Files
swift-mirror/include/swift/SIL/SILFunction.h
Doug Gregor 020b69d4b6 [SE-0497] Implement @export attribute syntax
Implement the @export(implementation) and @export(interface) attributes
to replace @_alwaysEmitIntoClient and @_neverEmitIntoClient. Provide a
warning + Fix-It to start staging out the very-new
@_neverEmitIntoClient. We'll hold off on pushing folks toward
@_alwaysEmitIntoClient for a little longer.
2025-11-07 22:00:40 -08:00

1837 lines
64 KiB
C++

//===--- SILFunction.h - Defines the SILFunction class ----------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SILFunction class.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_SILFUNCTION_H
#define SWIFT_SIL_SILFUNCTION_H
#include "swift/AST/ASTNode.h"
#include "swift/AST/AvailabilityRange.h"
#include "swift/AST/Module.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/Basic/SwiftObjectHeader.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SIL/SILPrintContext.h"
#include "swift/SIL/SILUndef.h"
#include "llvm/ADT/MapVector.h"
namespace swift {
class ASTContext;
class SILInstruction;
class SILModule;
class SILFunctionBuilder;
class SILProfiler;
class BasicBlockBitfield;
class NodeBitfield;
class OperandBitfield;
class CalleeCache;
class SILTypeProperties;
class SILUndef;
namespace Lowering {
class TypeLowering;
class AbstractionPattern;
}
enum IsBare_t { IsNotBare, IsBare };
enum IsTransparent_t { IsNotTransparent, IsTransparent };
enum Inline_t { InlineDefault, NoInline, HeuristicAlwaysInline, AlwaysInline };
enum IsThunk_t {
IsNotThunk,
IsThunk,
IsReabstractionThunk,
IsSignatureOptimizedThunk,
IsBackDeployedThunk,
};
enum IsDynamicallyReplaceable_t {
IsNotDynamic,
IsDynamic
};
enum IsExactSelfClass_t {
IsNotExactSelfClass,
IsExactSelfClass,
};
enum IsDistributed_t {
IsNotDistributed,
IsDistributed,
};
enum IsRuntimeAccessible_t {
IsNotRuntimeAccessible,
IsRuntimeAccessible
};
enum ForceEnableLexicalLifetimes_t {
DoNotForceEnableLexicalLifetimes,
DoForceEnableLexicalLifetimes
};
enum UseStackForPackMetadata_t {
DoNotUseStackForPackMetadata,
DoUseStackForPackMetadata,
};
enum class PerformanceConstraints : uint8_t {
None = 0,
NoAllocation = 1,
NoLocks = 2,
NoRuntime = 3,
NoExistentials = 4,
NoObjCBridging = 5,
ManualOwnership = 6,
};
class SILSpecializeAttr final {
friend SILFunction;
public:
enum class SpecializationKind {
Full,
Partial
};
static GenericSignature buildTypeErasedSignature(
GenericSignature sig, ArrayRef<Type> typeErasedParams);
static SILSpecializeAttr *
create(SILModule &M, GenericSignature specializedSignature,
ArrayRef<Type> typeErasedParams, bool exported,
SpecializationKind kind, SILFunction *target, Identifier spiGroup,
const ModuleDecl *spiModule, AvailabilityRange availability);
bool isExported() const {
return exported;
}
bool isFullSpecialization() const {
return kind == SpecializationKind::Full;
}
bool isPartialSpecialization() const {
return kind == SpecializationKind::Partial;
}
SpecializationKind getSpecializationKind() const {
return kind;
}
GenericSignature getSpecializedSignature() const {
return specializedSignature;
}
GenericSignature getUnerasedSpecializedSignature() const {
return unerasedSpecializedSignature;
}
ArrayRef<Type> getTypeErasedParams() const {
return typeErasedParams;
}
SILFunction *getFunction() const {
return F;
}
SILFunction *getTargetFunction() const {
return targetFunction;
}
Identifier getSPIGroup() const {
return spiGroup;
}
const ModuleDecl *getSPIModule() const {
return spiModule;
}
AvailabilityRange getAvailability() const {
return availability;
}
void print(llvm::raw_ostream &OS) const;
private:
SpecializationKind kind;
bool exported;
GenericSignature specializedSignature;
GenericSignature unerasedSpecializedSignature;
llvm::SmallVector<Type, 2> typeErasedParams;
Identifier spiGroup;
AvailabilityRange availability;
const ModuleDecl *spiModule = nullptr;
SILFunction *F = nullptr;
SILFunction *targetFunction = nullptr;
SILSpecializeAttr(bool exported, SpecializationKind kind,
GenericSignature specializedSignature,
GenericSignature unerasedSpecializedSignature,
ArrayRef<Type> typeErasedParams,
SILFunction *target, Identifier spiGroup,
const ModuleDecl *spiModule,
AvailabilityRange availability);
};
/// SILFunction - A function body that has been lowered to SIL. This consists of
/// zero or more SIL SILBasicBlock objects that contain the SILInstruction
/// objects making up the function.
class SILFunction
: public llvm::ilist_node<SILFunction>, public SILAllocated<SILFunction>,
public SwiftObjectHeader {
private:
void *libswiftSpecificData[4];
public:
using BlockListType = llvm::iplist<SILBasicBlock>;
// For more information see docs/SIL.rst
enum class Purpose : uint8_t {
None,
GlobalInit,
GlobalInitOnceFunction,
LazyPropertyGetter
};
private:
friend class SILBasicBlock;
friend class SILModule;
friend class SILFunctionBuilder;
template <typename, unsigned> friend class BasicBlockData;
template <class, class> friend class SILBitfield;
friend class BasicBlockBitfield;
friend class NodeBitfield;
friend class OperandBitfield;
friend SILUndef;
/// Module - The SIL module that the function belongs to.
SILModule &Module;
/// The mangled name of the SIL function, which will be propagated
/// to the binary. A pointer into the module's lookup table.
StringRef Name;
/// A single-linked list of snapshots of the function.
///
/// Snapshots are copies of the current function at a given point in time.
SILFunction *snapshots = nullptr;
/// The snapshot ID of this function.
///
/// 0 means, it's not a snapshot, but the original function.
int snapshotID = 0;
/// The lowered type of the function.
CanSILFunctionType LoweredType;
CanSILFunctionType LoweredTypeInContext;
/// The context archetypes of the function.
GenericEnvironment *GenericEnv = nullptr;
/// Captured local generic environments.
ArrayRef<GenericEnvironment *> CapturedEnvs;
/// The information about specialization.
/// Only set if this function is a specialization of another function.
const GenericSpecializationInformation *SpecializationInfo = nullptr;
/// The forwarding substitution map, lazily computed.
SubstitutionMap ForwardingSubMap;
/// The collection of all BasicBlocks in the SILFunction. Empty for external
/// function references.
BlockListType BlockList;
/// The owning declaration of this function's clang node, if applicable.
ValueDecl *ClangNodeOwner = nullptr;
/// The source location and scope of the function.
const SILDebugScope *DebugScope = nullptr;
/// The AST decl context of the function.
DeclContext *DeclCtxt = nullptr;
/// The module that defines this function. This member should only be set as
/// a fallback when a \c DeclCtxt is unavailable.
ModuleDecl *ParentModule = nullptr;
/// The profiler for instrumentation based profiling, or null if profiling is
/// disabled.
SILProfiler *Profiler = nullptr;
/// The function this function is meant to replace. Null if this is not a
/// @_dynamicReplacement(for:) function.
SILFunction *ReplacedFunction = nullptr;
/// The SILDeclRef that this function was created for by SILGen if one exists.
