llvm::DenseMap<SILFunction *, ShortestPathAnalysis *> SPAs;
|
||
llvm::SpecificBumpPtrAllocator<ShortestPathAnalysis> SPAAllocator;
|
||
|
||
ColdBlockInfo CBI;
|
||
|
||
OptRemark::Emitter &ORE;
|
||
|
||
OptimizationMode OptMode;
|
||
|
||
#ifndef NDEBUG
|
||
SILFunction *LastPrintedCaller = nullptr;
|
||
void dumpCaller(SILFunction *Caller) {
|
||
if (Caller != LastPrintedCaller) {
|
||
llvm::dbgs() << "\nInline into caller: " << Caller->getName() << '\n';
|
||
LastPrintedCaller = Caller;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
ShortestPathAnalysis *getSPA(SILFunction *F, SILLoopInfo *LI) {
|
||
ShortestPathAnalysis *&SPA = SPAs[F];
|
||
if (!SPA) {
|
||
SPA = new (SPAAllocator.Allocate()) ShortestPathAnalysis(F, LI);
|
||
}
|
||
return SPA;
|
||
}
|
||
|
||
bool profileBasedDecision(
|
||
const FullApplySite &AI, int Benefit, SILFunction *Callee, int CalleeCost,
|
||
int &NumCallerBlocks,
|
||
const llvm::DenseMapIterator<
|
||
swift::SILBasicBlock *, uint64_t,
|
||
llvm::DenseMapInfo<swift::SILBasicBlock *>,
|
||
llvm::detail::DenseMapPair<swift::SILBasicBlock *, uint64_t>, true>
|
||
&bbIt);
|
||
|
||
bool isAutoDiffLinearMapWithControlFlow(FullApplySite AI);
|
||
|
||
bool isTupleWithAllocsOrPartialApplies(SILValue retVal);
|
||
|
||
bool isProfitableToInline(
|
||
FullApplySite AI, Weight CallerWeight, ConstantTracker &callerTracker,
|
||
int &NumCallerBlocks,
|
||
const llvm::DenseMap<SILBasicBlock *, uint64_t> &BBToWeightMap);
|
||
|
||
bool decideInWarmBlock(
|
||
FullApplySite AI, Weight CallerWeight, ConstantTracker &callerTracker,
|
||
int &NumCallerBlocks,
|
||
const llvm::DenseMap<SILBasicBlock *, uint64_t> &BBToWeightMap);
|
||
|
||
bool decideInColdBlock(FullApplySite AI, SILFunction *Callee, int numCallerBlocks);
|
||
|
||
void visitColdBlocks(SmallVectorImpl<FullApplySite> &AppliesToInline,
|
||
SILBasicBlock *root, DominanceInfo *DT, int numCallerBlocks);
|
||
|
||
void collectAppliesToInline(SILFunction *Caller,
|
||
SmallVectorImpl<FullApplySite> &Applies);
|
||
|
||
public:
|
||
SILPerformanceInliner(StringRef PassName, SILOptFunctionBuilder &FuncBuilder,
|
||
InlineSelection WhatToInline, SILPassManager *pm,
|
||
DominanceAnalysis *DA, PostDominanceAnalysis *PDA,
|
||
SILLoopAnalysis *LA, BasicCalleeAnalysis *BCA,
|
||
IsSelfRecursiveAnalysis *SRA, OptimizationMode OptMode,
|
||
OptRemark::Emitter &ORE)
|
||
: PassName(PassName), FuncBuilder(FuncBuilder),
|
||
WhatToInline(WhatToInline), pm(pm), DA(DA), LA(LA), BCA(BCA), SRA(SRA),
|
||
CBI(DA, PDA), ORE(ORE), OptMode(OptMode) {}
|
||
|
||
bool inlineCallsIntoFunction(SILFunction *F);
|
||
};
|
||
|
||
} // end anonymous namespace
|
||
|
||
// Returns true if it is possible to perform a generic
|
||
// specialization for a given call.
|
||
static bool canSpecializeGeneric(ApplySite AI, SILFunction *F,
|
||
SubstitutionMap Subs) {
|
||
return ReabstractionInfo::canBeSpecialized(AI, F, Subs);
|
||
}
|
||
|
||
bool SILPerformanceInliner::profileBasedDecision(
|
||
const FullApplySite &AI, int Benefit, SILFunction *Callee, int CalleeCost,
|
||
int &NumCallerBlocks,
|
||
const llvm::DenseMapIterator<
|
||
swift::SILBasicBlock *, uint64_t,
|
||
llvm::DenseMapInfo<swift::SILBasicBlock *>,
|
||
llvm::detail::DenseMapPair<swift::SILBasicBlock *, uint64_t>, true>
|
||
&bbIt) {
|
||
if (CalleeCost < TrivialFunctionThreshold) {
|
||
// We do not increase code size below this threshold
|
||
return true;
|
||
}
|
||
auto callerCount = bbIt->getSecond();
|
||
if (callerCount < 1) {
|
||
// Never called - do not inline
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << "profiled decision: NO, "
|
||
"reason= Never Called.\n");
|
||
return false;
|
||
}
|
||
auto calleeCount = Callee->getEntryCount();
|
||
if (calleeCount) {
|
||
// If we have Callee count - use SI heuristic:
|
||
auto calleCountVal = calleeCount.getValue();
|
||
auto percent = (long double)callerCount / (long double)calleCountVal;
|
||
if (percent < 0.8) {
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << "profiled decision: NO, reason=SI "
|
||
<< std::to_string(percent) << "%\n");
|
||
return false;
|
||
}
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << "profiled decision: YES, reason=SI "
|
||
<< std::to_string(percent) << "%\n");
|
||
} else {
|
||
// No callee count - use a "modified" aggressive IHF for now
|
||
if (CalleeCost > Benefit && callerCount < 100) {
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << "profiled decision: NO, reason=IHF "
|
||
<< callerCount << '\n');
|
||
return false;
|
||
}
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << "profiled decision: YES, reason=IHF "
|
||
<< callerCount << '\n');
|
||
}
|
||
// We're gonna inline!
|
||
NumCallerBlocks += Callee->size();
|
||
return true;
|
||
}
|
||
|
||
// Checks if `FAI` can be traced back to a specifically named,
|
||
// input enum function argument. If so, the callsite
|
||
// containing function is a linear map in Swift Autodiff.
|
||
bool SILPerformanceInliner::isAutoDiffLinearMapWithControlFlow(
|
||
FullApplySite FAI) {
|
||
static const std::string LinearMapBranchTracingEnumPrefix = "_AD__";
|
||
|
||
auto val = FAI.getCallee();
|
||
|
||
for (;;) {
|
||
if (auto *inst = dyn_cast<SingleValueInstruction>(val)) {
|
||
if (auto pi = Projection::isObjectProjection(val)) {
|
||
// Extract a member from a struct/tuple/enum.
|
||
val = pi->getOperand(0);
|
||
continue;
|
||
} else if (auto base = stripFunctionConversions(inst)) {
|
||
val = base;
|
||
continue;
|
||
}
|
||
return false;
|
||
} else if (auto *phiArg = dyn_cast<SILPhiArgument>(val)) {
|
||
if (auto *predBB = phiArg->getParent()->getSinglePredecessorBlock()) {
|
||
// The terminator of this predecessor block must either be a
|
||
// (conditional) branch instruction or a switch_enum.
