mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
291 lines
9.4 KiB
C++
291 lines
9.4 KiB
C++
//===--- Dominance.h - SIL dominance analysis -------------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides interfaces for computing and working with
|
|
// control-flow dominance in SIL.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_SIL_DOMINANCE_H
|
|
#define SWIFT_SIL_DOMINANCE_H
|
|
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
#include "swift/Basic/ScopedTracking.h"
|
|
#include "swift/SIL/CFG.h"
|
|
|
|
extern template class llvm::DominatorTreeBase<swift::SILBasicBlock, false>;
|
|
extern template class llvm::DominatorTreeBase<swift::SILBasicBlock, true>;
|
|
extern template class llvm::DomTreeNodeBase<swift::SILBasicBlock>;
|
|
|
|
namespace llvm {
|
|
namespace DomTreeBuilder {
|
|
using SILDomTree = llvm::DomTreeBase<swift::SILBasicBlock>;
|
|
using SILPostDomTree = llvm::PostDomTreeBase<swift::SILBasicBlock>;
|
|
|
|
extern template void Calculate<SILDomTree>(SILDomTree &DT);
|
|
extern template void Calculate<SILPostDomTree>(SILPostDomTree &DT);
|
|
} // namespace DomTreeBuilder
|
|
} // namespace llvm
|
|
|
|
namespace swift {
|
|
|
|
using DominatorTreeBase = llvm::DominatorTreeBase<swift::SILBasicBlock, false>;
|
|
using PostDominatorTreeBase = llvm::DominatorTreeBase<swift::SILBasicBlock, true>;
|
|
using DominanceInfoNode = llvm::DomTreeNodeBase<SILBasicBlock>;
|
|
|
|
/// A class for computing basic dominance information.
|
|
class DominanceInfo : public DominatorTreeBase {
|
|
using super = DominatorTreeBase;
|
|
public:
|
|
DominanceInfo(SILFunction *F);
|
|
|
|
~DominanceInfo();
|
|
|
|
/// Does instruction A properly dominate instruction B?
|
|
bool properlyDominates(SILInstruction *a, SILInstruction *b);
|
|
|
|
/// Does instruction A dominate instruction B?
|
|
bool dominates(SILInstruction *a, SILInstruction *b) {
|
|
return a == b || properlyDominates(a, b);
|
|
}
|
|
|
|
/// Does value A properly dominate instruction B?
|
|
bool properlyDominates(SILValue a, SILInstruction *b);
|
|
|
|
/// The nearest block which dominates all the uses of \p value.
|
|
SILBasicBlock *getLeastCommonAncestorOfUses(SILValue value);
|
|
|
|
void verify() const;
|
|
|
|
/// Return true if the other dominator tree does not match this dominator
|
|
/// tree.
|
|
inline bool errorOccurredOnComparison(const DominanceInfo &Other) const {
|
|
const auto *R = getRootNode();
|
|
const auto *OtherR = Other.getRootNode();
|
|
|
|
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
|
|
return true;
|
|
|
|
// Returns *false* if they match.
|
|
if (compare(Other))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
using DominatorTreeBase::properlyDominates;
|
|
using DominatorTreeBase::dominates;
|
|
|
|
bool isValid(SILFunction *F) const {
|
|
return getNode(&F->front()) != nullptr;
|
|
}
|
|
void reset() {
|
|
super::reset();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void dump() LLVM_ATTRIBUTE_USED { print(llvm::errs()); }
|
|
#endif
|
|
};
|
|
|
|
/// Compute a single block's dominance frontier.
|
|
///
|
|
/// Precondition: no critical edges
|
|
///
|
|
/// Postcondition: each block in \p boundary is dominated by \p root and either
|
|
/// exits the function or has a single successor which has a predecessor that is
|
|
/// not dominated by \p root.
|
|
|
|
void computeDominatedBoundaryBlocks(SILBasicBlock *root, DominanceInfo *domTree,
|
|
SmallVectorImpl<SILBasicBlock *> &boundary);
|
|
|
|
/// Helper class for visiting basic blocks in dominance order, based on a
|
|
/// worklist algorithm. Example usage:
|
|
/// \code
|
|
/// DominanceOrder DomOrder(Function->front(), DominanceInfo);
|
|
/// while (SILBasicBlock *block = DomOrder.getNext()) {
|
|
/// doSomething(block);
|
|
/// domOrder.pushChildren(block);
|
|
/// }
|
|
/// \endcode
|
|
class DominanceOrder {
|
|
|
|
SmallVector<SILBasicBlock *, 16> buffer;
|
|
DominanceInfo *DT;
|
|
size_t srcIdx = 0;
|
|
|
|
public:
|
|
|
|
/// Constructor.
|
|
/// \p entry The root of the dominator (sub-)tree.
|
|
/// \p DT The dominance info of the function.
|
|
/// \p capacity Should be the number of basic blocks in the dominator tree to
|
|
/// reduce memory allocation.
|
|
DominanceOrder(SILBasicBlock *root, DominanceInfo *DT, int capacity = 0) :
|
|
DT(DT) {
|
|
buffer.reserve(capacity);
|
|
buffer.push_back(root);
|
|
}
|
|
|
|
/// Gets the next block from the worklist.
|
|
///
|
|
SILBasicBlock *getNext() {
|
|
if (srcIdx == buffer.size())
|
|
return nullptr;
|
|
return buffer[srcIdx++];
|
|
}
|
|
|
|
/// Pushes the dominator children of a block onto the worklist.