SILDeclRef DeclRef = SILDeclRef();
/// This SILFunction REFerences an ad-hoc protocol requirement witness in
/// order to keep it alive, such that it main be obtained in IRGen. Without
/// this explicit reference, the witness would seem not-used, and not be
/// accessible for IRGen.
///
/// Specifically, one such case is the DistributedTargetInvocationDecoder's
/// 'decodeNextArgument' which must be retained, as it is only used from IRGen
/// and such, appears as-if unused in SIL and would get optimized away.
// TODO: Consider making this a general "references adhoc functions" and make it an array?
SILFunction *RefAdHocRequirementFunction = nullptr;
Identifier ObjCReplacementFor;
/// The head of a single-linked list of currently alive BasicBlockBitfield.
BasicBlockBitfield *newestAliveBlockBitfield = nullptr;
/// The head of a single-linked list of currently alive NodeBitfield.
NodeBitfield *newestAliveNodeBitfield = nullptr;
/// The head of a single-linked list of currently alive OperandBitfields.
OperandBitfield *newestAliveOperandBitfield = nullptr;
/// A monotonically increasing ID which is incremented whenever a
/// BasicBlockBitfield, NodeBitfield, or OperandBitfield is constructed. For
/// details see SILBitfield::bitfieldID;
uint64_t currentBitfieldID = 1;
/// Unique identifier for vector indexing and deterministic sorting.
/// May be reused when zombie functions are recovered.
unsigned index;
/// The function's set of semantics attributes.
///
/// TODO: Why is this using a std::string? Why don't we use uniqued
/// StringRefs?
std::vector<std::string> SemanticsAttrSet;
/// The function's remaining set of specialize attributes.
std::vector<SILSpecializeAttr*> SpecializeAttrSet;
/// The name that this function should have when it is lowered to LLVM IR.
///
/// If empty, use the SIL function's name directly.
StringRef AsmName;
/// Name of a section if @section attribute was used, otherwise empty.
StringRef Section;
/// Name of a Wasm export if @_expose(wasm) attribute was used, otherwise
/// empty.
StringRef WasmExportName;
/// Name of a Wasm import module and field if @_extern(wasm) attribute
std::optional<std::pair<StringRef, StringRef>> WasmImportModuleAndField;
/// Has value if there's a profile for this function
/// Contains Function Entry Count
ProfileCounter EntryCount;
/// The availability used to determine if declarations of this function
/// should use weak linking.
AvailabilityRange Availability;
Purpose specialPurpose = Purpose::None;
PerformanceConstraints perfConstraints = PerformanceConstraints::None;
/// The undefs of each type in the function.
llvm::SmallMapVector<SILType, SILUndef *, 1> undefValues;
/// This is the number of uses of this SILFunction inside the SIL.
/// It does not include references from debug scopes.
unsigned RefCount = 0;
/// Used to verify if a BasicBlockData is not valid anymore.
/// This counter is incremented every time a BasicBlockData re-assigns new
/// block indices.
unsigned BlockListChangeIdx = 0;
/// The isolation of this function.
std::optional<ActorIsolation> actorIsolation;
/// The function's bare attribute. Bare means that the function is SIL-only
/// and does not require debug info.
unsigned Bare : 1;
/// The function's transparent attribute.
unsigned Transparent : 1;
/// The function's serialized attribute.
unsigned SerializedKind : 2;
/// Specifies if this function is a thunk or a reabstraction thunk.
///
/// The inliner uses this information to avoid inlining (non-trivial)
/// functions into the thunk.
unsigned Thunk : 3;
/// The scope in which the parent class can be subclassed, if this is a method
/// which is contained in the vtable of that class.
unsigned ClassSubclassScope : 2;
/// The function's global_init attribute.
unsigned GlobalInitFlag : 1;
/// The function's noinline attribute.
unsigned InlineStrategy : 2;
/// The linkage of the function.
unsigned Linkage : NumSILLinkageBits;
/// Set if the function may be referenced from C code and should thus be
/// preserved and exported more widely than its Swift linkage and usage
/// would indicate.
unsigned HasCReferences : 1;
/// Whether attribute @used was present
unsigned MarkedAsUsed : 1;
/// Whether cross-module references to this function should always use weak
/// linking.
unsigned IsAlwaysWeakImported : 1;
/// Whether the implementation can be dynamically replaced.
unsigned IsDynamicReplaceable : 1;
/// If true, this indicates that a class method implementation will always be
/// invoked with a `self` argument of the exact base class type.
unsigned ExactSelfClass : 1;
/// Check whether this is a distributed method.
unsigned IsDistributed : 1;
/// Check whether this function could be looked up at runtime via special API.
unsigned IsRuntimeAccessible : 1;
unsigned stackProtection : 1;
/// True if this function is inlined at least once. This means that the
/// debug info keeps a pointer to this function.
unsigned Inlined : 1;
/// True if this function is a zombie function. This means that the function
/// is dead and not referenced from anywhere inside the SIL. But it is kept
/// for other purposes:
/// *) It is inlined and the debug info keeps a reference to the function.
/// *) It is a dead method of a class which has higher visibility than the
/// method itself. In this case we need to create a vtable stub for it.
/// *) It is a function referenced by the specialization information.
unsigned Zombie : 1;
/// True if this function is in Ownership SSA form and thus must pass
/// ownership verification.
///
/// This enables the verifier to easily prove that before the Ownership Model
/// Eliminator runs on a function, we only see a non-semantic-arc world and
/// after the pass runs, we only see a semantic-arc world.
unsigned HasOwnership : 1;
/// Set if the function body was deserialized from canonical SIL. This implies
/// that the function's home module performed SIL diagnostics prior to
/// serialization.
unsigned WasDeserializedCanonical : 1;
/// True if this is a reabstraction thunk of escaping function type whose
/// single argument is a potentially non-escaping closure. This is an escape
/// hatch to allow non-escaping functions to be stored or passed as an
/// argument with escaping function type. The thunk argument's function type
/// is not necessarily @noescape. The only relevant aspect of the argument is
/// that it may have unboxed capture (i.e. @inout_aliasable parameters).
unsigned IsWithoutActuallyEscapingThunk : 1;
/// If != OptimizationMode::NotSet, the optimization mode specified with an
/// function attribute.
unsigned OptMode : NumOptimizationModeBits;
/// The function's effects attribute.
unsigned EffectsKindAttr : NumEffectsKindBits;
/// If true, the function has lexical lifetimes even if the module does not.
unsigned ForceEnableLexicalLifetimes : 1;
/// If true, the function contains an instruction that prevents stack nesting
/// from running with pack metadata markers in place.
unsigned UseStackForPackMetadata : 1;
/// If true, the function returns a non-escapable value without any
/// lifetime-dependence on an argument.
unsigned HasUnsafeNonEscapableResult : 1;
/// True, if this function or a caller (transitively) has a performance
/// constraint.
/// If true, optimizations must not introduce new runtime calls or metadata
/// creation, which are not there after SILGen.