|
||
if (auto *bi = dyn_cast<BranchInst>(predBB->getTerminator())) {
|
||
val = bi->getArg(phiArg->getIndex());
|
||
continue;
|
||
} else if (auto *cbi =
|
||
dyn_cast<CondBranchInst>(predBB->getTerminator())) {
|
||
val = cbi->getArgForDestBB(phiArg->getParent(), phiArg->getIndex());
|
||
continue;
|
||
} else if (auto *sei =
|
||
dyn_cast<SwitchEnumInst>(predBB->getTerminator())) {
|
||
val = sei->getOperand();
|
||
continue;
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
// If `val` now points to a function argument then we have successfully traced
|
||
// the callee back to a function argument.
|
||
//
|
||
// We now need to check if this argument is an enum and named like an autodiff
|
||
// branch tracing enum.
|
||
if (auto *arg = dyn_cast<SILFunctionArgument>(val)) {
|
||
if (auto *enumDecl = arg->getType().getEnumOrBoundGenericEnum()) {
|
||
return enumDecl->getName().str().starts_with(
|
||
LinearMapBranchTracingEnumPrefix);
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// Checks if the given value is a tuple containing allocated objects
|
||
// or partial applies.
|
||
//
|
||
// Returns true if the number of allocated objects or partial applies is
|
||
// greater than 0, and false otherwise.
|
||
//
|
||
// Returns false if the value is not a tuple.
|
||
bool SILPerformanceInliner::isTupleWithAllocsOrPartialApplies(SILValue val) {
|
||
if (auto *ti = dyn_cast<TupleInst>(val)) {
|
||
for (auto i : range(ti->getNumOperands())) {
|
||
SILValue val = ti->getOperand(i);
|
||
|
||
if (auto base = stripFunctionConversions(val))
|
||
val = base;
|
||
|
||
if (isa<AllocationInst>(val) || isa<PartialApplyInst>(val))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// Uses a function's mangled name to determine if it is an Autodiff VJP
|
||
// function.
|
||
//
|
||
// TODO: VJPs of differentiable functions with custom silgen names are not
|
||
// recognized as VJPs by this function. However, this is not a hard limitation
|
||
// and can be fixed.
|
||
bool isFunctionAutodiffVJP(SILFunction *callee) {
|
||
swift::Demangle::Context Ctx;
|
||
if (auto *Root = Ctx.demangleSymbolAsNode(callee->getName())) {
|
||
if (auto *node = Root->findByKind(
|
||
swift::Demangle::Node::Kind::AutoDiffFunctionKind, 3)) {
|
||
if (node->hasIndex()) {
|
||
auto index = (char)node->getIndex();
|
||
auto ADFunctionKind = swift::Demangle::AutoDiffFunctionKind(index);
|
||
if (ADFunctionKind == swift::Demangle::AutoDiffFunctionKind::VJP) {
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool isAllocator(SILFunction *callee) {
|
||
swift::Demangle::Context Ctx;
|
||
if (auto *Root = Ctx.demangleSymbolAsNode(callee->getName())) {
|
||
return Root->findByKind(swift::Demangle::Node::Kind::Allocator, 3) != nullptr;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool isProfitableToInlineAutodiffVJP(SILFunction *vjp, SILFunction *caller,
|
||
InlineSelection whatToInline,
|
||
StringRef stageName) {
|
||
bool isLowLevelFunctionPassPipeline = stageName == "LowLevel,Function";
|
||
auto isHighLevelFunctionPassPipeline =
|
||
stageName == "HighLevel,Function+EarlyLoopOpt";
|
||
auto calleeHasControlFlow = vjp->size() > 1;
|
||
auto isCallerVJP = isFunctionAutodiffVJP(caller);
|
||
auto callerHasControlFlow = caller->size() > 1;
|
||
|
||
// If the pass is being run as part of the low-level function pass pipeline,
|
||
// the autodiff closure-spec optimization is done doing its work. Therefore,
|
||
// all VJPs should be considered for inlining.
|
||
if (isLowLevelFunctionPassPipeline) {
|
||
return true;
|
||
}
|
||
|
||
// If callee has control-flow it will definitely not be handled by the
|
||
// Autodiff closure-spec optimization. Therefore, we should consider it for
|
||
// inlining.
|
||
if (calleeHasControlFlow) {
|
||
return true;
|
||
}
|
||
|
||
// If this is the EarlyPerfInline pass we want to have the Autodiff
|
||
// closure-spec optimization pass optimize VJPs in isolation before they are
|
||
// inlined into other VJPs.
|
||
if (isHighLevelFunctionPassPipeline) {
|
||
return false;
|
||
}
|
||
|
||
// If this is not the EarlyPerfInline pass, VJPs should only be inlined into
|
||
// other VJPs that do not contain any control-flow.
|
||
if (!isCallerVJP || (isCallerVJP && callerHasControlFlow)) {
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool isConstantValue(SILValue v, ValueSet &visited) {
|
||
if (!visited.insert(v))
|
||
return true;
|
||
|
||
if (isa<LiteralInst>(v))
|
||
return true;
|
||
if (auto *s = dyn_cast<StructInst>(v)) {
|
||
for (Operand &op : s->getAllOperands()) {
|
||
if (!isConstantValue(op.get(), visited))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static bool hasConstantArguments(FullApplySite fas) {
|
||
ValueSet visited(fas.getFunction());
|
||
for (Operand &op : fas.getArgumentOperands()) {
|
||
if (!fas.isIndirectResultOperand(op)) {
|
||
if (!isConstantValue(op.get(), visited))
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
static bool hasConstantEnumArgument(FullApplySite fas) {
|
||
for (SILValue arg : fas.getArguments()) {
|
||
if (isa<EnumInst>(arg))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool SILPerformanceInliner::isProfitableToInline(
|
||
FullApplySite AI, Weight CallerWeight, ConstantTracker &callerTracker,
|
||
int &NumCallerBlocks,
|
||
const llvm::DenseMap<SILBasicBlock *, uint64_t> &BBToWeightMap) {
|
||
SILFunction *Callee = AI.getReferencedFunctionOrNull();
|
||
assert(Callee);
|
||
bool IsGeneric = AI.hasSubstitutions();
|
||
|
||
if (isFunctionAutodiffVJP(Callee) &&
|
||
!isProfitableToInlineAutodiffVJP(Callee, AI.getFunction(), WhatToInline,
|
||
this->pm->getStageName())) {
|
||
return false;
|
||
}
|
||
|
||
// Start with a base benefit.
|
||
int BaseBenefit = isa<BeginApplyInst>(AI) ? RemovedCoroutineCallBenefit
|
||
: RemovedCallBenefit;
|
||
|
||
// If function has more than 5 parameters / results, then increase base
|
||
// benefit for each additional parameter. We assume that for each extra
|
||
// parameter or result we'd eliminate extra pair of loads and stores used to
|
||
// pass / return value via stack.
|
||
unsigned numParameters = AI->getNumRealOperands(), numResults = AI->getNumResults();
|
||
if (numParameters > 5)
|
||
BaseBenefit += (RemovedLoadBenefit + RemovedStoreBenefit) * (numParameters - 5);
|
||
if (numResults > 5)
|
||
BaseBenefit += (RemovedLoadBenefit + RemovedStoreBenefit) * (numResults - 5);
|
||
|
||
// Osize heuristic.
