mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The SIL optimizer has fundamental bugs that result in dropping non-Copyable struct & enum the deinitializers. Fix this by 1. correctly representing the ownership of struct & enum values that are initialized from trivial values. 2. checking move-only types before deleting forwarding instructions. These bugs block other bug fixes. They are exposed by other unrelated SIL optimizations to SIL. I'm sure its possible to expose the bugs with source-level tests, but the current order of inlining and deinit devirtualization has been hiding the bugs and complicates reproduction.
625 lines
24 KiB
C++
625 lines
24 KiB
C++
//===--- CanonicalizeInstruction.cpp - canonical SIL peepholes ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// SSA-peephole transformations that yield a more canonical SIL representation.
|
|
///
|
|
/// A superset of simplifyInstruction.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// CanonicalizeInstruction defines a default DEBUG_TYPE: "sil-canonicalize"
|
|
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SILOptimizer/Utils/CanonicalizeInstruction.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
|
|
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
// Tracing within the implementation can also be activated by the pass.
|
|
#define DEBUG_TYPE pass.debugType
|
|
|
|
// Vtable anchor.
|
|
CanonicalizeInstruction::~CanonicalizeInstruction() {}
|
|
|
|
// Helper to delete an instruction, or mark it for deletion.
|
|
//
|
|
// Return an iterator to the next non-deleted instruction. The incoming iterator
|
|
// may already have advanced beyond 'inst'.
|
|
static SILBasicBlock::iterator killInstruction(SILInstruction *inst,
|
|
SILBasicBlock::iterator nextII,
|
|
CanonicalizeInstruction &pass) {
|
|
if (nextII == inst->getIterator())
|
|
++nextII;
|
|
pass.killInstruction(inst);
|
|
return nextII;
|
|
}
|
|
|
|
// Helper to delete, or mark for deletion, an instruction with potential debug
|
|
// or end of scope uses. All "real" uses must already be removed.
|
|
//
|
|
// fix_lifetime uses are not currently handled here. They are generally
|
|
// (incorrectly) treated as "incidental" uses, but no canonicalizations need
|
|
// them yet.
|
|
static SILBasicBlock::iterator
|
|
killInstAndIncidentalUses(SingleValueInstruction *inst,
|
|
SILBasicBlock::iterator nextII,
|
|
CanonicalizeInstruction &pass) {
|
|
while (!inst->use_empty()) {
|
|
auto *user = inst->use_begin()->getUser();
|
|
assert(user->isDebugInstruction() || isEndOfScopeMarker(user));
|
|
nextII = killInstruction(user, nextII, pass);
|
|
}
|
|
return killInstruction(inst, nextII, pass);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Simplification
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// If simplification is successful, return a valid iterator to the next
|
|
// instruction that wasn't erased.
|
|
static std::optional<SILBasicBlock::iterator>
|
|
simplifyAndReplace(SILInstruction *inst, CanonicalizeInstruction &pass) {
|
|
// Erase the simplified instruction and any instructions that end its
|
|
// scope. Nothing needs to be added to the worklist except for Result,
|
|
// because the instruction and all non-replaced users will be deleted.
|
|
pass.callbacks.resetHadCallbackInvocation();
|
|
auto result = simplifyAndReplaceAllSimplifiedUsesAndErase(
|
|
inst, pass.callbacks, &pass.deadEndBlocks);
|
|
if (!pass.callbacks.hadCallbackInvocation())
|
|
return std::nullopt;
|
|
|
|
return result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Canonicalize Memory Operations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Replace all uses of an original struct or tuple extract instruction with the
|
|
// given load instruction. The caller ensures that the load only loads the
|
|
// extracted field.