/// Note that this flag is not serialized, because it's computed locally
/// within a module by the MandatoryOptimizations pass.
unsigned IsPerformanceConstraint : 1;
static void
validateSubclassScope(SubclassScope scope, IsThunk_t isThunk,
const GenericSpecializationInformation *genericInfo) {
#ifndef NDEBUG
// The _original_ function for a method can turn into a thunk through
// signature optimization, meaning it needs to retain its subclassScope, but
// other thunks and specializations are implementation details and so
// shouldn't be connected to their parent class.
bool thunkCanHaveSubclassScope;
switch (isThunk) {
case IsNotThunk:
case IsSignatureOptimizedThunk:
thunkCanHaveSubclassScope = true;
break;
case IsThunk:
case IsReabstractionThunk:
case IsBackDeployedThunk:
thunkCanHaveSubclassScope = false;
break;
}
auto allowsInterestingScopes = thunkCanHaveSubclassScope && !genericInfo;
assert(
allowsInterestingScopes ||
scope == SubclassScope::NotApplicable &&
"SubclassScope on specialization or non-signature-optimized thunk");
#endif
}
SILFunction(SILModule &module, SILLinkage linkage, StringRef mangledName,
CanSILFunctionType loweredType, GenericEnvironment *genericEnv,
IsBare_t isBareSILFunction, IsTransparent_t isTrans,
SerializedKind_t serializedKind, ProfileCounter entryCount,
IsThunk_t isThunk, SubclassScope classSubclassScope,
Inline_t inlineStrategy, EffectsKind E,
const SILDebugScope *debugScope,
IsDynamicallyReplaceable_t isDynamic,
IsExactSelfClass_t isExactSelfClass,
IsDistributed_t isDistributed,
IsRuntimeAccessible_t isRuntimeAccessible);
static SILFunction *
create(SILModule &M, SILLinkage linkage, StringRef name,
CanSILFunctionType loweredType, GenericEnvironment *genericEnv,
std::optional<SILLocation> loc, IsBare_t isBareSILFunction,
IsTransparent_t isTrans, SerializedKind_t serializedKind,
ProfileCounter entryCount, IsDynamicallyReplaceable_t isDynamic,
IsDistributed_t isDistributed,
IsRuntimeAccessible_t isRuntimeAccessible,
IsExactSelfClass_t isExactSelfClass, IsThunk_t isThunk = IsNotThunk,
SubclassScope classSubclassScope = SubclassScope::NotApplicable,
Inline_t inlineStrategy = InlineDefault,
EffectsKind EffectsKindAttr = EffectsKind::Unspecified,
SILFunction *InsertBefore = nullptr,
const SILDebugScope *DebugScope = nullptr);
void init(SILLinkage Linkage, StringRef Name, CanSILFunctionType LoweredType,
GenericEnvironment *genericEnv, IsBare_t isBareSILFunction,
IsTransparent_t isTrans, SerializedKind_t serializedKind,
ProfileCounter entryCount, IsThunk_t isThunk,
SubclassScope classSubclassScope, Inline_t inlineStrategy,
EffectsKind E, const SILDebugScope *DebugScope,
IsDynamicallyReplaceable_t isDynamic,
IsExactSelfClass_t isExactSelfClass, IsDistributed_t isDistributed,
IsRuntimeAccessible_t isRuntimeAccessible);
/// Set has ownership to the given value. True means that the function has
/// ownership, false means it does not.
///
/// Only for use by FunctionBuilders!
void setHasOwnership(bool newValue) { HasOwnership = newValue; }
void setName(StringRef name) {
// All the snapshots share the same name.
SILFunction *sn = this;
do {
sn->Name = name;
} while ((sn = sn->snapshots) != nullptr);
}
public:
~SILFunction();
SILModule &getModule() const { return Module; }
/// Creates a snapshot with a given `ID` from the current function.
void createSnapshot(int ID);
/// Returns the snapshot with the given `ID` or null if no such snapshot exists.
SILFunction *getSnapshot(int ID);
/// Restores the current function from a given snapshot.
void restoreFromSnapshot(int ID);
/// Deletes a snapshot with the `ID`.
void deleteSnapshot(int ID);
SILType getLoweredType() const {
return SILType::getPrimitiveObjectType(LoweredType);
}
CanSILFunctionType getLoweredFunctionType() const {
return LoweredType;
}
CanSILFunctionType getLoweredFunctionTypeInContext() const;
CanSILFunctionType
getLoweredFunctionTypeInContext(TypeExpansionContext context) const;
SILType getLoweredTypeInContext(TypeExpansionContext context) const {
return SILType::getPrimitiveObjectType(
getLoweredFunctionTypeInContext(context));
}
SILFunctionConventions getConventions() const {
return SILFunctionConventions(LoweredType, getModule());
}
SILFunctionConventions getConventionsInContext() const {
auto fnType = getLoweredFunctionTypeInContext(getTypeExpansionContext());
return SILFunctionConventions(fnType, getModule());
}
unsigned getIndex() const { return index; }
SILProfiler *getProfiler() const { return Profiler; }
SILFunction *getDynamicallyReplacedFunction() const {
return ReplacedFunction;
}
void setDynamicallyReplacedFunction(SILFunction *f) {
assert(ReplacedFunction == nullptr && "already set");
assert(!hasObjCReplacement());
if (f == nullptr)
return;
ReplacedFunction = f;
ReplacedFunction->incrementRefCount();
}
/// This function should only be called when SILFunctions are bulk deleted.
void dropDynamicallyReplacedFunction() {
if (!ReplacedFunction)
return;
ReplacedFunction->decrementRefCount();
ReplacedFunction = nullptr;
}
SILFunction *getReferencedAdHocRequirementWitnessFunction() const {
return RefAdHocRequirementFunction;
}
// Marks that this `SILFunction` uses the passed in ad-hoc protocol
// requirement witness `f` and therefore must retain it explicitly,
// otherwise we might not be able to get a reference to it.
void setReferencedAdHocRequirementWitnessFunction(SILFunction *f) {
assert(RefAdHocRequirementFunction == nullptr && "already set");
if (f == nullptr)
return;
RefAdHocRequirementFunction = f;
RefAdHocRequirementFunction->incrementRefCount();
}
void dropReferencedAdHocRequirementWitnessFunction() {
if (!RefAdHocRequirementFunction)
return;
RefAdHocRequirementFunction->decrementRefCount();
RefAdHocRequirementFunction = nullptr;
}
bool hasObjCReplacement() const {
return !ObjCReplacementFor.empty();
}
Identifier getObjCReplacement() const {
return ObjCReplacementFor;
}
void setObjCReplacement(AbstractFunctionDecl *replacedDecl);
void setObjCReplacement(Identifier replacedDecl);
void setProfiler(SILProfiler *InheritedProfiler) {
assert(!Profiler && "Function already has a profiler");
Profiler = InheritedProfiler;
}
void createProfiler(SILDeclRef Ref);
ProfileCounter getEntryCount() const { return EntryCount; }
void setEntryCount(ProfileCounter Count) { EntryCount = Count; }
bool isNoReturnFunction(TypeExpansionContext context) const;
/// True if this function should have a non-unique definition based on the
/// embedded linkage model.
bool hasNonUniqueDefinition() const;
/// Unsafely rewrite the lowered type of this function.
///
/// This routine does not touch the entry block arguments
/// or return instructions; you need to do that yourself
/// if you care.