|
||
//
|
||
// As a hack, don't apply this at all to coroutine inlining; avoiding
|
||
// coroutine allocation overheads is extremely valuable. There might be
|
||
// more principled ways of getting this effect.
|
||
bool isClassMethodAtOsize = false;
|
||
if (OptMode == OptimizationMode::ForSize && !isa<BeginApplyInst>(AI)) {
|
||
// Don't inline into thunks.
|
||
if (AI.getFunction()->isThunk())
|
||
return false;
|
||
|
||
// Don't inline class methods.
|
||
if (Callee->hasSelfParam()) {
|
||
auto SelfTy = Callee->getLoweredFunctionType()->getSelfInstanceType(
|
||
FuncBuilder.getModule(), AI.getFunction()->getTypeExpansionContext());
|
||
if (SelfTy->mayHaveSuperclass() &&
|
||
Callee->getRepresentation() == SILFunctionTypeRepresentation::Method)
|
||
isClassMethodAtOsize = true;
|
||
}
|
||
// Use command line option to control inlining in Osize mode.
|
||
const uint64_t CallerBaseBenefitReductionFactor = AI.getFunction()->getModule().getOptions().CallerBaseBenefitReductionFactor;
|
||
BaseBenefit = BaseBenefit / CallerBaseBenefitReductionFactor;
|
||
}
|
||
|
||
// It is always OK to inline a simple call.
|
||
// TODO: May be consider also the size of the callee?
|
||
if (isPureCall(AI, BCA)) {
|
||
OptRemark::Emitter::emitOrDebug(DEBUG_TYPE, &ORE, [&]() {
|
||
using namespace OptRemark;
|
||
return RemarkPassed("Inline", *AI.getInstruction())
|
||
<< "Pure call. Always profitable to inline "
|
||
<< NV("Callee", Callee);
|
||
});
|
||
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << " pure-call decision " << Callee->getName()
|
||
<< '\n');
|
||
return true;
|
||
}
|
||
|
||
if (Callee->hasSemanticsAttr(semantics::OPTIMIZE_SIL_INLINE_CONSTANT_ARGUMENTS) &&
|
||
hasConstantArguments(AI)) {
|
||
return true;
|
||
}
|
||
|
||
// If there is a "constant" enum argument to a synthesized enum comparison,
|
||
// we can always inline it, because most of it will be constant folded anyway.
|
||
if (Callee->hasSemanticsAttr(semantics::DERIVED_ENUM_EQUALS) &&
|
||
hasConstantEnumArgument(AI)) {
|
||
return true;
|
||
}
|
||
|
||
// Bail out if this generic call can be optimized by means of
|
||
// the generic specialization, because we prefer generic specialization
|
||
// to inlining of generics.
|
||
if (IsGeneric && canSpecializeGeneric(AI, Callee, AI.getSubstitutionMap())) {
|
||
return false;
|
||
}
|
||
|
||
// Bail out if this is a generic call of a `@_specialize(exported:)` function
|
||
// and we are in the early inliner. We want to give the generic specializer
|
||
// the opportunity to see specialized call sites.
|
||
if (IsGeneric && WhatToInline == InlineSelection::NoSemanticsAndEffects &&
|
||
Callee->hasPrespecialization()) {
|
||
return false;
|
||
}
|
||
|
||
SILLoopInfo *CalleeLI = LA->get(Callee);
|
||
ShortestPathAnalysis *CalleeSPA = getSPA(Callee, CalleeLI);
|
||
if (!CalleeSPA->isValid()) {
|
||
CalleeSPA->analyze(CBI, [](FullApplySite FAS) {
|
||
// We don't compute SPA for another call-level. Functions called from
|
||
// the callee are assumed to have DefaultApplyLength.
|
||
return DefaultApplyLength.getValue();
|
||
});
|
||
}
|
||
|
||
ConstantTracker constTracker(Callee, &callerTracker, AI);
|
||
DominanceInfo *DT = DA->get(Callee);
|
||
SILBasicBlock *CalleeEntry = &Callee->front();
|
||
DominanceOrder domOrder(CalleeEntry, DT, Callee->size());
|
||
|
||
// We don't want to blow up code-size
|
||
// We will only inline if *ALL* dynamic accesses are
|
||
// known and have no nested conflict
|
||
bool AllAccessesBeneficialToInline = true;
|
||
bool returnsAllocation = false;
|
||
|
||
// Calculate the inlining cost of the callee.
|
||
int CalleeCost = 0;
|
||
int Benefit = 0;
|
||
// We don’t know if we want to update the benefit with
|
||
// the exclusivity heuristic or not. We can *only* do that
|
||
// if AllAccessesBeneficialToInline is true
|
||
int ExclusivityBenefitWeight = 0;
|
||
int ExclusivityBenefitBase = ExclusivityBenefit;
|
||
if (EnableSILAggressiveInlining) {
|
||
ExclusivityBenefitBase += 500;
|
||
}
|
||
|
||
SubstitutionMap CalleeSubstMap = AI.getSubstitutionMap();
|
||
|
||
CallerWeight.updateBenefit(Benefit, BaseBenefit);
|
||
|
||
// Go through all blocks of the function, accumulate the cost and find
|
||
// benefits.
|
||
while (SILBasicBlock *block = domOrder.getNext()) {
|
||
constTracker.beginBlock();
|
||
Weight BlockW = CalleeSPA->getWeight(block, CallerWeight);
|
||
|
||
for (SILInstruction &I : *block) {
|
||
constTracker.trackInst(&I);
|
||
|
||
CalleeCost += (int)instructionInlineCost(I);
|
||
|
||
if (FullApplySite FAI = FullApplySite::isa(&I)) {
|
||
// Check if the callee is passed as an argument. If so, increase the
|
||
// threshold, because inlining will (probably) eliminate the closure.
|
||
SILInstruction *def = constTracker.getDefInCaller(FAI.getCallee());
|
||
if (def && (isa<FunctionRefInst>(def) || isa<PartialApplyInst>(def)))
|
||
BlockW.updateBenefit(Benefit, RemovedClosureBenefit);
|
||
else if (isAutoDiffLinearMapWithControlFlow(FAI)) {
|
||
// TODO: Do we need to tweak inlining benefits given to pullbacks
|
||
// (with and without control-flow)?
|
||
|
||
// For linear maps in Swift Autodiff, callees may be passed as an
|
||
// argument, however, they may be hidden behind a branch-tracing
|
||
// enum (tracing execution flow of the original function).
|
||
//
|
||
// If we can establish that we are inside of a Swift Autodiff linear
|
||
// map and that the branch tracing input enum is wrapping pullback
|
||
// closures, then we can update this function's benefit with
|
||
// `RemovedClosureBenefit` because inlining will (probably) eliminate
|
||
// the closure.
|
||
BlockW.updateBenefit(Benefit, RemovedClosureBenefit);
|
||
}
|
||
|
||
// Check if inlining the callee would allow for further
|
||
// optimizations like devirtualization or generic specialization.
|
||
if (!def)
|
||
def = dyn_cast_or_null<SingleValueInstruction>(FAI.getCallee());
|
||
|
||
if (!def)
|
||
continue;
|
||
|
||
auto Subs = FAI.getSubstitutionMap();
|
||
|
||
// Bail if it is not a generic call or inlining of generics is forbidden.