|
|
//
|
|
// \p extract has the form:
|
|
// (struct_extract (load %base), #field)
|
|
//
|
|
// \p loadInst has the form:
|
|
// (load (struct_element_addr %base, #field)
|
|
static void replaceUsesOfExtract(SingleValueInstruction *extract,
|
|
LoadOperation loadInst,
|
|
CanonicalizeInstruction &pass) {
|
|
assert(extract->getType() == loadInst->getType());
|
|
|
|
SingleValueInstruction *loadedVal = *loadInst;
|
|
if (auto qual = loadInst.getOwnershipQualifier()) {
|
|
if (*qual == LoadOwnershipQualifier::Copy) {
|
|
// Borrow the load-copied subelement, with precisely the same scope as
|
|
// the aggregate borrow.
|
|
assert(extract->getNumOperands() == 1);
|
|
auto *origBorrow = cast<BeginBorrowInst>(extract->getOperand(0));
|
|
auto *newBorrow = SILBuilderWithScope(origBorrow)
|
|
.createBeginBorrow(loadInst->getLoc(), *loadInst);
|
|
pass.notifyNewInstruction(newBorrow);
|
|
|
|
assert(extract == origBorrow->getSingleNonEndingUse()->getUser());
|
|
for (auto *origEnd : origBorrow->getEndBorrows()) {
|
|
auto *endBorrow = SILBuilderWithScope(origEnd).createEndBorrow(
|
|
origEnd->getLoc(), newBorrow);
|
|
pass.notifyNewInstruction(endBorrow);
|
|
}
|
|
loadedVal = newBorrow;
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "Replacing " << *extract << " with "
|
|
<< *loadedVal << "\n");
|
|
extract->replaceAllUsesWith(loadedVal);
|
|
}
|
|
|
|
// Given a load with multiple struct_extracts/tuple_extracts and no other uses,
|
|
// canonicalize the load into several (struct_element_addr (load)) pairs.
|
|
//
|
|
// (struct_extract (load %base))
|
|
// ->
|
|
// (load (struct_element_addr %base, #field)
|
|
static SILBasicBlock::iterator
|
|
splitAggregateLoad(LoadOperation loadInst, CanonicalizeInstruction &pass) {
|
|
auto *block = loadInst->getParentBlock();
|
|
auto *instBeforeLoad = loadInst->getPreviousInstruction();
|
|
// Keep track of the next iterator after any newly added or to-be-deleted
|
|
// instructions. This must be valid regardless of whether the pass immediately
|
|
// deletes the instructions or simply records them for later deletion.
|
|
auto nextII = std::next(loadInst->getIterator());
|
|
|
|
bool needsBorrow;
|
|
if (auto qual = loadInst.getOwnershipQualifier()) {
|
|
switch (*qual) {
|
|
case LoadOwnershipQualifier::Unqualified:
|
|
case LoadOwnershipQualifier::Trivial:
|
|
needsBorrow = false;
|
|
break;
|
|
case LoadOwnershipQualifier::Copy:
|
|
needsBorrow = true;
|
|
break;
|
|
case LoadOwnershipQualifier::Take:
|
|
// TODO: To handle a "take", we would need to generate additional destroys
|
|
// for any fields that aren't already extracted. This would be
|
|
// out-of-place for this transform, and I'm not sure if this a case that
|
|
// needs to be handled in CanonicalizeInstruction.
|
|
return nextII;
|
|
}
|
|
} else {
|
|
// If we don't have a qual, we have a borrow.
|
|
needsBorrow = false;
|
|
}
|
|
|
|
struct ProjInstPair {
|
|
Projection proj;
|
|
SingleValueInstruction *extract;
|
|
|
|
// When sorting, just look at the projection and ignore the instruction.
|
|
// Including the instruction address in the sort key would be
|
|
// nondeterministic.
|
|
bool operator<(const ProjInstPair &rhs) const { return proj < rhs.proj; }
|
|
};
|
|
|
|
// Add load projections to a projection list.