///
/// This routine does not update all the references in the module
/// You have to do that yourself
void rewriteLoweredTypeUnsafe(CanSILFunctionType newType) {
LoweredType = newType;
}
/// Return the number of entities referring to this function (other
/// than the SILModule).
unsigned getRefCount() const { return RefCount; }
/// Increment the reference count.
void incrementRefCount() {
RefCount++;
assert(RefCount != 0 && "Overflow of reference count!");
}
/// Decrement the reference count.
void decrementRefCount() {
assert(RefCount != 0 && "Expected non-zero reference count on decrement!");
RefCount--;
}
/// Drops all uses belonging to instructions in this function. The only valid
/// operation performable on this object after this is called is called the
/// destructor or deallocation.
void dropAllReferences() {
for (SILBasicBlock &BB : *this)
BB.dropAllReferences();
}
/// Notify that this function was inlined. This implies that it is still
/// needed for debug info generation, even if it is removed afterwards.
void setInlined() {
assert(!isZombie() && "Can't inline a zombie function");
Inlined = true;
}
/// Returns true if this function was inlined.
bool isInlined() const { return Inlined; }
/// Mark this function as removed from the module's function list, but kept
/// as "zombie" for debug info or vtable stub generation.
void setZombie() {
assert(!isZombie() && "Function is a zombie function already");
Zombie = true;
}
/// Returns true if this function is dead, but kept in the module's zombie list.
bool isZombie() const { return Zombie; }
/// Returns true if this function has qualified ownership instructions in it.
bool hasOwnership() const { return HasOwnership; }
/// Sets the HasOwnership flag to false. This signals to SIL that no
/// ownership instructions should be in this function any more.
void setOwnershipEliminated() { setHasOwnership(false); }
/// Returns true if this function was deserialized from canonical
/// SIL. (.swiftmodule files contain canonical SIL; .sib files may be 'raw'
/// SIL). If so, diagnostics should not be reapplied.
bool wasDeserializedCanonical() const { return WasDeserializedCanonical; }
void setWasDeserializedCanonical(bool val = true) {
WasDeserializedCanonical = val;
}
ForceEnableLexicalLifetimes_t forceEnableLexicalLifetimes() const {
return ForceEnableLexicalLifetimes_t(ForceEnableLexicalLifetimes);
}
void setForceEnableLexicalLifetimes(ForceEnableLexicalLifetimes_t value) {
ForceEnableLexicalLifetimes = value;
}
UseStackForPackMetadata_t useStackForPackMetadata() const {
return UseStackForPackMetadata_t(UseStackForPackMetadata);
}
void setUseStackForPackMetadata(UseStackForPackMetadata_t value) {
UseStackForPackMetadata = value;
}
bool hasUnsafeNonEscapableResult() const {
return HasUnsafeNonEscapableResult;
}
void setHasUnsafeNonEscapableResult(bool value) {
HasUnsafeNonEscapableResult = value;
}
/// Returns true if this is a reabstraction thunk of escaping function type
/// whose single argument is a potentially non-escaping closure. i.e. the
/// thunks' function argument may itself have @inout_aliasable parameters.
bool isWithoutActuallyEscapingThunk() const {
return IsWithoutActuallyEscapingThunk;
}
void setWithoutActuallyEscapingThunk(bool val = true) {
assert(!val || isThunk() == IsReabstractionThunk);
IsWithoutActuallyEscapingThunk = val;
}
bool isAsync() const { return LoweredType->isAsync(); }
bool isCalleeAllocatedCoroutine() const {
return LoweredType->isCalleeAllocatedCoroutine();
}
/// Returns the calling convention used by this entry point.
SILFunctionTypeRepresentation getRepresentation() const {
return getLoweredFunctionType()->getRepresentation();
}
ResilienceExpansion getResilienceExpansion() const;
// Returns the type expansion context to be used inside this function.
TypeExpansionContext getTypeExpansionContext() const {
return TypeExpansionContext(*this);
}
SILTypeProperties getTypeProperties(Lowering::AbstractionPattern orig,
Type subst) const;
SILTypeProperties getTypeProperties(Type subst) const;
SILTypeProperties getTypeProperties(SILType type) const;
const Lowering::TypeLowering &
getTypeLowering(Lowering::AbstractionPattern orig, Type subst) const;
const Lowering::TypeLowering &getTypeLowering(Type t) const;
const Lowering::TypeLowering &getTypeLowering(SILType type) const;
SILType getLoweredType(Lowering::AbstractionPattern orig, Type subst) const;
SILType getLoweredType(Type t) const;
CanType getLoweredRValueType(Lowering::AbstractionPattern orig, Type subst) const;
CanType getLoweredRValueType(Type t) const;
SILType getLoweredLoadableType(Type t) const;
SILType getLoweredType(SILType t) const;
bool isTypeABIAccessible(SILType type) const;
/// Returns true if this function has a calling convention that has a self
/// argument.
bool hasSelfParam() const {
return getLoweredFunctionType()->hasSelfParam();
}
/// Returns true if the function has parameters that are consumed by the
// callee.
bool hasOwnedParameters() const {
for (auto &ParamInfo : getLoweredFunctionType()->getParameters()) {
if (ParamInfo.isConsumedInCallee())
return true;
}
return false;
}
// Returns true if the function has indirect out parameters.
bool hasIndirectFormalResults() const {
return getLoweredFunctionType()->hasIndirectFormalResults();
}
// Returns true if the function has any generic arguments.
bool isGeneric() const {
auto s = getLoweredFunctionType()->getInvocationGenericSignature();
return s && !s->areAllParamsConcrete();
}
/// Returns true if this function ie either a class method, or a
/// closure that captures the 'self' value or its metatype.
///
/// If this returns true, DynamicSelfType can be used in the body
/// of the function.
///
/// Note that this is not the same as hasSelfParam().
///
/// For closures that capture DynamicSelfType, hasDynamicSelfMetadata()
/// is true and hasSelfParam() is false. For methods on value types,
/// hasSelfParam() is true and hasDynamicSelfMetadata() is false.
bool hasDynamicSelfMetadata() const;
/// Return the mangled name of this SILFunction.
StringRef getName() const { return Name; }
/// A convenience function which checks if the function has a specific
/// \p name. It is equivalent to getName() == Name, but as it is not
/// inlined it can be called from the debugger.
bool hasName(const char *Name) const;
/// True if this is a declaration of a function defined in another module.
bool isExternalDeclaration() const { return BlockList.empty(); }
/// Returns true if this is a definition of a function defined in this module.
bool isDefinition() const { return !isExternalDeclaration(); }
/// Returns true if there exist pre-specializations.
bool hasPrespecialization() const;
/// Get this function's linkage attribute.
SILLinkage getLinkage() const { return SILLinkage(Linkage); }
/// Set the function's linkage attribute.
void setLinkage(SILLinkage linkage) { Linkage = unsigned(linkage); }
/// Checks if this (callee) function body can be inlined into the caller
/// by comparing their `SerializedKind_t` values.
///
/// If both callee and caller are `not_serialized`, the callee can be inlined
/// into the caller during SIL inlining passes even if it (and the caller)
/// might contain private symbols. If this callee is `serialized_for_pkg`,
/// it can only be referenced by a serialized caller but not inlined into
/// it.
///
/// ```
/// canInlineInto: Caller
/// | not_serialized | serialized_for_pkg | serialized
/// not_serialized | ok | no | no
/// Callee serialized_for_pkg | ok | ok | no
/// serialized | ok | ok | ok
///
/// ```
///
/// \p callerSerializedKind The caller's SerializedKind.
bool canBeInlinedIntoCaller(SerializedKind_t callerSerializedKind) const;
/// Returns true if this function can be referenced from a fragile function
/// body.
/// \p callerSerializedKind The caller's SerializedKind. Used to be passed to
/// \c canBeInlinedIntoCaller.
bool hasValidLinkageForFragileRef(SerializedKind_t callerSerializedKind) const;
/// Get's the effective linkage which is used to derive the llvm linkage.
/// Usually this is the same as getLinkage(), except in one case: if this
/// function is a method in a class which has higher visibility than the
/// method itself, the function can be referenced from vtables of derived
/// classes in other compilation units.