|
||
if (!EnableSILInliningOfGenerics || !Subs.hasAnySubstitutableParams())
|
||
continue;
|
||
|
||
if (!isa<FunctionRefInst>(def) && !isa<ClassMethodInst>(def) &&
|
||
!isa<WitnessMethodInst>(def))
|
||
continue;
|
||
|
||
// It is a generic call inside the callee. Check if after inlining
|
||
// it will be possible to perform a generic specialization or
|
||
// devirtualization of this call.
|
||
|
||
// Create the list of substitutions as they will be after
|
||
// inlining.
|
||
auto SubMap = Subs.subst(CalleeSubstMap);
|
||
|
||
// Check if the call can be devirtualized.
|
||
if (isa<ClassMethodInst>(def) || isa<WitnessMethodInst>(def) ||
|
||
isa<SuperMethodInst>(def)) {
|
||
// TODO: Take AI.getSubstitutions() into account.
|
||
if (canDevirtualizeApply(FAI, nullptr)) {
|
||
LLVM_DEBUG(llvm::dbgs() << "Devirtualization will be possible "
|
||
"after inlining for the call:\n";
|
||
FAI.getInstruction()->dumpInContext());
|
||
BlockW.updateBenefit(Benefit, DevirtualizedCallBenefit);
|
||
}
|
||
}
|
||
|
||
// Check if a generic specialization would be possible.
|
||
if (isa<FunctionRefInst>(def)) {
|
||
auto CalleeF = FAI.getCalleeFunction();
|
||
if (!canSpecializeGeneric(FAI, CalleeF, SubMap))
|
||
continue;
|
||
LLVM_DEBUG(llvm::dbgs() << "Generic specialization will be possible "
|
||
"after inlining for the call:\n";
|
||
FAI.getInstruction()->dumpInContext());
|
||
BlockW.updateBenefit(Benefit, GenericSpecializationBenefit);
|
||
}
|
||
} else if (auto *LI = dyn_cast<LoadInst>(&I)) {
|
||
// Check if it's a load from a stack location in the caller. Such a load
|
||
// might be optimized away if inlined.
|
||
if (constTracker.isStackAddrInCaller(LI->getOperand()))
|
||
BlockW.updateBenefit(Benefit, RemovedLoadBenefit);
|
||
} else if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
||
// Check if it's a store to a stack location in the caller. Such a load
|
||
// might be optimized away if inlined.
|
||
if (constTracker.isStackAddrInCaller(SI->getDest()))
|
||
BlockW.updateBenefit(Benefit, RemovedStoreBenefit);
|
||
} else if (isa<StrongReleaseInst>(&I) || isa<ReleaseValueInst>(&I)) {
|
||
SILValue Op = stripCasts(I.getOperand(0));
|
||
if (auto *Arg = dyn_cast<SILFunctionArgument>(Op)) {
|
||
if (Arg->getArgumentConvention() ==
|
||
SILArgumentConvention::Direct_Guaranteed) {
|
||
BlockW.updateBenefit(Benefit, RefCountBenefit);
|
||
}
|
||
}
|
||
} else if (auto *BI = dyn_cast<BuiltinInst>(&I)) {
|
||
if (BI->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath)
|
||
BlockW.updateBenefit(Benefit, FastPathBuiltinBenefit);
|
||
} else if (auto *BAI = dyn_cast<BeginAccessInst>(&I)) {
|
||
if (BAI->getEnforcement() == SILAccessEnforcement::Dynamic) {
|
||
// The access is dynamic and has no nested conflict
|
||
// See if the storage location is considered by
|
||
// access enforcement optimizations
|
||
auto storage = AccessStorage::compute(BAI->getSource());
|
||
if (BAI->hasNoNestedConflict() && (storage.isFormalAccessBase())) {
|
||
BlockW.updateBenefit(ExclusivityBenefitWeight,
|
||
ExclusivityBenefitBase);
|
||
} else {
|
||
AllAccessesBeneficialToInline = false;
|
||
}
|
||
}
|
||
} else if (auto ri = dyn_cast<ReturnInst>(&I)) {
|
||
SILValue retVal = ri->getOperand();
|
||
if (auto *eir = dyn_cast<EndInitLetRefInst>(retVal))
|
||
retVal = eir->getOperand();
|
||
if (auto *uci = dyn_cast<UpcastInst>(retVal))
|
||
retVal = uci->getOperand();
|
||
|
||
// Inlining functions which return an allocated object or partial_apply
|
||
// most likely has a benefit in the caller, because e.g. it can enable
|
||
// de-virtualization.
|
||
if (isa<AllocationInst>(retVal) || isa<PartialApplyInst>(retVal) || isTupleWithAllocsOrPartialApplies(retVal)) {
|
||
BlockW.updateBenefit(Benefit, RemovedCallBenefit + 10);
|
||
returnsAllocation = true;
|
||
}
|
||
}
|
||
}
|
||
// Don't count costs in blocks which are dead after inlining.
|
||
SILBasicBlock *takenBlock = constTracker.getTakenBlock(block->getTerminator());
|
||
if (takenBlock) {
|
||
BlockW.updateBenefit(Benefit, RemovedTerminatorBenefit);
|
||
domOrder.pushChildrenIf(block, [=](SILBasicBlock *child) {
|
||
return child->getSinglePredecessorBlock() != block ||
|
||
child == takenBlock;
|
||
});
|
||
} else {
|
||
domOrder.pushChildren(block);
|
||
}
|
||
}
|
||
|
||
if (AllAccessesBeneficialToInline) {
|
||
Benefit = std::max(Benefit, ExclusivityBenefitWeight);
|
||
}
|
||
|
||
if (AI.getFunction()->isGlobalInitOnceFunction() && isAllocator(Callee)) {
|
||
// Inlining constructors into global initializers increase the changes that
|
||
// the global can be initialized statically.
|
||
CallerWeight.updateBenefit(Benefit, GlobalInitBenefit);
|
||
}
|
||
|
||
if (AI.getFunction()->isThunk()) {
|
||
// Only inline trivial functions into thunks (which will not increase the
|
||
// code size).
|
||
if (CalleeCost > TrivialFunctionThreshold) {
|
||
return false;
|
||
}
|
||
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << " decision {" << CalleeCost << " into thunk} "
|
||
<< Callee->getName() << '\n');
|
||
return true;
|
||
}
|
||
|
||
// We reduce the benefit if the caller is too large. For this we use a
|
||
// cubic function on the number of caller blocks. This starts to prevent
|
||
// inlining at about 800 - 1000 caller blocks.
|
||
if (NumCallerBlocks < BlockLimitMaxIntNumerator)
|
||
Benefit -=
|
||
(NumCallerBlocks * NumCallerBlocks) / BlockLimitDenominator *
|
||
NumCallerBlocks / BlockLimitDenominator;
|
||
else
|
||
// The calculation in the if branch would overflow if we performed it.
|
||
Benefit = 0;
|
||
|
||
// If we have profile info - use it for final inlining decision.