|
|
llvm::SmallVector<ProjInstPair, 8> projections;
|
|
llvm::SmallVector<BeginBorrowInst *, 8> borrows;
|
|
llvm::SmallVector<SILInstruction *, 8> lifetimeEndingInsts;
|
|
for (auto *use : getNonDebugUses(*loadInst)) {
|
|
auto *user = use->getUser();
|
|
if (needsBorrow) {
|
|
if (auto *destroy = dyn_cast<DestroyValueInst>(user)) {
|
|
lifetimeEndingInsts.push_back(destroy);
|
|
continue;
|
|
}
|
|
auto *borrow = dyn_cast<BeginBorrowInst>(user);
|
|
if (!borrow)
|
|
return nextII;
|
|
|
|
// The transformation below also assumes a single borrow use.
|
|
auto *borrowedOper = borrow->getSingleNonEndingUse();
|
|
if (!borrowedOper)
|
|
return nextII;
|
|
|
|
borrows.push_back(borrow);
|
|
user = borrowedOper->getUser();
|
|
} else {
|
|
if (isa<EndBorrowInst>(user) &&
|
|
!loadInst.getOwnershipQualifier().has_value()) {
|
|
lifetimeEndingInsts.push_back(user);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we have any non SEI, TEI instruction, don't do anything here.
|
|
if (!isa<StructExtractInst>(user) && !isa<TupleExtractInst>(user))
|
|
return nextII;
|
|
|
|
auto extract = cast<SingleValueInstruction>(user);
|
|
projections.push_back({Projection(extract), extract});
|
|
}
|
|
// Sort the list so projections with the same value decl and tuples with the
|
|
// same indices will be processed together. This makes it easy to reuse the
|
|
// load from the first such projection for all subsequent projections on the
|
|
// same value decl or index.
|
|
std::sort(projections.begin(), projections.end());
|
|
|
|
// If the original load is dead, then do not delete it before
|
|
// diagnostics. Doing so would suppress DefiniteInitialization in cases like:
|
|
//
|
|
// struct S {
|
|
// let a: Int
|
|
// init() {
|
|
// _ = a // must be diagnosed as use before initialization
|
|
// a = 0
|
|
// }
|
|
// }
|
|
//
|
|
// However, if the load has any projections, it must be deleted, otherwise
|
|
// exclusivity checking is too strict:
|
|
//
|
|
// extension S {
|
|
// mutating func foo() {
|
|
// _ = a // Must be diagnosed as a read of self.a only not the whole self.
|
|
// }
|
|
// }
|
|
//
|
|
// Also, avoid degrading debug info unless it is necessary for exclusivity
|
|
// diagnostics.
|
|
//
|
|
// TODO: This logic subtly anticipates SILGen behavior. In the future, change
|
|
// SILGen to avoid emitting the full load and never delete loads in Raw SIL.
|
|
if (projections.empty() && loadInst->getModule().getStage() == SILStage::Raw)
|
|
return nextII;
|
|
|
|
// Create a new address projection instruction and load instruction for each
|
|
// unique projection.
|
|
Projection *lastProj = nullptr;
|
|
std::optional<LoadOperation> lastNewLoad;
|
|
for (auto &pair : projections) {
|
|
auto &proj = pair.proj;
|
|
auto *extract = pair.extract;
|
|
|
|
// If this projection is the same as the last projection we processed, just
|
|
// replace all uses of the projection with the load we created previously.
|
|
if (lastProj && proj == *lastProj) {
|
|
replaceUsesOfExtract(extract, *lastNewLoad, pass);
|
|
nextII = killInstruction(extract, nextII, pass);
|
|
continue;
|
|
}
|
|
|
|
// This is a unique projection. Create the new address projection and load.
|
|
lastProj = &proj;
|
|
// Insert new instructions before the original load.
|
|
SILBuilderWithScope LoadBuilder(*loadInst);
|
|
auto *projInst =
|
|
proj.createAddressProjection(LoadBuilder, loadInst->getLoc(),
|
|
loadInst->getOperand(0))
|
|
.get();
|
|
pass.notifyNewInstruction(projInst);
|
|
|
|
// When loading a trivial subelement, convert ownership.
