Files
swift-mirror/include/swift/SIL/SILValue.h
Meghana Gupta c2dab58876 Update SILGen for ~Copyable borrow accessors
Introduce copy_value + mark_unresolved_non_copyable_value + begin_borrow at the return value of
borrow accessor apply to drive move-only diagnostics.

Also strip the copy_value + mark_unresolved_non_copyable_value + begin_borrow trio in a few places, since
they create an artificial scope out of which we cannot return values in a borrow accessor
without resorting to unsafe SIL operations currently.

Borrow accessor diagnostics allow stripping these instructions safely in the following places:

- return value of a borrow accessor
- self argument reference in the borrow accessor return expression and borrow accessor apply
2025-10-02 07:18:23 -07:00

1697 lines
59 KiB
C++

//===--- SILValue.h - Value base class for SIL ------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SILValue class.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_SILVALUE_H
#define SWIFT_SIL_SILVALUE_H
#include "swift/Basic/ArrayRefView.h"
#include "swift/Basic/Debug.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/SILAllocated.h"
#include "swift/SIL/SILArgumentConvention.h"
#include "swift/SIL/SILNode.h"
#include "swift/SIL/SILType.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
namespace swift {
class DominanceInfo;
class PostOrderFunctionInfo;
class ReversePostOrderInfo;
class Operand;
class SILInstruction;
class SILArgument;
class SILLocation;
class DeadEndBlocks;
class ValueBaseUseIterator;
class ConsumingUseIterator;
class NonConsumingUseIterator;
class TypeDependentUseIterator;
class NonTypeDependentUseIterator;
class SILValue;
class SILModuleConventions;
/// An enumeration which contains values for all the concrete ValueBase
/// subclasses.
enum class ValueKind : std::underlying_type<SILNodeKind>::type {
#define VALUE(ID, PARENT) \
ID = unsigned(SILNodeKind::ID),
#define VALUE_RANGE(ID, FIRST, LAST) \
First_##ID = unsigned(SILNodeKind::First_##ID), \
Last_##ID = unsigned(SILNodeKind::Last_##ID),
#include "swift/SIL/SILNodes.def"
};
/// ValueKind hashes to its underlying integer representation.
static inline llvm::hash_code hash_value(ValueKind K) {
return llvm::hash_value(size_t(K));
}
/// What constraint does the given use of an SSA value put on the lifetime of
/// the given SSA value.
///
/// There are two possible constraints: NonLifetimeEnding and
/// LifetimeEnding. NonLifetimeEnding means that the SSA value must be
/// able to be used in a valid way at the given use
/// point. LifetimeEnding means that the value has been invalidated at
/// the given use point and any uses reachable from that point are
/// invalid in SIL causing a SIL verifier error.
enum class UseLifetimeConstraint {
/// This use requires the SSA value to be live after the given instruction's
/// execution.
NonLifetimeEnding,
/// This use invalidates the given SSA value.
///
/// This means that the given SSA value can not have any uses that are
/// reachable from this instruction. When a value has owned semantics this
/// means the SSA value is destroyed at this point. When a value has
/// guaranteed (i.e. shared borrow) semantics this means that the program
/// has left the scope of the borrowed SSA value and said value can not be
/// used.
LifetimeEnding,
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
UseLifetimeConstraint constraint);
/// A lattice that we use to classify ownership at the SIL level. None is top
/// and Any is bottom and all of the other ownership kinds are mid level nodes
/// in the lattice. Graphically the lattice looks as follows:
/// +----+
/// +-------|None|---------+
/// | +----+ |
/// | | |
/// v v v
/// +-------+ +-----+ +----------+
/// |Unowned| |Owned| |Guaranteed|
/// +-------+ +-----+ +----------+
/// | | |
/// | v |
/// | +---+ |
/// +------->|Any|<--------+
/// +---+
///
/// One moves up the lattice by performing a join operation and one moves down
/// the lattice by performing a meet operation.
///
/// This type is used in two different composition types:
///
/// * ValueOwnershipKind: This represents the ownership kind that a value can
/// take. Since our ownership system is strict, we require that all values
/// have a non-Any ownership since Any represents a type of ownership unknown
/// statically. Thus we treat Any as representing an invalid
/// value. ValueOwnershipKinds can only perform a meet operation to determine
/// if two ownership kinds are compatible with a merge of Any showing the