|
||
auto *bb = AI.getInstruction()->getParent();
|
||
auto bbIt = BBToWeightMap.find(bb);
|
||
if (bbIt != BBToWeightMap.end()) {
|
||
if (profileBasedDecision(AI, Benefit, Callee, CalleeCost, NumCallerBlocks,
|
||
bbIt)) {
|
||
OptRemark::Emitter::emitOrDebug(DEBUG_TYPE, &ORE, [&]() {
|
||
using namespace OptRemark;
|
||
return RemarkPassed("Inline", *AI.getInstruction())
|
||
<< "Profitable due to provided profile";
|
||
});
|
||
return true;
|
||
}
|
||
|
||
OptRemark::Emitter::emitOrDebug(DEBUG_TYPE, &ORE, [&]() {
|
||
using namespace OptRemark;
|
||
return RemarkMissed("Inline", *AI.getInstruction())
|
||
<< "Not profitable due to provided profile";
|
||
});
|
||
return false;
|
||
}
|
||
|
||
if (isClassMethodAtOsize && Benefit > OSizeClassMethodBenefit) {
|
||
Benefit = OSizeClassMethodBenefit;
|
||
if (returnsAllocation)
|
||
Benefit += 10;
|
||
}
|
||
|
||
// This is the final inlining decision.
|
||
if (CalleeCost > Benefit) {
|
||
OptRemark::Emitter::emitOrDebug(DEBUG_TYPE, &ORE, [&]() {
|
||
using namespace OptRemark;
|
||
return RemarkMissed("Inline", *AI.getInstruction())
|
||
<< "Not profitable to inline function " << NV("Callee", Callee)
|
||
<< " (cost = " << NV("Cost", CalleeCost)
|
||
<< ", benefit = " << NV("Benefit", Benefit) << ")";
|
||
});
|
||
return false;
|
||
}
|
||
|
||
NumCallerBlocks += Callee->size();
|
||
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << " decision {c=" << CalleeCost
|
||
<< ", b=" << Benefit
|
||
<< ", l=" << CalleeSPA->getScopeLength(CalleeEntry, 0)
|
||
<< ", c-w=" << CallerWeight
|
||
<< ", bb=" << Callee->size()
|
||
<< ", c-bb=" << NumCallerBlocks
|
||
<< "} " << Callee->getName() << '\n');
|
||
OptRemark::Emitter::emitOrDebug(DEBUG_TYPE, &ORE, [&]() {
|
||
using namespace OptRemark;
|
||
return RemarkPassed("Inlined", *AI.getInstruction())
|
||
<< NV("Callee", Callee) << " inlined into "
|
||
<< NV("Caller", AI.getFunction())
|
||
<< " (cost = " << NV("Cost", CalleeCost)
|
||
<< ", benefit = " << NV("Benefit", Benefit) << ")";
|
||
});
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool returnsClosure(SILFunction *F) {
|
||
for (SILBasicBlock &BB : *F) {
|
||
if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
|
||
return isa<PartialApplyInst>(RI->getOperand());
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static bool hasMaxNumberOfBasicBlocks(SILFunction *f, int limit) {
|
||
for (SILBasicBlock &block : *f) {
|
||
(void)block;
|
||
if (limit == 0)
|
||
return false;
|
||
limit--;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
static bool isInlineAlwaysCallSite(SILFunction *Callee, int numCallerBlocks) {
|
||
if (Callee->isTransparent())
|
||
return true;
|
||
if (Callee->getInlineStrategy() == AlwaysInline &&
|
||
!Callee->getModule().getOptions().IgnoreAlwaysInline &&
|
||
|
||
// Protect against misuse of @inline(__always).
|
||
// Inline-always should only be used on relatively small functions.
|
||
// It must not be used on recursive functions. This check prevents that
|
||
// the compiler blows up if @inline(__always) is put on a recursive function.
|
||
(numCallerBlocks < 64 || hasMaxNumberOfBasicBlocks(Callee, 64))) {
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/// Checks if a given generic apply should be inlined unconditionally, i.e.
|
||
/// without any complex analysis using e.g. a cost model.
|
||
/// It returns true if a function should be inlined.
|
||
/// It returns false if a function should not be inlined.
|
||
/// It returns None if the decision cannot be made without a more complex
|
||
/// analysis.
|
||
static std::optional<bool> shouldInlineGeneric(FullApplySite AI,
|
||
int numCallerBlocks) {
|
||
assert(AI.hasSubstitutions() &&
|
||
"Expected a generic apply");
|
||
|
||
SILFunction *Callee = AI.getReferencedFunctionOrNull();
|
||
|
||
// Do not inline @_semantics functions when compiling the stdlib,
|
||
// because they need to be preserved, so that the optimizer
|
||
// can properly optimize a user code later.
|
||
ModuleDecl *SwiftModule = Callee->getModule().getSwiftModule();
|
||
if ((Callee->hasSemanticsAttrThatStartsWith("array.") ||
|
||
Callee->hasSemanticsAttrThatStartsWith("fixed_storage.")) &&
|
||
(SwiftModule->isStdlibModule() || SwiftModule->isOnoneSupportModule()))
|
||
return false;
|
||
|
||
// Do not inline into thunks.
|
||
if (AI.getFunction()->isThunk())
|
||
return false;
|
||
|
||
// Always inline generic functions which are marked as
|
||
// AlwaysInline or transparent.
|
||
if (isInlineAlwaysCallSite(Callee, numCallerBlocks))
|
||
return true;
|
||
|
||
// If all substitutions are concrete, then there is no need to perform the
|
||
// generic inlining. Let the generic specializer create a specialized
|
||
// function and then decide if it is beneficial to inline it.
|
||
if (!AI.getSubstitutionMap().getRecursiveProperties().hasArchetype())
|
||
return false;
|
||
|
||
if (Callee->getLoweredFunctionType()->getCoroutineKind() !=
|
||
SILCoroutineKind::None) {
|
||
// Co-routines are so expensive (e.g. Array.subscript.read) that we always
|
||
// enable inlining them in a generic context. Though the final inlining
|
||
// decision is done by the usual heuristics. Therefore we return None and
|
||
// not true.
|
||
return std::nullopt;
|
||
}
|
||
|
||
// The returned partial_apply of a thunk is most likely being optimized away
|
||
// if inlined. Because some thunks cannot be specialized (e.g. if an opened
|
||
// existential is in the substitution list), we inline such thunks also in case
|
||
// they are generic.
|
||
if (Callee->isThunk() && returnsClosure(Callee))
|
||
return true;
|
||
|
||
// All other generic functions should not be inlined if this kind of inlining
|
||
// is disabled.
|
||
if (!EnableSILInliningOfGenerics)
|
||
return false;
|
||
|
||
// It is not clear yet if this function should be decided or not.
|
||
return std::nullopt;
|
||
}
|
||
|
||
bool SILPerformanceInliner::decideInWarmBlock(
|
||
FullApplySite AI, Weight CallerWeight, ConstantTracker &callerTracker,
|
||
int &NumCallerBlocks,
|
||
const llvm::DenseMap<SILBasicBlock *, uint64_t> &BBToWeightMap) {
|
||
if (AI.hasSubstitutions()) {
|
||
// Only inline generics if definitively clear that it should be done.