|
|
std::optional<LoadOwnershipQualifier> loadOwnership =
|
|
loadInst.getOwnershipQualifier();
|
|
if (loadOwnership.has_value()) {
|
|
if (*loadOwnership != LoadOwnershipQualifier::Unqualified &&
|
|
projInst->getType().isTrivial(*projInst->getFunction()))
|
|
loadOwnership = LoadOwnershipQualifier::Trivial;
|
|
} else {
|
|
if (projInst->getType().isTrivial(*projInst->getFunction()))
|
|
loadOwnership = LoadOwnershipQualifier::Trivial;
|
|
}
|
|
|
|
if (loadOwnership) {
|
|
lastNewLoad =
|
|
LoadBuilder.createLoad(loadInst->getLoc(), projInst, *loadOwnership);
|
|
} else {
|
|
lastNewLoad = LoadBuilder.createLoadBorrow(loadInst->getLoc(), projInst);
|
|
}
|
|
pass.notifyNewInstruction(**lastNewLoad);
|
|
|
|
if (loadOwnership) {
|
|
if (*loadOwnership == LoadOwnershipQualifier::Copy) {
|
|
// Destroy the loaded value wherever the aggregate load was destroyed.
|
|
assert(loadInst.getOwnershipQualifier() ==
|
|
LoadOwnershipQualifier::Copy);
|
|
for (SILInstruction *destroy : lifetimeEndingInsts) {
|
|
auto *newInst = SILBuilderWithScope(destroy).createDestroyValue(
|
|
destroy->getLoc(), lastNewLoad->getLoadInst());
|
|
pass.notifyNewInstruction(newInst);
|
|
}
|
|
}
|
|
} else {
|
|
for (SILInstruction *destroy : lifetimeEndingInsts) {
|
|
auto *newInst = SILBuilderWithScope(destroy).createEndBorrow(
|
|
destroy->getLoc(), **lastNewLoad);
|
|
pass.notifyNewInstruction(newInst);
|
|
}
|
|
}
|
|
replaceUsesOfExtract(extract, *lastNewLoad, pass);
|
|
nextII = killInstruction(extract, nextII, pass);
|
|
}
|
|
|
|
// Preserve the original load's debug information.
|
|
if (pass.preserveDebugInfo) {
|
|
swift::salvageLoadDebugInfo(loadInst);
|
|
}
|
|
// Remove the now unused borrows.
|
|
for (auto *borrow : borrows)
|
|
nextII = killInstAndIncidentalUses(borrow, nextII, pass);
|
|
|
|
// Erase the old load.
|
|
for (auto *destroy : lifetimeEndingInsts)
|
|
nextII = killInstruction(destroy, nextII, pass);
|
|
|
|
// TODO: remove this hack to advance the iterator beyond debug_value and check
|
|
// SILInstruction::isDeleted() in the caller instead.
|
|
while (nextII != loadInst->getParent()->end()
|
|
&& nextII->isDebugInstruction()) {
|
|
++nextII;
|
|
}
|
|
deleteAllDebugUses(*loadInst, pass.getCallbacks());
|
|
nextII = killInstAndIncidentalUses(*loadInst, nextII, pass);
|
|
/// A change has been made; and the load instruction is deleted. The caller
|
|
/// should now process the instruction where the load was before.
|
|
///
|
|
/// BEFORE TRANSFORM | AFTER TRANSFORM
|
|
/// prequel_2 | prequel_2
|
|
/// prequel_1 | prequel_1
|
|
/// load | +-> ???
|
|
/// sequel_1 | | ???
|
|
/// sequel_2 | | ???
|
|
/// |
|
|
/// The instruction the caller should process next.
|
|
if (instBeforeLoad)
|
|
return instBeforeLoad->getNextInstruction()->getIterator();
|
|
else
|
|
return block->begin();
|
|
}
|
|
|
|
// Given a store within a single property struct, recursively form the parent
|
|
// struct values and promote the store to the outer struct type.
|
|
//
|
|
// (store (struct_element_addr %base) object)
|
|
// ->
|
|
// (store %base (struct object))
|
|
//
|
|
// TODO: supporting enums here would be very easy. The main thing is adding
|
|
// support in `createAggFromFirstLevelProjections`.