/// merge is impossible since values can not have any ownership. Values with
/// ownership None are statically proven to be trivial values, often because
/// they are trivially typed, but sometimes because of path-sensitive
/// information like knowledge of an enum case. Trivial values have no
/// ownership semantics.
///
/// * OwnershipConstraint: This represents a constraint on the values that can
/// be used by a specific operand. Here Any is valid and is used for operands
/// that don't care about the ownership kind (lack ownership constraints). In
/// contrast, a constraint of None is the most restrictive. It requires a
/// trivial value. An Unowned, Owned, or Guaranteed constraint requires either
/// a value with the named ownership, or a trivial value.
struct OwnershipKind {
enum innerty : uint8_t {
/// An ownership kind that models an ownership that is unknown statically at
/// compile time. It is invalid when applied to values because we have
/// strict ownership rules for values. But it is an expected/normal state
/// when constraining ownership kinds.
Any = 0,
/// A SILValue with `Unowned` ownership kind is an independent value that
/// has a lifetime that is only guaranteed to last until the next program
/// visible side-effect. To maintain the lifetime of an unowned value, it
/// must be converted to an owned representation via a copy_value.
///
/// Unowned ownership kind occurs mainly along method/function boundaries in
/// between Swift and Objective-C code.
Unowned,
/// A SILValue with `Owned` ownership kind is an independent value that has
/// an ownership independent of any other ownership imbued within it. The
/// SILValue must be paired with a consuming operation that ends the SSA
/// value's lifetime exactly once along all paths through the program.
Owned,
/// A SILValue with `Guaranteed` ownership kind is an independent value that
/// is guaranteed to be live over a specific region of the program. This
/// region can come in several forms:
///
/// 1. @guaranteed function argument. This guarantees that a value will
/// outlive a function.
///
/// 2. A shared borrow region. This is a region denoted by a
/// begin_borrow/load_borrow instruction and an end_borrow instruction. The
/// SSA value must not be destroyed or taken inside the borrowed region.
///
/// Any value with guaranteed ownership must be paired with an end_borrow
/// instruction exactly once along any path through the program.
Guaranteed,
/// A SILValue with None ownership kind is an independent value outside of
/// the ownership system. It is used to model values that are statically
/// determined to be trivial. This includes trivially typed values as well
/// as trivial cases of non-trivial enums. Naturally None can be merged with
/// any ValueOwnershipKind allowing us to naturally model merge and branch
/// points in the SSA graph, where more information about the value is
/// statically available on some control flow paths.
None,
LastValueOwnershipKind = None,
} value;
using UnderlyingType = std::underlying_type<innerty>::type;
static constexpr unsigned NumBits = SILNode::NumVOKindBits;
static constexpr UnderlyingType MaxValue = (UnderlyingType(1) << NumBits);
static constexpr uint64_t Mask = MaxValue - 1;
static_assert(unsigned(OwnershipKind::LastValueOwnershipKind) < MaxValue,
"LastValueOwnershipKind is larger than max representable "
"ownership value?!");
OwnershipKind(OwnershipKind::innerty other) : value(other) {}
OwnershipKind(const OwnershipKind &other) : value(other.value) {}
OwnershipKind &operator=(const OwnershipKind &other) {
value = other.value;
return *this;
}
OwnershipKind &operator=(OwnershipKind::innerty other) {
value = other;
return *this;
}
operator OwnershipKind::innerty() const { return value; }
/// Move down the lattice.
OwnershipKind meet(OwnershipKind other) const {
// None merges with anything.
if (*this == OwnershipKind::None)
return other;
if (other == OwnershipKind::None)
return *this;
// At this point, if the two ownership kinds don't line up, the merge
// fails. Return any to show that we have lost information and now have a
// value kind that is invalid on values.
if (*this != other)
return OwnershipKind::Any;
// Otherwise, we are good, return *this.
return *this;
}
/// Move up the lattice.
OwnershipKind join(OwnershipKind other) const {
if (*this == OwnershipKind::Any)
return other;
if (other == OwnershipKind::Any)
return *this;
if (*this != other)
return OwnershipKind::None;
return *this;
}