|
||
auto ShouldInlineGeneric = shouldInlineGeneric(AI, NumCallerBlocks);
|
||
if (ShouldInlineGeneric.has_value())
|
||
return ShouldInlineGeneric.value();
|
||
}
|
||
|
||
SILFunction *Callee = AI.getReferencedFunctionOrNull();
|
||
|
||
if (isInlineAlwaysCallSite(Callee, NumCallerBlocks)) {
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << " always-inline decision "
|
||
<< Callee->getName() << '\n');
|
||
return true;
|
||
}
|
||
|
||
return isProfitableToInline(AI, CallerWeight, callerTracker, NumCallerBlocks,
|
||
BBToWeightMap);
|
||
}
|
||
|
||
/// Return true if inlining this call site into a cold block is profitable.
|
||
bool SILPerformanceInliner::decideInColdBlock(FullApplySite AI,
|
||
SILFunction *Callee, int numCallerBlocks) {
|
||
if (AI.hasSubstitutions()) {
|
||
// Only inline generics if definitively clear that it should be done.
|
||
auto ShouldInlineGeneric = shouldInlineGeneric(AI, numCallerBlocks);
|
||
if (ShouldInlineGeneric.has_value())
|
||
return ShouldInlineGeneric.value();
|
||
|
||
return false;
|
||
}
|
||
|
||
if (isInlineAlwaysCallSite(Callee, numCallerBlocks)) {
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << " always-inline decision "
|
||
<< Callee->getName() << '\n');
|
||
return true;
|
||
}
|
||
|
||
int CalleeCost = 0;
|
||
|
||
for (SILBasicBlock &Block : *Callee) {
|
||
for (SILInstruction &I : Block) {
|
||
CalleeCost += int(instructionInlineCost(I));
|
||
if (CalleeCost > TrivialFunctionThreshold)
|
||
return false;
|
||
}
|
||
}
|
||
LLVM_DEBUG(dumpCaller(AI.getFunction());
|
||
llvm::dbgs() << " cold decision {" << CalleeCost << "} "
|
||
<< Callee->getName() << '\n');
|
||
return true;
|
||
}
|
||
|
||
/// Record additional weight increases.
|
||
///
|
||
/// Why can't we just add the weight when we call isProfitableToInline? Because
|
||
/// the additional weight is for _another_ function than the current handled
|
||
/// callee.
|
||
static void addWeightCorrection(FullApplySite FAS,
|
||
llvm::DenseMap<FullApplySite, int> &WeightCorrections) {
|
||
SILFunction *Callee = FAS.getReferencedFunctionOrNull();
|
||
if (Callee && Callee->hasSemanticsAttr(semantics::ARRAY_UNINITIALIZED)) {
|
||
// We want to inline the argument to an array.uninitialized call, because
|
||
// this argument is most likely a call to a function which contains the
|
||
// buffer allocation for the array. It is essential to inline it for stack
|
||
// promotion of the array buffer.
|
||
SILValue BufferArg = FAS.getArgument(0);
|
||
SILValue Base = stripValueProjections(stripCasts(BufferArg));
|
||
if (auto BaseApply = FullApplySite::isa(Base))
|
||
WeightCorrections[BaseApply] += 6;
|
||
}
|
||
}
|
||
|
||
static bool containsWeight(TermInst *inst) {
|
||
for (auto &succ : inst->getSuccessors()) {
|
||
if (succ.getCount()) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static void
|
||
addToBBCounts(llvm::DenseMap<SILBasicBlock *, uint64_t> &BBToWeightMap,
|
||
uint64_t numToAdd, swift::TermInst *termInst) {
|
||
for (auto &succ : termInst->getSuccessors()) {
|
||
auto *currBB = succ.getBB();
|
||
assert(BBToWeightMap.find(currBB) != BBToWeightMap.end() &&
|
||
"Expected to find block in map");
|
||
BBToWeightMap[currBB] += numToAdd;
|
||
}
|
||
}
|
||
|
||
static void
|
||
calculateBBWeights(SILFunction *Caller, DominanceInfo *DT,
|
||
llvm::DenseMap<SILBasicBlock *, uint64_t> &BBToWeightMap) {
|
||
auto entryCount = Caller->getEntryCount();
|
||
if (!entryCount) {
|
||
// No profile for function - return
|
||
return;
|
||
}
|
||
// Add all blocks to BBToWeightMap without count 0
|
||
for (auto &block : *Caller) {
|
||
BBToWeightMap[&block] = 0;
|
||
}
|
||
BBToWeightMap[Caller->getEntryBlock()] = entryCount.getValue();
|
||
DominanceOrder domOrder(&Caller->front(), DT, Caller->size());
|
||
while (SILBasicBlock *block = domOrder.getNext()) {
|
||
auto bbIt = BBToWeightMap.find(block);
|
||
assert(bbIt != BBToWeightMap.end() && "Expected to find block in map");
|
||
auto bbCount = bbIt->getSecond();
|
||
auto *termInst = block->getTerminator();
|
||
if (containsWeight(termInst)) {
|
||
// Instruction already contains accurate counters - use them as-is
|
||
uint64_t countSum = 0;
|
||
uint64_t blocksWithoutCount = 0;
|
||
for (auto &succ : termInst->getSuccessors()) {
|
||
auto *currBB = succ.getBB();
|
||
assert(BBToWeightMap.find(currBB) != BBToWeightMap.end() &&
|
||
"Expected to find block in map");
|
||
auto currCount = succ.getCount();
|
||
if (!currCount) {
|
||
++blocksWithoutCount;
|
||
continue;
|
||
}
|
||
auto currCountVal = currCount.getValue();
|
||
countSum += currCountVal;
|
||
BBToWeightMap[currBB] += currCountVal;
|
||
}
|
||
if (countSum < bbCount) {
|
||
// inaccurate profile - fill in the gaps for BBs without a count:
|
||
if (blocksWithoutCount > 0) {
|
||
auto numToAdd = (bbCount - countSum) / blocksWithoutCount;
|
||
for (auto &succ : termInst->getSuccessors()) {
|
||
auto *currBB = succ.getBB();
|
||
auto currCount = succ.getCount();
|
||
if (!currCount) {
|
||
BBToWeightMap[currBB] += numToAdd;
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
auto numOfSucc = termInst->getSuccessors().size();
|
||
assert(numOfSucc > 0 && "Expected successors > 0");
|
||
auto numToAdd = (countSum - bbCount) / numOfSucc;
|
||
addToBBCounts(BBToWeightMap, numToAdd, termInst);
|
||
}
|
||
} else {
|
||
// Fill counters speculatively
|
||
auto numOfSucc = termInst->getSuccessors().size();
|
||
if (numOfSucc == 0) {
|
||
// No successors to fill
|
||
continue;
|
||
}
|
||
auto numToAdd = bbCount / numOfSucc;
|
||
addToBBCounts(BBToWeightMap, numToAdd, termInst);
|
||
}
|
||
domOrder.pushChildrenIf(block, [&](SILBasicBlock *child) { return true; });
|
||
}
|
||
}
|
||
|
||
void SILPerformanceInliner::collectAppliesToInline(
|
||
SILFunction *Caller, SmallVectorImpl<FullApplySite> &Applies) {
|
||
DominanceInfo *DT = DA->get(Caller);
|
||
SILLoopInfo *LI = LA->get(Caller);
|
||
|
||
llvm::DenseMap<FullApplySite, int> WeightCorrections;
|
||
|
||
// Compute the shortest-path analysis for the caller.