|
|
// Note: we will not be able to support tuples because we cannot have a
|
|
// single-element tuple.
|
|
static SILBasicBlock::iterator
|
|
broadenSingleElementStores(StoreInst *storeInst,
|
|
CanonicalizeInstruction &pass) {
|
|
// Keep track of the next iterator after any newly added or to-be-deleted
|
|
// instructions. This must be valid regardless of whether the pass immediately
|
|
// deletes the instructions or simply records them for later deletion.
|
|
auto nextII = std::next(storeInst->getIterator());
|
|
auto *f = storeInst->getFunction();
|
|
|
|
ProjectionPath projections(storeInst->getDest()->getType());
|
|
SILValue op = storeInst->getDest();
|
|
while (isa<StructElementAddrInst>(op)) {
|
|
auto *inst = cast<SingleValueInstruction>(op);
|
|
SILValue baseAddr = inst->getOperand(0);
|
|
SILType baseAddrType = baseAddr->getType();
|
|
auto *decl = baseAddrType.getStructOrBoundGenericStruct();
|
|
assert(
|
|
!decl->isResilient(f->getModule().getSwiftModule(),
|
|
f->getResilienceExpansion()) &&
|
|
"This code assumes resilient structs can not have fragile fields. If "
|
|
"this assert is hit, this has been changed. Please update this code.");
|
|
|
|
// Bail if the store's destination is not a struct_element_addr or if the
|
|
// store's destination (%base) is not a loadable type. If %base is not a
|
|
// loadable type, we can't create it as a struct later on.
|
|
// If our aggregate has unreferenced storage then we can never prove if it
|
|
// actually has a single field.
|
|
if (!baseAddrType.isLoadable(*f) ||
|
|
baseAddrType.aggregateHasUnreferenceableStorage() ||
|
|
decl->getStoredProperties().size() != 1)
|
|
break;
|
|
|
|
// If the struct is a move-only type, even though the single element in
|
|
// the struct is trivial, the struct would be non-trivial. In this case, we
|
|
// need a much more compelx analysis to determine the store ownership
|
|
// qualifier. Such an analysis is not suitable in the canonicalize pass. So,
|
|
// bail out.
|
|
if (baseAddrType.isMoveOnly()) {
|
|
break;
|
|
}
|
|
projections.push_back(Projection(inst));
|
|
op = baseAddr;
|
|
}
|
|
|
|
// If we couldn't create a projection, bail.
|
|
if (projections.empty())
|
|
return nextII;
|
|
|
|
// Now work our way back up. At this point we know all operations we are going
|
|
// to do succeed (cast<SingleValueInst>, createAggFromFirstLevelProjections,
|
|
// etc.) so we can omit null checks. We should not bail at this point (we
|
|
// could create a double consume, or worse).
|
|
SILBuilderWithScope builder(storeInst);
|
|
SILValue result = storeInst->getSrc();
|
|
SILValue storeAddr = storeInst->getDest();
|
|
for (Projection proj : llvm::reverse(projections)) {
|
|
storeAddr = cast<SingleValueInstruction>(storeAddr)->getOperand(0);
|
|
result = proj.createAggFromFirstLevelProjections(
|
|
builder, storeInst->getLoc(),
|
|
storeAddr->getType().getObjectType(), {result})
|
|
.get();
|
|
}
|
|
|
|
// Store the new struct-wrapped value into the final base address.
|
|
builder.createStore(storeInst->getLoc(), result, storeAddr,
|
|
storeInst->getOwnershipQualifier());
|
|
|
|
// Erase the original store.
|
|
return killInstruction(storeInst, nextII, pass);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Simple ARC Peepholes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// "dead" copies are removed in OSSA, but this may shorten object lifetimes,
|
|
/// changing program semantics in unexpected ways by releasing weak references
|
|
/// and running deinitializers early. This copy may be the only thing keeping a
|
|
/// variable's reference alive. But just because the copy's current SSA value
|
|
/// contains no other uses does not mean that there aren't other uses that still
|
|
/// correspond to the original variable whose lifetime is protected by this
|
|
/// copy. The only way to guarantee the lifetime of a variable is to use a
|
|
/// borrow scope--copy/destroy is insufficient by itself.