SILLinkage getEffectiveSymbolLinkage() const {
return effectiveLinkageForClassMember(getLinkage(),
getClassSubclassScope());
}
/// Helper method which returns true if this function has "external" linkage.
bool isAvailableExternally() const {
return swift::isAvailableExternally(getLinkage());
}
/// Helper method that determines whether this SILFunction is a Swift runtime
/// function, such as swift_retain.
bool isSwiftRuntimeFunction() const;
/// Helper method that determines whether a function with the given name and
/// parent module is a Swift runtime function such as swift_retain.
static bool isSwiftRuntimeFunction(StringRef name, const ModuleDecl *module);
/// Helper method which returns true if the linkage of the SILFunction
/// indicates that the object's definition might be required outside the
/// current SILModule.
bool isPossiblyUsedExternally() const;
/// Helper method which returns whether this function should be preserved so
/// it can potentially be used in the debugger.
bool shouldBePreservedForDebugger() const;
/// In addition to isPossiblyUsedExternally() it returns also true if this
/// is a (private or internal) vtable method which can be referenced by
/// vtables of derived classes outside the compilation unit.
bool isExternallyUsedSymbol() const;
/// Return whether this function may be referenced by C code.
bool hasCReferences() const { return HasCReferences; }
void setHasCReferences(bool value) { HasCReferences = value; }
/// Returns the availability context used to determine if the function's
/// symbol should be weakly referenced across module boundaries.
AvailabilityRange getAvailabilityForLinkage() const {
return Availability;
}
void setAvailabilityForLinkage(AvailabilityRange availability) {
Availability = availability;
}
/// Returns whether this function's symbol must always be weakly referenced
/// across module boundaries.
bool isAlwaysWeakImported() const { return IsAlwaysWeakImported; }
void setIsAlwaysWeakImported(bool value) { IsAlwaysWeakImported = value; }
bool isWeakImported(ModuleDecl *module) const;
/// Returns whether this function implementation can be dynamically replaced.
IsDynamicallyReplaceable_t isDynamicallyReplaceable() const {
return IsDynamicallyReplaceable_t(IsDynamicReplaceable);
}
void setIsDynamic(IsDynamicallyReplaceable_t value = IsDynamic) {
IsDynamicReplaceable = value;
assert(!Transparent || !IsDynamicReplaceable);
}
IsExactSelfClass_t isExactSelfClass() const {
return IsExactSelfClass_t(ExactSelfClass);
}
void setIsExactSelfClass(IsExactSelfClass_t t) {
ExactSelfClass = t;
}
IsDistributed_t isDistributed() const {
return IsDistributed_t(IsDistributed);
}
void
setIsDistributed(IsDistributed_t value = IsDistributed_t::IsDistributed) {
IsDistributed = value;
}
IsRuntimeAccessible_t isRuntimeAccessible() const {
return IsRuntimeAccessible_t(IsRuntimeAccessible);
}
void setIsRuntimeAccessible(IsRuntimeAccessible_t value =
IsRuntimeAccessible_t::IsRuntimeAccessible) {
IsRuntimeAccessible = value;
}
bool needsStackProtection() const { return stackProtection; }
void setNeedStackProtection(bool needSP) { stackProtection = needSP; }
/// Get the DeclContext of this function.
DeclContext *getDeclContext() const { return DeclCtxt; }
/// \returns True if the function is marked with the @_semantics attribute
/// and has special semantics that the optimizer can use to optimize the
/// function.
bool hasSemanticsAttrs() const { return !SemanticsAttrSet.empty(); }
/// \returns True if the function has a semantic attribute that starts with a
/// specific string.
///
/// TODO: This needs a better name.
bool hasSemanticsAttrThatStartsWith(StringRef S) {
return count_if(getSemanticsAttrs(), [&S](const std::string &Attr) -> bool {
return StringRef(Attr).starts_with(S);
});
}
/// \returns the semantics tag that describes this function.
ArrayRef<std::string> getSemanticsAttrs() const { return SemanticsAttrSet; }
/// \returns True if the function has the semantics flag \p Value;
bool hasSemanticsAttr(StringRef Value) const {
return count(SemanticsAttrSet, Value);
}
/// Add the given semantics attribute to the attr list set.
void addSemanticsAttr(StringRef Ref) {
if (hasSemanticsAttr(Ref))
return;
SemanticsAttrSet.push_back(Ref.str());
std::sort(SemanticsAttrSet.begin(), SemanticsAttrSet.end());
}
/// Remove the semantics
void removeSemanticsAttr(StringRef Ref) {
auto Iter =
std::remove(SemanticsAttrSet.begin(), SemanticsAttrSet.end(), Ref);
SemanticsAttrSet.erase(Iter);
}
/// \returns the range of specialize attributes.
ArrayRef<SILSpecializeAttr*> getSpecializeAttrs() const {
return SpecializeAttrSet;
}
/// Removes all specialize attributes from this function.
void clearSpecializeAttrs() {
forEachSpecializeAttrTargetFunction(
[](SILFunction *targetFun) { targetFun->decrementRefCount(); });
SpecializeAttrSet.clear();
}
void addSpecializeAttr(SILSpecializeAttr *Attr);
void removeSpecializeAttr(SILSpecializeAttr *attr);
void forEachSpecializeAttrTargetFunction(
llvm::function_ref<void(SILFunction *)> action);
/// Get this function's optimization mode or OptimizationMode::NotSet if it is
/// not set for this specific function.
OptimizationMode getOptimizationMode() const {
return OptimizationMode(OptMode);
}
/// Returns the optimization mode for the function. If no mode is set for the
/// function, returns the global mode, i.e. the mode of the module's options.
OptimizationMode getEffectiveOptimizationMode() const;
void setOptimizationMode(OptimizationMode mode) {
OptMode = unsigned(mode);
}
/// True if debug information must be preserved (-Onone).
///
/// If this is false (-O), then the presence of debug info must not affect the
/// outcome of any transformations.
///
/// Typically used to determine whether a debug_value is a normal SSA use or
/// incidental use.
bool preserveDebugInfo() const;
PerformanceConstraints getPerfConstraints() const { return perfConstraints; }
void setPerfConstraints(PerformanceConstraints perfConstr) {
perfConstraints = perfConstr;
}
// see `IsPerformanceConstraint`
bool isPerformanceConstraint() const { return IsPerformanceConstraint; }
void setIsPerformanceConstraint(bool flag = true) {
IsPerformanceConstraint = flag;
}
/// \returns True if the function is optimizable (i.e. not marked as no-opt),
/// or is raw SIL (so that the mandatory passes still run).
bool shouldOptimize() const;
/// Returns true if this function should be optimized for size.
bool optimizeForSize() const {
return getEffectiveOptimizationMode() == OptimizationMode::ForSize;
}
/// Returns true if this is a function that should have its ownership
/// verified.
bool shouldVerifyOwnership() const;
/// Check if the function has a location.
/// FIXME: All functions should have locations, so this method should not be
/// necessary.
bool hasLocation() const {
return DebugScope && !DebugScope->Loc.isNull();
}
/// Get the source location of the function.
SILLocation getLocation() const {
if (!DebugScope) {
return SILLocation::invalid();
}
return getDebugScope()->Loc;
}
/// Initialize the debug scope of the function and also set the DeclCtxt.
void setDebugScope(const SILDebugScope *DS) {
DebugScope = DS;
DeclCtxt = (DS ? DebugScope->Loc.getAsDeclContext() : nullptr);
}
/// Returns the module that defines this function.
ModuleDecl *getParentModule() const {
return DeclCtxt ? DeclCtxt->getParentModule() : ParentModule;
}
/// Sets \c ParentModule as fallback if \c DeclCtxt is not available to
/// provide the parent module.
void setParentModule(ModuleDecl *module) {
assert(!DeclCtxt && "already have a DeclCtxt");
ParentModule = module;
}
/// Initialize the debug scope for debug info on SIL level
/// (-sil-based-debuginfo).
void setSILDebugScope(const SILDebugScope *DS) {
DebugScope = DS;
}
/// Get the source location of the function.
const SILDebugScope *getDebugScope() const { return DebugScope; }
/// Return the SILDeclRef for this SILFunction if one was assigned by SILGen.