|
||
ShortestPathAnalysis *SPA = getSPA(Caller, LI);
|
||
SPA->analyze(CBI, [&](FullApplySite FAS) -> int {
|
||
|
||
// This closure returns the length of a called function.
|
||
|
||
// At this occasion we record additional weight increases.
|
||
addWeightCorrection(FAS, WeightCorrections);
|
||
|
||
if (SILFunction *Callee = getEligibleFunction(FAS, WhatToInline, SRA)) {
|
||
// Compute the shortest-path analysis for the callee.
|
||
SILLoopInfo *CalleeLI = LA->get(Callee);
|
||
ShortestPathAnalysis *CalleeSPA = getSPA(Callee, CalleeLI);
|
||
if (!CalleeSPA->isValid()) {
|
||
CalleeSPA->analyze(CBI, [](FullApplySite FAS) {
|
||
// We don't compute SPA for another call-level. Functions called from
|
||
// the callee are assumed to have DefaultApplyLength.
|
||
return DefaultApplyLength.getValue();
|
||
});
|
||
}
|
||
int CalleeLength = CalleeSPA->getScopeLength(&Callee->front(), 0);
|
||
// Just in case the callee is a noreturn function.
|
||
if (CalleeLength >= ShortestPathAnalysis::InitialDist)
|
||
return DefaultApplyLength;
|
||
return CalleeLength;
|
||
}
|
||
// Some unknown function.
|
||
return DefaultApplyLength;
|
||
});
|
||
|
||
#ifndef NDEBUG
|
||
if (PrintShortestPathInfo) {
|
||
SPA->dump();
|
||
}
|
||
#endif
|
||
|
||
ConstantTracker constTracker(Caller);
|
||
DominanceOrder domOrder(&Caller->front(), DT, Caller->size());
|
||
int NumCallerBlocks = (int)Caller->size();
|
||
|
||
llvm::DenseMap<SILBasicBlock *, uint64_t> BBToWeightMap;
|
||
calculateBBWeights(Caller, DT, BBToWeightMap);
|
||
|
||
// Go through all instructions and find candidates for inlining.
|
||
// We do this in dominance order for the constTracker.
|
||
SmallVector<FullApplySite, 8> InitialCandidates;
|
||
while (SILBasicBlock *block = domOrder.getNext()) {
|
||
constTracker.beginBlock();
|
||
Weight BlockWeight;
|
||
|
||
for (auto I = block->begin(), E = block->end(); I != E; ++I) {
|
||
constTracker.trackInst(&*I);
|
||
|
||
if (!FullApplySite::isa(&*I))
|
||
continue;
|
||
|
||
pm->setDependingOnCalleeBodies();
|
||
|
||
FullApplySite AI = FullApplySite(&*I);
|
||
|
||
auto *Callee = getEligibleFunction(AI, WhatToInline, SRA);
|
||
if (Callee) {
|
||
// Check if we have an always_inline or transparent function. If we do,
|
||
// just add it to our final Applies list and continue.
|
||
if (isInlineAlwaysCallSite(Callee, NumCallerBlocks)) {
|
||
NumCallerBlocks += Callee->size();
|
||
Applies.push_back(AI);
|
||
continue;
|
||
}
|
||
|
||
// Next make sure that we do not have more blocks than our overall
|
||
// caller block limit at this point. In such a case, we continue. This
|
||
// will ensure that any further non inline always functions are skipped,
|
||
// but we /do/ inline any inline_always functions remaining.
|
||
if (NumCallerBlocks > OverallCallerBlockLimit &&
|
||
// Still allow inlining of small functions.
|
||
!hasMaxNumberOfBasicBlocks(Callee, 8) &&
|
||
!Caller->hasSemanticsAttr(semantics::OPTIMIZE_SIL_INLINE_AGGRESSIVE)) {
|
||
continue;
|
||
}
|
||
|
||
// Otherwise, calculate our block weights and determine if we want to
|
||
// inline this.
|
||
if (!BlockWeight.isValid())
|
||
BlockWeight = SPA->getWeight(block, Weight(0, 0));
|
||
|
||
// The actual weight including a possible weight correction.
|
||
Weight W(BlockWeight, WeightCorrections.lookup(AI));
|
||
|
||
if (decideInWarmBlock(AI, W, constTracker, NumCallerBlocks,
|
||
BBToWeightMap)) {
|
||
InitialCandidates.push_back(AI);
|
||
}
|
||
}
|
||
}
|
||
|
||
domOrder.pushChildrenIf(block, [&] (SILBasicBlock *child) {
|
||
if (CBI.isCold(child)) {
|
||
// Handle cold blocks separately.
|
||
visitColdBlocks(InitialCandidates, child, DT, NumCallerBlocks);
|
||
return false;
|
||
}
|
||
return true;
|
||
});
|
||
}
|
||
|
||
// Calculate how many times a callee is called from this caller.
|
||
llvm::DenseMap<SILFunction *, unsigned> CalleeCount;
|
||
for (auto AI : InitialCandidates) {
|
||
SILFunction *Callee = AI.getReferencedFunctionOrNull();
|
||
assert(Callee && "apply_inst does not have a direct callee anymore");
|
||
++CalleeCount[Callee];
|
||
}
|
||
|
||
// Now copy each candidate callee that has a small enough number of
|
||
// call sites into the final set of call sites.
|
||
for (auto AI : InitialCandidates) {
|
||
SILFunction *Callee = AI.getReferencedFunctionOrNull();
|
||
assert(Callee && "apply_inst does not have a direct callee anymore");
|
||
|
||
const unsigned CallsToCalleeThreshold = 1024;
|
||
if (CalleeCount[Callee] <= CallsToCalleeThreshold) {
|
||
Applies.push_back(AI);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Attempt to inline all calls smaller than our threshold.
|
||
/// returns True if a function was inlined.
|
||
bool SILPerformanceInliner::inlineCallsIntoFunction(SILFunction *Caller) {
|
||
// Don't optimize functions that are marked with the opt.never attribute.
|
||
if (!Caller->shouldOptimize())
|
||
return false;
|
||
|
||
LLVM_DEBUG(llvm::dbgs() << "Inlining calls into " << Caller->getName()
|
||
<< "\n");
|
||
// First step: collect all the functions we want to inline. We
|
||
// don't change anything yet so that the dominator information
|
||
// remains valid.
|
||
SmallVector<FullApplySite, 8> AppliesToInline;
|
||
collectAppliesToInline(Caller, AppliesToInline);
|
||
bool invalidatedStackNesting = false;
|
||
|
||
if (AppliesToInline.empty())
|
||
return false;
|
||
|
||
InstructionDeleter deleter;
|
||
|
||
// Second step: do the actual inlining.
|
||
// We inline in reverse order, because for very large blocks with many applies
|
||
// to inline, splitting the block at every apply would be quadratic.
|
||
for (auto AI : llvm::reverse(AppliesToInline)) {
|
||
SILFunction *Callee = AI.getReferencedFunctionOrNull();
|
||
assert(Callee && "apply_inst does not have a direct callee anymore");
|
||
|
||
if (!Callee->shouldOptimize()) {
|
||
continue;
|
||
}
|
||
|
||
// If we have a callee that doesn't have ownership, but the caller does have
|
||
// ownership... do not inline. The two modes are incompatible, so skip this
|
||
// apply site for now.