|
|
///
|
|
/// FIXME: This removes debug_value instructions aggressively as part of
|
|
/// SILGenCleanup. Instead, debug_values should be canonicalized before copy
|
|
/// elimination so that we never see the pattern:
|
|
/// %b = begin_borrow
|
|
/// %c = copy %b
|
|
/// end_borrow %b
|
|
/// debug_value %c
|
|
///
|
|
/// FIXME: Technically this should be guarded by a compiler flag like
|
|
/// -enable-copy-propagation until SILGen protects scoped variables by
|
|
/// borrow scopes.
|
|
static SILBasicBlock::iterator
|
|
eliminateSimpleCopies(CopyValueInst *cvi, CanonicalizeInstruction &pass) {
|
|
auto next = std::next(cvi->getIterator());
|
|
|
|
// Eliminate copies that only have destroy_value uses.
|
|
SmallVector<DestroyValueInst *, 8> destroys;
|
|
for (Operand *use : cvi->getUses()) {
|
|
if (auto *dvi = dyn_cast<DestroyValueInst>(use->getUser())) {
|
|
destroys.push_back(dvi);
|
|
continue;
|
|
}
|
|
if (!pass.preserveDebugInfo && isa<DebugValueInst>(use->getUser())) {
|
|
continue;
|
|
}
|
|
return next;
|
|
}
|
|
|
|
while (!destroys.empty()) {
|
|
next = killInstruction(destroys.pop_back_val(), next, pass);
|
|
}
|
|
return killInstAndIncidentalUses(cvi, next, pass);
|
|
}
|
|
|
|
/// Unlike dead copy elimination, dead borrows can be safely removed because the
|
|
/// semantics of a borrow scope
|
|
static SILBasicBlock::iterator
|
|
eliminateSimpleBorrows(BeginBorrowInst *bbi, CanonicalizeInstruction &pass) {
|
|
auto next = std::next(bbi->getIterator());
|
|
|
|
// Lexical borrow scopes can only be eliminated under certain circumstances:
|
|
// (1) They can never be eliminated if the module is in the raw stage, because
|
|
// they may be needed for diagnostic.
|
|
// (2) They can never be eliminated if there is no enclosing lexical scope
|
|
// which guarantees the lifetime of the value.
|
|
if (bbi->isLexical() && (bbi->getModule().getStage() == SILStage::Raw ||
|
|
!isNestedLexicalBeginBorrow(bbi)))
|
|
return next;
|
|
|
|
// Fixed borrow scopes can't be eliminated during the raw stage since they
|
|
// control move checker behavior.
|
|
if (bbi->isFixed() && bbi->getModule().getStage() == SILStage::Raw) {
|
|
return next;
|
|
}
|
|
|
|
// Borrow scopes representing a VarDecl can't be eliminated during the raw
|
|
// stage because they may be needed for diagnostics.
|
|
if (bbi->isFromVarDecl() && bbi->getModule().getStage() == SILStage::Raw) {
|
|
return next;
|
|
}
|
|
|
|
// We know that our borrow is completely within the lifetime of its base value
|
|
// if the borrow is never reborrowed. We check for reborrows and do not
|
|
// optimize such cases. Otherwise, we can eliminate our borrow and instead use
|
|
// our operand.
|
|
auto base = bbi->getOperand();
|
|
auto baseOwnership = base->getOwnershipKind();
|
|
SmallVector<EndBorrowInst *, 8> endBorrows;
|
|
for (auto *use : getNonDebugUses(bbi)) {
|
|
if (auto *ebi = dyn_cast<EndBorrowInst>(use->getUser())) {
|
|
endBorrows.push_back(ebi);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, if we have a use that is non-lifetime ending and can accept
|
|
// our base ownership, continue.