SILDeclRef getDeclRef() const { return DeclRef; }
/// Set the SILDeclRef for this SILFunction. Used mainly by SILGen.
void setDeclRef(SILDeclRef declRef) { DeclRef = declRef; }
/// Get this function's bare attribute.
IsBare_t isBare() const { return IsBare_t(Bare); }
void setBare(IsBare_t isB) { Bare = isB; }
/// Get this function's transparent attribute.
IsTransparent_t isTransparent() const { return IsTransparent_t(Transparent); }
void setTransparent(IsTransparent_t isT) {
Transparent = isT;
assert(!Transparent || !IsDynamicReplaceable);
}
bool isSerialized() const {
return SerializedKind_t(SerializedKind) == IsSerialized;
}
bool isAnySerialized() const {
return SerializedKind_t(SerializedKind) == IsSerialized ||
SerializedKind_t(SerializedKind) == IsSerializedForPackage;
}
/// Get this function's serialized attribute.
SerializedKind_t getSerializedKind() const {
return SerializedKind_t(SerializedKind);
}
void setSerializedKind(SerializedKind_t serializedKind) {
SerializedKind = serializedKind;
assert(this->getSerializedKind() == serializedKind &&
"too few bits for Serialized storage");
}
/// Get this function's thunk attribute.
IsThunk_t isThunk() const { return IsThunk_t(Thunk); }
void setThunk(IsThunk_t isThunk) {
validateSubclassScope(getClassSubclassScope(), isThunk, SpecializationInfo);
Thunk = isThunk;
}
/// Get the class visibility (relevant for class methods).
SubclassScope getClassSubclassScope() const {
return SubclassScope(ClassSubclassScope);
}
void setClassSubclassScope(SubclassScope scope) {
validateSubclassScope(scope, isThunk(), SpecializationInfo);
ClassSubclassScope = static_cast<unsigned>(scope);
}
/// Get this function's noinline attribute.
Inline_t getInlineStrategy() const { return Inline_t(InlineStrategy); }
void setInlineStrategy(Inline_t inStr) { InlineStrategy = inStr; }
/// \return the function side effects information.
EffectsKind getEffectsKind() const { return EffectsKind(EffectsKindAttr); }
/// \return True if the function is annotated with the @_effects attribute.
bool hasEffectsKind() const {
return EffectsKind(EffectsKindAttr) != EffectsKind::Unspecified;
}
/// Set the function side effect information.
void setEffectsKind(EffectsKind E) {
EffectsKindAttr = unsigned(E);
}
std::pair<const char *, int> parseArgumentEffectsFromSource(StringRef effectStr,
ArrayRef<StringRef> paramNames);
std::pair<const char *, int> parseArgumentEffectsFromSIL(StringRef effectStr,
int argumentIndex);
std::pair<const char *, int> parseGlobalEffectsFromSIL(StringRef effectStr);
std::pair<const char *, int> parseMultipleEffectsFromSIL(StringRef effectStr);
void writeEffect(llvm::raw_ostream &OS, int effectIdx) const;
void writeEffects(llvm::raw_ostream &OS) const {
writeEffect(OS, -1);
}
void copyEffects(SILFunction *from);
bool hasArgumentEffects() const;
void visitArgEffects(std::function<void(int, int, bool)> c) const;
MemoryBehavior getMemoryBehavior(bool observeRetains);
// Used by the MemoryLifetimeVerifier
bool argumentMayRead(Operand *argOp, SILValue addr);
bool isDeinitBarrier();
Purpose getSpecialPurpose() const { return specialPurpose; }
/// Get this function's global_init attribute.
///
/// The implied semantics are:
/// - side-effects can occur any time before the first invocation.
/// - all calls to the same global_init function have the same side-effects.
/// - any operation that may observe the initializer's side-effects must be
/// preceded by a call to the initializer.
///
/// This is currently true if the function is an addressor that was lazily
/// generated from a global variable access. Note that the initialization
/// function itself does not need this attribute. It is private and only
/// called within the addressor.
bool isGlobalInit() const { return specialPurpose == Purpose::GlobalInit; }
bool isGlobalInitOnceFunction() const {
return specialPurpose == Purpose::GlobalInitOnceFunction;
}
bool isLazyPropertyGetter() const {
return specialPurpose == Purpose::LazyPropertyGetter;
}
void setSpecialPurpose(Purpose purpose) { specialPurpose = purpose; }
/// Return whether this function has a foreign implementation which can
/// be emitted on demand.
bool hasForeignBody() const;
/// Return whether this function corresponds to a Clang node.
bool hasClangNode() const {
return ClangNodeOwner != nullptr;
}
/// Set the owning declaration of the Clang node associated with this
/// function. We have to store an owner (a Swift declaration) instead of
/// directly referencing the original declaration due to current
/// limitations in the serializer.
void setClangNodeOwner(ValueDecl *owner) {
assert(owner->hasClangNode());
ClangNodeOwner = owner;
}
/// Return the owning declaration of the Clang node associated with this
/// function. This should only be used for serialization.
ValueDecl *getClangNodeOwner() const {
return ClangNodeOwner;
}
/// Return the Clang node associated with this function if it has one.
ClangNode getClangNode() const {
return (ClangNodeOwner ? ClangNodeOwner->getClangNode() : ClangNode());
}
const clang::Decl *getClangDecl() const {
return (ClangNodeOwner ? ClangNodeOwner->getClangDecl() : nullptr);
}
/// Returns whether this function is a specialization.
bool isSpecialization() const { return SpecializationInfo != nullptr; }
/// Return the specialization information.
const GenericSpecializationInformation *getSpecializationInfo() const {
assert(isSpecialization());
return SpecializationInfo;
}
void setSpecializationInfo(const GenericSpecializationInformation *Info) {
assert(!isSpecialization());
validateSubclassScope(getClassSubclassScope(), isThunk(), Info);
SpecializationInfo = Info;
}
/// If this function is a specialization, return the original function from
/// which this function was specialized.
const SILFunction *getOriginOfSpecialization() const;
/// Retrieve the generic environment containing the mapping from interface
/// types to context archetypes for this function. Only present if the
/// function has a body.
GenericEnvironment *getGenericEnvironment() const {
return GenericEnv;
}
/// Return any captured local generic environments, currently used for pack
/// element environments only. After SILGen, these are rewritten into
/// primary archetypes.
ArrayRef<GenericEnvironment *> getCapturedEnvironments() const {
return CapturedEnvs;
}
void setGenericEnvironment(GenericEnvironment *env);
void setGenericEnvironment(GenericEnvironment *env,
ArrayRef<GenericEnvironment *> capturedEnvs,
SubstitutionMap forwardingSubs) {
GenericEnv = env;
CapturedEnvs = capturedEnvs;
ForwardingSubMap = forwardingSubs.getCanonical();
}
/// Retrieve the generic signature from the generic environment of this
/// function, if any. Else returns the null \c GenericSignature.
GenericSignature getGenericSignature() const;
/// Map the given type, which is based on an interface SILFunctionType and may
/// therefore be dependent, to a type based on the context archetypes of this
/// SILFunction.
Type mapTypeIntoContext(Type type) const;
/// Map the given type, which is based on an interface SILFunctionType and may
/// therefore be dependent, to a type based on the context archetypes of this
/// SILFunction.
SILType mapTypeIntoContext(SILType type) const;
/// Converts the given function definition to a declaration.
void convertToDeclaration() {
assert(isDefinition() && "Can only convert definitions to declarations");
clear();
}
void clear();
/// Like `clear`, but does not call `dropAllReferences`, which is the
/// responsibility of the caller.
void eraseAllBlocks();
/// A substitution map that sends the generic parameters of the invocation
/// generic signature to some combination of primar and local archetypes.