|
|
void pushChildren(SILBasicBlock *block) {
|
|
pushChildrenIf(block, [] (SILBasicBlock *) { return true; });
|
|
}
|
|
|
|
/// Conditionally pushes the dominator children of a block onto the worklist.
|
|
/// \p pred Takes a block (= a dominator child) as argument and returns true
|
|
/// if it should be added to the worklist.
|
|
///
|
|
template <typename Pred> void pushChildrenIf(SILBasicBlock *block, Pred pred) {
|
|
DominanceInfoNode *DINode = DT->getNode(block);
|
|
for (auto *DIChild : *DINode) {
|
|
SILBasicBlock *child = DIChild->getBlock();
|
|
if (pred(child))
|
|
buffer.push_back(DIChild->getBlock());
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A class for computing basic post-dominance information.
|
|
class PostDominanceInfo : public PostDominatorTreeBase {
|
|
using super = PostDominatorTreeBase;
|
|
public:
|
|
PostDominanceInfo(SILFunction *F);
|
|
|
|
bool properlyDominates(SILInstruction *A, SILInstruction *B);
|
|
bool properlyDominates(SILValue A, SILInstruction *B);
|
|
|
|
void verify() const;
|
|
|
|
/// Return true if the other dominator tree does not match this dominator
|
|
/// tree.
|
|
inline bool errorOccurredOnComparison(const PostDominanceInfo &Other) const {
|
|
const auto *R = getRootNode();
|
|
const auto *OtherR = Other.getRootNode();
|
|
|
|
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
|
|
return true;
|
|
|
|
if (!R->getBlock()) {
|
|
// The post dom-tree has multiple roots. The compare() function can not
|
|
// cope with multiple roots if at least one of the roots is caused by
|
|
// an infinite loop in the CFG (it crashes because no nodes are allocated
|
|
// for the blocks in the infinite loop).
|
|
// So we return a conservative false in this case.
|
|
// TODO: eventually fix the DominatorTreeBase::compare() function.
|
|
return false;
|
|
}
|
|
|
|
// Returns *false* if they match.
|
|
if (compare(Other))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isValid(SILFunction *F) const { return getNode(&F->front()) != nullptr; }
|
|
|
|
using super::properlyDominates;
|
|
};
|
|
|
|
/// Invoke the given callback for all the reachable blocks
|
|
/// in a function. It will be called in a depth-first,
|
|
/// dominance-consistent order.
|
|
///
|
|
/// Furthermore, prior to running each block, a tracking scope will
|
|
/// be entered for each of the trackers passed in, as if by:
|
|
///
|
|
/// typename ScopedTrackingTraits<Tracker>::scope_type scope(tracker);
|
|
///
|
|
/// This allows state to be saved and restored for each of the trackers,
|
|
/// such that each tracker will only represent state that was computed
|
|
/// in a dominating block.
|
|
template <class... Trackers, class Fn>
|
|
void runInDominanceOrderWithScopes(DominanceInfo *dominance, Fn &&fn,
|
|
Trackers &...trackers) {
|
|
using TrackingStackNode = TrackingScopes<Trackers...>;
|
|
llvm::SmallVector<std::unique_ptr<TrackingStackNode>, 8> trackingStack;
|
|
|
|
// The stack of work to do. A null item means to pop the top
|
|
// entry off the tracking stack.
|
|
llvm::SmallVector<DominanceInfoNode *, 16> workStack;
|
|
workStack.push_back(dominance->getRootNode());
|
|
|
|
while (!workStack.empty()) {
|
|
auto node = workStack.pop_back_val();
|
|
|
|
// If the node is null, pop the top entry off the tracking stack.
|
|
if (node == nullptr) {
|
|
(void) trackingStack.pop_back_val();
|
|
continue;
|
|
}
|
|
|
|
auto bb = node->getBlock();
|
|
|
|
// If the node has no children, build the stack node in local
|
|
// storage to avoid having to heap-allocate it.
|
|
if (node->isLeaf()) {
|
|
TrackingStackNode stackNode(trackers...);
|
|
|
|
fn(bb);
|
|
|
|
// Otherwise, we have to use the more general approach.
|
|
} else {
|
|
// Push a tracking stack node.
|
|
trackingStack.emplace_back(new TrackingStackNode(trackers...));
|
|
// Push a work command to pop the tracking stack node.
|
|
workStack.push_back(nullptr);
|
|
// Push all the child nodes as work items.
|
|
workStack.append(node->begin(), node->end());
|
|
|
|
fn(bb);
|
|
}
|
|
}
|
|
|
|
assert(trackingStack.empty());
|
|
}
|
|
|
|
} // end namespace swift
|
|
|
|
namespace llvm {
|
|
|
|
/// DominatorTree GraphTraits specialization so the DominatorTree can be
|
|
/// iterable by generic graph iterators.
|
|
template <> struct GraphTraits<swift::DominanceInfoNode *> {
|
|
using ChildIteratorType = swift::DominanceInfoNode::const_iterator;
|
|
using NodeRef = swift::DominanceInfoNode *;
|
|
|
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
|
static inline ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
|
|
static inline ChildIteratorType child_end(NodeRef N) { return N->end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<const swift::DominanceInfoNode *> {
|
|
using ChildIteratorType = swift::DominanceInfoNode::const_iterator;
|
|
using NodeRef = const swift::DominanceInfoNode *;
|
|
|
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
|
static inline ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
|
|
static inline ChildIteratorType child_end(NodeRef N) { return N->end(); }
|
|
};
|
|
|
|
} // end namespace llvm
|
|
#endif
|