|
||
if (!Callee->hasOwnership() && Caller->hasOwnership()) {
|
||
LLVM_DEBUG(llvm::dbgs()
|
||
<< "Not inlining non-ossa " << Caller->getName() << "\n");
|
||
continue;
|
||
}
|
||
|
||
LLVM_DEBUG(dumpCaller(Caller); llvm::dbgs()
|
||
<< " inline [" << Callee->size() << "->"
|
||
<< Caller->size() << "] "
|
||
<< Callee->getName() << "\n");
|
||
|
||
// Note that this must happen before inlining as the apply instruction
|
||
// will be deleted after inlining.
|
||
invalidatedStackNesting |= SILInliner::invalidatesStackNesting(AI);
|
||
|
||
if (SILPrintInliningCallee) {
|
||
printInliningDetailsCallee(PassName, Caller, Callee);
|
||
}
|
||
if (SILPrintInliningCallerBefore) {
|
||
printInliningDetailsCallerBefore(PassName, Caller, Callee);
|
||
}
|
||
// We've already determined we should be able to inline this, so
|
||
// unconditionally inline the function.
|
||
//
|
||
// If for whatever reason we can not inline this function, inlineFullApply
|
||
// will assert, so we are safe making this assumption.
|
||
SILInliner::inlineFullApply(AI, SILInliner::InlineKind::PerformanceInline,
|
||
FuncBuilder, deleter);
|
||
// When inlining an OSSA function into a non-OSSA function, ownership of
|
||
// nonescaping closures is lowered. At that point, they are recognized as
|
||
// stack users. Since they weren't recognized as such before, they may not
|
||
// satisfy stack discipline. Fix that up now.
|
||
invalidatedStackNesting |=
|
||
Callee->hasOwnership() && !Caller->hasOwnership();
|
||
++NumFunctionsInlined;
|
||
if (SILPrintInliningCallerAfter) {
|
||
printInliningDetailsCallerAfter(PassName, Caller, Callee);
|
||
}
|
||
if (EnableVerifyAfterEachInlining) {
|
||
deleter.cleanupDeadInstructions();
|
||
|
||
// The inliner splits blocks at call sites. Re-merge trivial branches to
|
||
// reestablish a canonical CFG.
|
||
mergeBasicBlocks(Caller);
|
||
|
||
if (invalidatedStackNesting) {
|
||
StackNesting::fixNesting(Caller);
|
||
invalidatedStackNesting = false;
|
||
}
|
||
|
||
Caller->verify();
|
||
pm->runSwiftFunctionVerification(Caller);
|
||
}
|
||
}
|
||
deleter.cleanupDeadInstructions();
|
||
|
||
// The inliner splits blocks at call sites. Re-merge trivial branches to
|
||
// reestablish a canonical CFG.
|
||
mergeBasicBlocks(Caller);
|
||
|
||
if (invalidatedStackNesting) {
|
||
StackNesting::fixNesting(Caller);
|
||
}
|
||
updateAllGuaranteedPhis(pm, Caller);
|
||
|
||
// If we were asked to verify our caller after inlining all callees we could
|
||
// find into it, do so now. This makes it easier to catch verification bugs in
|
||
// the inliner without running the entire inliner.
|
||
if (EnableVerifyAfterInlining) {
|
||
Caller->verify();
|
||
pm->runSwiftFunctionVerification(Caller);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
// Find functions in cold blocks which are forced to be inlined.
|
||
// All other functions are not inlined in cold blocks.
|
||
void SILPerformanceInliner::visitColdBlocks(
|
||
SmallVectorImpl<FullApplySite> &AppliesToInline, SILBasicBlock *Root,
|
||
DominanceInfo *DT, int numCallerBlocks) {
|
||
DominanceOrder domOrder(Root, DT);
|
||
while (SILBasicBlock *block = domOrder.getNext()) {
|
||
for (SILInstruction &I : *block) {
|
||
auto *AI = dyn_cast<ApplyInst>(&I);
|
||
if (!AI)
|
||
continue;
|
||
|
||
auto *Callee = getEligibleFunction(AI, WhatToInline, SRA);
|
||
if (Callee && decideInColdBlock(AI, Callee, numCallerBlocks)) {
|
||
AppliesToInline.push_back(AI);
|
||
}
|
||
}
|
||
domOrder.pushChildren(block);
|
||
}
|
||
}
|
||
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Performance Inliner Pass
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
class SILPerformanceInlinerPass : public SILFunctionTransform {
|
||
/// Specifies which functions not to inline, based on @_semantics and
|
||
/// global_init attributes.
|
||
InlineSelection WhatToInline;
|
||
std::string PassName;
|
||
|
||
public:
|
||
SILPerformanceInlinerPass(InlineSelection WhatToInline, StringRef LevelName):
|
||
WhatToInline(WhatToInline), PassName(LevelName) {}
|
||
|
||
void run() override {
|
||
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
|
||
PostDominanceAnalysis *PDA = PM->getAnalysis<PostDominanceAnalysis>();
|
||
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
|
||
BasicCalleeAnalysis *BCA = PM->getAnalysis<BasicCalleeAnalysis>();
|
||
IsSelfRecursiveAnalysis *SRA = PM->getAnalysis<IsSelfRecursiveAnalysis>();
|
||
OptRemark::Emitter ORE(DEBUG_TYPE, *getFunction());
|
||
|
||
if (getOptions().InlineThreshold == 0) {
|
||
return;
|
||
}
|
||
|
||
auto OptMode = getFunction()->getEffectiveOptimizationMode();
|
||
|
||
SILOptFunctionBuilder FuncBuilder(*this);
|
||
|
||
SILPerformanceInliner Inliner(getID(), FuncBuilder, WhatToInline,
|
||
getPassManager(), DA, PDA, LA, BCA, SRA,
|
||
OptMode, ORE);
|
||
|
||
assert(getFunction()->isDefinition() &&
|
||
"Expected only functions with bodies!");
|
||
|
||
// Inline things into this function, and if we do so invalidate
|
||
// analyses for this function and restart the pipeline so that we
|
||
// can further optimize this function before attempting to inline
|
||
// in it again.
|
||
if (Inliner.inlineCallsIntoFunction(getFunction())) {
|
||
removeUnreachableBlocks(*getFunction());
|
||
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
||
restartPassPipeline();
|
||
}
|
||
}
|
||
|
||
};
|
||
} // end anonymous namespace
|
||
|
||
SILTransform *swift::createAlwaysInlineInliner() {
|
||
return new SILPerformanceInlinerPass(InlineSelection::OnlyInlineAlways,
|
||
"InlineAlways Performance Inliner");
|
||
}
|
||
|
||
/// Create an inliner pass that does not inline functions that are marked with
|
||
/// the @_semantics or @_effects attributes.
|
||
SILTransform *swift::createEarlyPerfInliner() {
|
||
return new SILPerformanceInlinerPass(
|
||
InlineSelection::NoSemanticsAndEffects, "Early Performance Inliner");
|
||
}
|
||
|
||
/// Create an inliner pass that inlines all functions that are marked with
|
||
/// the @_semantics, @_effects or global_init attributes.
|
||
SILTransform *swift::createPerfInliner() {
|
||
return new SILPerformanceInlinerPass(
|
||
InlineSelection::Everything, "Performance Inliner");
|
||
}
|