Files
swift-mirror/include/swift/SIL/Dominance.h
Meghana Gupta 423aa007f3 Add LLVM_ATTRIBUTE_USED to DominanceInfo::dump
This function was unavailable in the debugger because it was getting
optimized away.
2024-09-05 14:19:22 -07:00

291 lines
9.4 KiB
C++

//===--- Dominance.h - SIL dominance analysis -------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides interfaces for computing and working with
// control-flow dominance in SIL.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_DOMINANCE_H
#define SWIFT_SIL_DOMINANCE_H
#include "llvm/Support/GenericDomTree.h"
#include "swift/Basic/ScopedTracking.h"
#include "swift/SIL/CFG.h"
extern template class llvm::DominatorTreeBase<swift::SILBasicBlock, false>;
extern template class llvm::DominatorTreeBase<swift::SILBasicBlock, true>;
extern template class llvm::DomTreeNodeBase<swift::SILBasicBlock>;
namespace llvm {
namespace DomTreeBuilder {
using SILDomTree = llvm::DomTreeBase<swift::SILBasicBlock>;
using SILPostDomTree = llvm::PostDomTreeBase<swift::SILBasicBlock>;
extern template void Calculate<SILDomTree>(SILDomTree &DT);
extern template void Calculate<SILPostDomTree>(SILPostDomTree &DT);
} // namespace DomTreeBuilder
} // namespace llvm
namespace swift {
using DominatorTreeBase = llvm::DominatorTreeBase<swift::SILBasicBlock, false>;
using PostDominatorTreeBase = llvm::DominatorTreeBase<swift::SILBasicBlock, true>;
using DominanceInfoNode = llvm::DomTreeNodeBase<SILBasicBlock>;
/// A class for computing basic dominance information.
class DominanceInfo : public DominatorTreeBase {
using super = DominatorTreeBase;
public:
DominanceInfo(SILFunction *F);
~DominanceInfo();
/// Does instruction A properly dominate instruction B?
bool properlyDominates(SILInstruction *a, SILInstruction *b);
/// Does instruction A dominate instruction B?
bool dominates(SILInstruction *a, SILInstruction *b) {
return a == b || properlyDominates(a, b);
}
/// Does value A properly dominate instruction B?
bool properlyDominates(SILValue a, SILInstruction *b);
/// The nearest block which dominates all the uses of \p value.
SILBasicBlock *getLeastCommonAncestorOfUses(SILValue value);
void verify() const;
/// Return true if the other dominator tree does not match this dominator
/// tree.
inline bool errorOccurredOnComparison(const DominanceInfo &Other) const {
const auto *R = getRootNode();
const auto *OtherR = Other.getRootNode();
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
return true;
// Returns *false* if they match.
if (compare(Other))
return true;
return false;
}
using DominatorTreeBase::properlyDominates;
using DominatorTreeBase::dominates;
bool isValid(SILFunction *F) const {
return getNode(&F->front()) != nullptr;
}
void reset() {
super::reset();
}
#ifndef NDEBUG
void dump() LLVM_ATTRIBUTE_USED { print(llvm::errs()); }
#endif
};
/// Compute a single block's dominance frontier.
///
/// Precondition: no critical edges
///
/// Postcondition: each block in \p boundary is dominated by \p root and either
/// exits the function or has a single successor which has a predecessor that is
/// not dominated by \p root.
void computeDominatedBoundaryBlocks(SILBasicBlock *root, DominanceInfo *domTree,
SmallVectorImpl<SILBasicBlock *> &boundary);
/// Helper class for visiting basic blocks in dominance order, based on a
/// worklist algorithm. Example usage:
/// \code
/// DominanceOrder DomOrder(Function->front(), DominanceInfo);
/// while (SILBasicBlock *block = DomOrder.getNext()) {
/// doSomething(block);
/// domOrder.pushChildren(block);
/// }
/// \endcode
class DominanceOrder {
SmallVector<SILBasicBlock *, 16> buffer;
DominanceInfo *DT;
size_t srcIdx = 0;
public:
/// Constructor.
/// \p entry The root of the dominator (sub-)tree.
/// \p DT The dominance info of the function.
/// \p capacity Should be the number of basic blocks in the dominator tree to
/// reduce memory allocation.
DominanceOrder(SILBasicBlock *root, DominanceInfo *DT, int capacity = 0) :
DT(DT) {
buffer.reserve(capacity);
buffer.push_back(root);
}
/// Gets the next block from the worklist.