///
/// CAUTION: If this is a SILFunction that captures pack element environments,
/// then at SILGen time, this is not actually the forwarding substitution map
/// of the SILFunction's generic environment. This is because:
///
/// 1) The SILFunction's generic signature includes extra generic parameters,
/// to model captured pack elements;
/// 2) The SILFunction's generic environment is the AST generic environment,
/// so it's based on the original generic signature;
/// 3) SILGen uses this AST generic environment together with local archetypes
/// for lowering SIL instructions.
///
/// Therefore, the SILFunction's forwarding substitution map takes the extended
/// generic signature (1). It maps the original generic parameters to the
/// archetypes of (2), and the extended generic parameters to the local archetypes
/// of (3).
///
/// After SILGen, all archetypes are re-instantiated inside the SIL function,
/// and the forwarding substitution map and generic environment then align.
SubstitutionMap getForwardingSubstitutionMap() const {
return ForwardingSubMap;
}
/// Returns true if this SILFunction must be a defer statement.
///
/// NOTE: This may return false for defer statements that have been
/// deserialized without a DeclContext. This means that this is guaranteed to
/// be correct for SILFunctions in Raw SIL that were not deserialized as
/// canonical. Thus one can use it for diagnostics.
bool isDefer() const {
if (auto *dc = getDeclContext())
if (auto *decl = dyn_cast_or_null<FuncDecl>(dc->getAsDecl()))
return decl->isDeferBody();
return false;
}
/// Returns true if this function belongs to a declaration that
/// has `@_alwaysEmitIntoClient` attribute.
bool markedAsAlwaysEmitIntoClient() const {
if (!hasLocation())
return false;
auto *V = getLocation().getAsASTNode<ValueDecl>();
return V && V->isAlwaysEmittedIntoClient();
}
/// Return whether this function has attribute @used on it
bool markedAsUsed() const { return MarkedAsUsed; }
void setMarkedAsUsed(bool value) { MarkedAsUsed = value; }
/// Return custom assembler name, otherwise empty.
StringRef asmName() const { return AsmName; }
void setAsmName(StringRef value);
/// Return custom section name if @section was used, otherwise empty
StringRef section() const { return Section; }
void setSection(StringRef value) { Section = value; }
/// Return Wasm export name if @_expose(wasm) was used, otherwise empty
StringRef wasmExportName() const { return WasmExportName; }
void setWasmExportName(StringRef value) { WasmExportName = value; }
/// Return Wasm import module name if @_extern(wasm) was used otherwise empty
StringRef wasmImportModuleName() const {
if (WasmImportModuleAndField)
return WasmImportModuleAndField->first;
return StringRef();
}
/// Return Wasm import field name if @_extern(wasm) was used otherwise empty
StringRef wasmImportFieldName() const {
if (WasmImportModuleAndField)
return WasmImportModuleAndField->second;
return StringRef();
}
void setWasmImportModuleAndField(StringRef module, StringRef field) {
WasmImportModuleAndField = std::make_pair(module, field);
}
bool isExternForwardDeclaration() const {
if (isExternalDeclaration()) {
if (auto declContext = getDeclContext()) {
if (auto decl = declContext->getAsDecl()) {
if (decl->getAttrs().hasAttribute<ExternAttr>())
return true;
if (decl->getAttrs().hasAttribute<SILGenNameAttr>())
return true;
}
}
}
return false;
}
/// Returns true if this function belongs to a declaration that returns
/// an opaque result type with one or more availability conditions that are
/// allowed to produce a different underlying type at runtime.
bool hasOpaqueResultTypeWithAvailabilityConditions() const {
if (!hasLocation())
return false;
if (auto *V = getLocation().getAsASTNode<ValueDecl>()) {
auto *opaqueResult = V->getOpaqueResultTypeDecl();
return opaqueResult &&
opaqueResult->hasConditionallyAvailableSubstitutions();
}
return false;
}
void setActorIsolation(ActorIsolation newActorIsolation) {
actorIsolation = newActorIsolation;
}
std::optional<ActorIsolation> getActorIsolation() const {
return actorIsolation;
}
bool isNonisolatedNonsending() const {
return actorIsolation && actorIsolation->isCallerIsolationInheriting();
}
/// Return the source file that this SILFunction belongs to if it exists.
SourceFile *getSourceFile() const;
//===--------------------------------------------------------------------===//
// Block List Access
//===--------------------------------------------------------------------===//
using iterator = BlockListType::iterator;
using reverse_iterator = BlockListType::reverse_iterator;
using const_iterator = BlockListType::const_iterator;
bool empty() const { return BlockList.empty(); }
iterator begin() { return BlockList.begin(); }
iterator end() { return BlockList.end(); }
reverse_iterator rbegin() { return BlockList.rbegin(); }
reverse_iterator rend() { return BlockList.rend(); }
const_iterator begin() const { return BlockList.begin(); }
const_iterator end() const { return BlockList.end(); }
unsigned size() const { return BlockList.size(); }
SILBasicBlock &front() { return *begin(); }
const SILBasicBlock &front() const { return *begin(); }
SILBasicBlock *getEntryBlock() { return &front(); }
const SILBasicBlock *getEntryBlock() const { return &front(); }
SILBasicBlock *createBasicBlock();
SILBasicBlock *createBasicBlock(llvm::StringRef debugName);
SILBasicBlock *createBasicBlockAfter(SILBasicBlock *afterBB);
SILBasicBlock *createBasicBlockBefore(SILBasicBlock *beforeBB);
/// Removes and destroys \p BB;
void eraseBlock(SILBasicBlock *BB) {
assert(BB->getParent() == this);
BlockList.erase(BB);
}
/// Transfer all blocks of \p F into this function, at the begin of the block
/// list.
void moveAllBlocksFromOtherFunction(SILFunction *F);
/// Transfer \p blockInOtherFunction of another function into this function,
/// before \p insertPointInThisFunction.
void moveBlockFromOtherFunction(SILBasicBlock *blockInOtherFunction,
iterator insertPointInThisFunction);
/// Move block \p BB to immediately before the iterator \p IP.
///
/// The block must be part of this function.
void moveBlockBefore(SILBasicBlock *BB, SILFunction::iterator IP);
/// Move block \p BB to immediately after block \p After.
///
/// The block must be part of this function.
void moveBlockAfter(SILBasicBlock *BB, SILBasicBlock *After) {
moveBlockBefore(BB, std::next(After->getIterator()));
}
/// Return the unique basic block containing a return inst if it
/// exists. Otherwise, returns end.
iterator findReturnBB() {
return std::find_if(begin(), end(),
[](const SILBasicBlock &BB) -> bool {
const TermInst *TI = BB.getTerminator();
return isa<ReturnInst>(TI);
});
}
/// Return the unique basic block containing a return inst if it
/// exists. Otherwise, returns end.
const_iterator findReturnBB() const {
return std::find_if(begin(), end(),
[](const SILBasicBlock &BB) -> bool {
const TermInst *TI = BB.getTerminator();
return isa<ReturnInst>(TI);
});
}
/// Return the unique basic block containing a throw inst if it
/// exists. Otherwise, returns end.
iterator findThrowBB() {
return std::find_if(begin(), end(),
[](const SILBasicBlock &BB) -> bool {
const TermInst *TI = BB.getTerminator();
return isa<ThrowInst>(TI) || isa<ThrowAddrInst>(TI);
});
}
/// Return the unique basic block containing a throw inst if it
/// exists. Otherwise, returns end.