|
|
if (!use->isLifetimeEnding() && use->canAcceptKind(baseOwnership))
|
|
continue;
|
|
|
|
return next;
|
|
}
|
|
|
|
while (!endBorrows.empty()) {
|
|
next = killInstruction(endBorrows.pop_back_val(), next, pass);
|
|
}
|
|
bbi->replaceAllUsesWith(base);
|
|
pass.notifyHasNewUsers(base);
|
|
return killInstruction(bbi, next, pass);
|
|
}
|
|
|
|
/// Delete any result having forwarding instruction that only has destroy_value
|
|
/// and debug_value uses.
|
|
static SILBasicBlock::iterator
|
|
eliminateUnneededForwardingUnarySingleValueInst(SingleValueInstruction *inst,
|
|
CanonicalizeInstruction &pass) {
|
|
auto next = std::next(inst->getIterator());
|
|
if (inst->getType().isValueTypeWithDeinit()) {
|
|
// Avoid bypassing non-Copyable struct/enum deinitializers.
|
|
return next;
|
|
}
|
|
if (isa<DropDeinitInst>(inst))
|
|
return next;
|
|
if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(inst)) {
|
|
if (uedi->getOperand()->getType().isValueTypeWithDeinit())
|
|
return next;
|
|
}
|
|
for (auto *use : getNonDebugUses(inst)) {
|
|
if (auto *destroy = dyn_cast<DestroyValueInst>(use->getUser())) {
|
|
if (destroy->isFullDeinitialization())
|
|
continue;
|
|
}
|
|
return next;
|
|
}
|
|
deleteAllDebugUses(inst, pass.callbacks);
|
|
SILValue op = inst->getOperand(0);
|
|
inst->replaceAllUsesWith(op);
|
|
pass.notifyHasNewUsers(op);
|
|
return killInstruction(inst, next, pass);
|
|
}
|
|
|
|
static std::optional<SILBasicBlock::iterator>
|
|
tryEliminateUnneededForwardingInst(SILInstruction *i,
|
|
CanonicalizeInstruction &pass) {
|
|
assert(ForwardingInstruction::isa(i) &&
|
|
"Must be an ownership forwarding inst");
|
|
if (auto *svi = dyn_cast<SingleValueInstruction>(i))
|
|
if (svi->getNumOperands() == 1)
|
|
return eliminateUnneededForwardingUnarySingleValueInst(svi, pass);
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Level Entry Point
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SILBasicBlock::iterator
|
|
CanonicalizeInstruction::canonicalize(SILInstruction *inst) {
|
|
if (auto nextII = simplifyAndReplace(inst, *this))
|
|
return nextII.value();
|
|
|
|
if (auto li = LoadOperation(inst)) {
|
|
return splitAggregateLoad(li, *this);
|
|
}
|
|
if (auto *storeInst = dyn_cast<StoreInst>(inst)) {
|
|
return broadenSingleElementStores(storeInst, *this);
|
|
}
|
|
|
|
if (auto *cvi = dyn_cast<CopyValueInst>(inst))
|
|
return eliminateSimpleCopies(cvi, *this);
|
|
|
|
if (auto *bbi = dyn_cast<BeginBorrowInst>(inst))
|
|
return eliminateSimpleBorrows(bbi, *this);
|
|
|
|
// If we have ownership and are not in raw SIL, eliminate unneeded forwarding
|
|
// insts. We don't do this in raw SIL as not to disturb the codegen read by
|
|
// diagnostics.
|
|
//
|
|
// TODO: fix tryEliminateUnneededForwardingInst to handle debug uses.
|
|
auto *fn = inst->getFunction();
|
|
if (!preserveDebugInfo && fn->hasOwnership()
|
|
&& fn->getModule().getStage() != SILStage::Raw) {
|
|
if (ForwardingInstruction::isa(inst))
|
|
if (auto newNext = tryEliminateUnneededForwardingInst(inst, *this))
|
|
return *newNext;
|
|
}
|
|
|
|
// Skip ahead.
|
|
return std::next(inst->getIterator());
|
|
}
|