///
SILBasicBlock *getNext() {
if (srcIdx == buffer.size())
return nullptr;
return buffer[srcIdx++];
}
/// Pushes the dominator children of a block onto the worklist.
void pushChildren(SILBasicBlock *block) {
pushChildrenIf(block, [] (SILBasicBlock *) { return true; });
}
/// Conditionally pushes the dominator children of a block onto the worklist.
/// \p pred Takes a block (= a dominator child) as argument and returns true
/// if it should be added to the worklist.
///
template <typename Pred> void pushChildrenIf(SILBasicBlock *block, Pred pred) {
DominanceInfoNode *DINode = DT->getNode(block);
for (auto *DIChild : *DINode) {
SILBasicBlock *child = DIChild->getBlock();
if (pred(child))
buffer.push_back(DIChild->getBlock());
}
}
};
/// A class for computing basic post-dominance information.
class PostDominanceInfo : public PostDominatorTreeBase {
using super = PostDominatorTreeBase;
public:
PostDominanceInfo(SILFunction *F);
bool properlyDominates(SILInstruction *A, SILInstruction *B);
bool properlyDominates(SILValue A, SILInstruction *B);
void verify() const;
/// Return true if the other dominator tree does not match this dominator
/// tree.
inline bool errorOccurredOnComparison(const PostDominanceInfo &Other) const {
const auto *R = getRootNode();
const auto *OtherR = Other.getRootNode();
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
return true;
if (!R->getBlock()) {
// The post dom-tree has multiple roots. The compare() function can not
// cope with multiple roots if at least one of the roots is caused by
// an infinite loop in the CFG (it crashes because no nodes are allocated
// for the blocks in the infinite loop).
// So we return a conservative false in this case.
// TODO: eventually fix the DominatorTreeBase::compare() function.
return false;
}
// Returns *false* if they match.
if (compare(Other))
return true;
return false;
}
bool isValid(SILFunction *F) const { return getNode(&F->front()) != nullptr; }
using super::properlyDominates;
};
/// Invoke the given callback for all the reachable blocks
/// in a function. It will be called in a depth-first,
/// dominance-consistent order.
///
/// Furthermore, prior to running each block, a tracking scope will
/// be entered for each of the trackers passed in, as if by:
///
/// typename ScopedTrackingTraits<Tracker>::scope_type scope(tracker);
///
/// This allows state to be saved and restored for each of the trackers,
/// such that each tracker will only represent state that was computed
/// in a dominating block.
template <class... Trackers, class Fn>
void runInDominanceOrderWithScopes(DominanceInfo *dominance, Fn &&fn,
Trackers &...trackers) {
using TrackingStackNode = TrackingScopes<Trackers...>;
llvm::SmallVector<std::unique_ptr<TrackingStackNode>, 8> trackingStack;
// The stack of work to do. A null item means to pop the top
// entry off the tracking stack.
llvm::SmallVector<DominanceInfoNode *, 16> workStack;
workStack.push_back(dominance->getRootNode());
while (!workStack.empty()) {
auto node = workStack.pop_back_val();
// If the node is null, pop the top entry off the tracking stack.
if (node == nullptr) {
(void) trackingStack.pop_back_val();
continue;
}
auto bb = node->getBlock();
// If the node has no children, build the stack node in local
// storage to avoid having to heap-allocate it.
if (node->isLeaf()) {
TrackingStackNode stackNode(trackers...);
fn(bb);
// Otherwise, we have to use the more general approach.
} else {
// Push a tracking stack node.
trackingStack.emplace_back(new TrackingStackNode(trackers...));
// Push a work command to pop the tracking stack node.
workStack.push_back(nullptr);
// Push all the child nodes as work items.
workStack.append(node->begin(), node->end());
fn(bb);
}
}
assert(trackingStack.empty());
}
} // end namespace swift
namespace llvm {
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
template <> struct GraphTraits<swift::DominanceInfoNode *> {
using ChildIteratorType = swift::DominanceInfoNode::const_iterator;
using NodeRef = swift::DominanceInfoNode *;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
static inline ChildIteratorType child_end(NodeRef N) { return N->end(); }
};
template <> struct GraphTraits<const swift::DominanceInfoNode *> {
using ChildIteratorType = swift::DominanceInfoNode::const_iterator;
using NodeRef = const swift::DominanceInfoNode *;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
static inline ChildIteratorType child_end(NodeRef N) { return N->end(); }
};
} // end namespace llvm
#endif