const_iterator findThrowBB() const {
return std::find_if(begin(), end(),
[](const SILBasicBlock &BB) -> bool {
const TermInst *TI = BB.getTerminator();
return isa<ThrowInst>(TI) || isa<ThrowAddrInst>(TI);
});
}
/// Loop over all blocks in this function and add all function exiting blocks
/// to output.
void findExitingBlocks(llvm::SmallVectorImpl<SILBasicBlock *> &output) const {
for (auto &Block : const_cast<SILFunction &>(*this)) {
if (Block.getTerminator()->isFunctionExiting()) {
output.emplace_back(&Block);
}
}
}
/// Populate \p output with every block terminated by an unreachable
/// instruction.
void visitUnreachableTerminatedBlocks(
llvm::function_ref<void(SILBasicBlock &)> visitor) const {
for (auto &block : const_cast<SILFunction &>(*this)) {
if (isa<UnreachableInst>(block.getTerminator())) {
visitor(block);
}
}
}
//===--------------------------------------------------------------------===//
// Argument Helper Methods
//===--------------------------------------------------------------------===//
SILArgument *getArgument(unsigned i) {
assert(!empty() && "Cannot get argument of a function without a body");
return begin()->getArgument(i);
}
const SILArgument *getArgument(unsigned i) const {
assert(!empty() && "Cannot get argument of a function without a body");
return begin()->getArgument(i);
}
ArrayRef<SILArgument *> getArguments() const {
assert(!empty() && "Cannot get arguments of a function without a body");
return begin()->getArguments();
}
ArrayRef<SILArgument *> getIndirectResults() const {
assert(!empty() && "Cannot get arguments of a function without a body");
return begin()->getArguments().slice(
0, getConventions().getNumIndirectSILResults());
}
ArrayRef<SILArgument *> getArgumentsWithoutIndirectResults() const {
assert(!empty() && "Cannot get arguments of a function without a body");
return begin()->getArguments().slice(
getConventions().getNumIndirectSILResults() +
getConventions().getNumIndirectSILErrorResults());
}
const SILArgument *getSelfArgument() const {
assert(hasSelfParam() && "This method can only be called if the "
"SILFunction has a self parameter");
return getArguments().back();
}
/// Like getSelfArgument() except it returns a nullptr if we do not have a
/// selfparam.
const SILArgument *maybeGetSelfArgument() const {
if (!hasSelfParam())
return nullptr;
return getArguments().back();
}
/// If we have an isolated argument, return that. Returns nullptr otherwise.
const SILArgument *maybeGetIsolatedArgument() const {
for (auto *arg : getArgumentsWithoutIndirectResults()) {
if (cast<SILFunctionArgument>(arg)->getKnownParameterInfo().hasOption(
SILParameterInfo::Isolated))
return arg;
}
return nullptr;
}
const SILArgument *getDynamicSelfMetadata() const {
assert(hasDynamicSelfMetadata() && "This method can only be called if the "
"SILFunction has a self-metadata parameter");
return getArguments().back();
}
//===--------------------------------------------------------------------===//
// Miscellaneous
//===--------------------------------------------------------------------===//
/// A value's lifetime, determined by looking at annotations on its decl and
/// the default lifetime for the type.
Lifetime getLifetime(VarDecl *decl, SILType ty) {
return ty.getLifetime(*this).getLifetimeForAnnotatedValue(
decl->getLifetimeAnnotation());
}
ArrayRef<std::pair<SILType, SILUndef *>> getUndefValues() {
return {undefValues.begin(), undefValues.end()};
}
/// verify - Run the SIL verifier to make sure that the SILFunction follows
/// invariants.
void verify(CalleeCache *calleeCache = nullptr,
bool SingleFunction = true,
bool isCompleteOSSA = true,
bool checkLinearLifetime = true) const;
/// Run the SIL verifier without assuming OSSA lifetimes end at dead end
/// blocks.
void verifyIncompleteOSSA() const {
verify(/*calleeCache*/nullptr, /*SingleFunction=*/true, /*completeOSSALifetimes=*/false);
}
/// Verifies the lifetime of memory locations in the function.
void verifyMemoryLifetime(CalleeCache *calleeCache,
DeadEndBlocks *deadEndBlocks);
/// Verifies ownership of the function.
/// Since we don't have complete lifetimes everywhere, computes DeadEndBlocks
/// and calls verifyOwnership(DeadEndBlocks *deadEndBlocks)
void verifyOwnership() const;
/// Run the SIL ownership verifier to check that all values with ownership
/// have a linear lifetime. Regular OSSA invariants are checked separately in
/// normal SIL verification.
///
/// \p deadEndBlocks is nullptr when OSSA lifetimes are complete.
///
/// NOTE: The ownership verifier is run when performing normal IR
/// verification, so this verification can be viewed as a subset of
/// SILFunction::verify(checkLinearLifetimes=true).
void verifyOwnership(DeadEndBlocks *deadEndBlocks) const;
/// Verify that all non-cond-br critical edges have been split.
///
/// This is a fast subset of the checks performed in the SILVerifier.
void verifyCriticalEdges() const;
/// Validate that all SILUndefs stored in the function's type -> SILUndef map
/// have this function as their parent function.
///
/// Please only call this from the SILVerifier.
void verifySILUndefMap() const;
/// Pretty-print the SILFunction.
void dump(bool Verbose) const;
void dump() const;
/// Pretty-print the SILFunction with DebugInfo.
void dump(bool Verbose, bool DebugInfo) const;
/// Pretty-print the SILFunction.
/// Useful for dumping the function when running in a debugger.
/// Warning: no error handling is done. Fails with an assert if the file
/// cannot be opened.
void dump(const char *FileName) const;
/// Pretty-print the SILFunction to the tream \p OS.
///
/// \param Verbose Dump SIL location information in verbose mode.
void print(raw_ostream &OS, bool Verbose = false) const {
SILPrintContext PrintCtx(OS, Verbose);
print(PrintCtx);
}
/// Pretty-print the SILFunction with the context \p PrintCtx.
void print(SILPrintContext &PrintCtx) const;
/// Pretty-print the SILFunction's name using SIL syntax,
/// '@function_mangled_name'.
void printName(raw_ostream &OS) const;
/// Assigns consecutive numbers to all the SILNodes in the function.
/// For instructions, both the instruction node and the value nodes of
/// any results will be assigned numbers; the instruction node will
/// be numbered the same as the first result, if there are any results.
void numberValues(llvm::DenseMap<const SILNode*, unsigned> &nodeToNumberMap)
const;
ASTContext &getASTContext() const;
/// This function is meant for use from the debugger. You can just say 'call
/// F->viewCFG()' and a ghostview window should pop up from the program,
/// displaying the CFG of the current function with the code for each basic
/// block inside. This depends on there being a 'dot' and 'gv' program in
/// your path.
void viewCFG() const;
/// Like ViewCFG, but the graph does not show the contents of basic blocks.
void viewCFGOnly() const;
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const SILFunction &F) {
F.print(OS);
return OS;
}
} // end swift namespace
//===----------------------------------------------------------------------===//
// ilist_traits for SILFunction
//===----------------------------------------------------------------------===//
namespace llvm {
template <>
struct ilist_traits<::swift::SILFunction> :
public ilist_node_traits<::swift::SILFunction> {
using SILFunction = ::swift::SILFunction;
public:
static void deleteNode(SILFunction *V) { V->~SILFunction(); }
private:
void createNode(const SILFunction &);
};
} // end llvm namespace
//===----------------------------------------------------------------------===//
// Inline SIL implementations
//===----------------------------------------------------------------------===//
namespace swift {
inline bool SILBasicBlock::isEntry() const {
return this == &*getParent()->begin();
}
inline SILModule &SILInstruction::getModule() const {
return getFunction()->getModule();
}
} // end swift namespace
#endif