/// Convert this ownership kind to a StringRef.
StringRef asString() const;
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &os, const OwnershipKind &kind);
struct OperandOwnership;
/// A value representing the specific ownership semantics that a SILValue may
/// have.
struct ValueOwnershipKind {
using innerty = OwnershipKind::innerty;
OwnershipKind value;
ValueOwnershipKind(innerty newValue) : value(newValue) {}
ValueOwnershipKind(OwnershipKind newValue) : value(newValue) {}
explicit ValueOwnershipKind(unsigned newValue) : value(innerty(newValue)) {}
ValueOwnershipKind(const SILFunction &f, SILType type,
SILArgumentConvention convention);
ValueOwnershipKind(const SILFunction &f, SILType type,
SILArgumentConvention convention,
SILModuleConventions moduleConventions);
/// Parse Value into a ValueOwnershipKind.
///
/// *NOTE* Emits an unreachable if an invalid value is passed in.
explicit ValueOwnershipKind(StringRef value);
operator OwnershipKind() const { return value; }
explicit operator unsigned() const { return value; }
operator innerty() const { return value; }
explicit operator bool() const { return value != OwnershipKind::Any; }
#ifndef __cpp_impl_three_way_comparison
// C++20 (more precisely P1185) introduced more overload candidates for
// comparison operator calls. With that in place the following definitions are
// redundant and actually cause compilation errors because of ambiguity.
// P1630 explains the rationale behind introducing this backward
// incompatibility.
//
// References:
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1185r2.html
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1630r1.html
bool operator==(ValueOwnershipKind other) const {
return value == other.value;
}
bool operator!=(ValueOwnershipKind other) const {
return !(value == other.value);
}
bool operator==(innerty other) const { return value == other; }
bool operator!=(innerty other) const { return !(value == other); }
#endif
/// We merge by moving down the lattice.
ValueOwnershipKind merge(ValueOwnershipKind rhs) const {
return value.meet(rhs.value);
}
/// Given that there is an aggregate value (like a struct or enum) with this
/// ownership kind, and a subobject of type Proj is being projected from the
/// aggregate, return Trivial if Proj has trivial type and the aggregate's
/// ownership kind otherwise.
ValueOwnershipKind getProjectedOwnershipKind(const SILFunction &func,
SILType projType) const;
/// Return the lifetime constraint semantics for this
/// ValueOwnershipKind when forwarding ownership.
///
/// This is MustBeInvalidated for Owned and MustBeLive for all other ownership
/// kinds.
UseLifetimeConstraint getForwardingLifetimeConstraint() const {
switch (value) {
case OwnershipKind::Any:
case OwnershipKind::None:
case OwnershipKind::Guaranteed:
case OwnershipKind::Unowned:
return UseLifetimeConstraint::NonLifetimeEnding;
case OwnershipKind::Owned:
return UseLifetimeConstraint::LifetimeEnding;
}
llvm_unreachable("covered switch");
}
/// Return the OperandOwnership for a forwarded operand when the forwarded
/// result has this ValueOwnershipKind. \p allowUnowned is true for a subset
/// of forwarding operations that are allowed to propagate Unowned values.
OperandOwnership getForwardingOperandOwnership(bool allowUnowned) const;
/// Returns true if \p Other can be merged successfully with this, implying
/// that the two ownership kinds are "compatible".
///
/// The reason why we do not compare directy is to allow for
/// OwnershipKind::None to merge into other forms of ValueOwnershipKind.
bool isCompatibleWith(ValueOwnershipKind other) const {
return bool(merge(other));
}
/// Returns isCompatibleWith(other->getOwnershipKind()).
///
/// Definition is inline after SILValue is defined to work around circular
/// dependencies.
bool isCompatibleWith(SILValue other) const;
template <typename RangeTy> static ValueOwnershipKind merge(RangeTy &&r) {
auto initial = OwnershipKind::None;
return accumulate(std::forward<RangeTy>(r), initial,
[](ValueOwnershipKind acc, ValueOwnershipKind x) {
if (!acc)
return acc;
return acc.merge(x);
});
}
// An initialized value whose nominal type has a deinit() must be 'owned'. For
// example, an owned struct/enum-with-deinit may be initialized by
// "forwarding" a trivial value. A struct/enum-with-deinit must be prevented
// from forwarding a guaranteed value.
//
// Simply consider all non-Copyable types to be 'owned'. This could instead be
// limited to isValueTypeWithDeinit(). However, forcing non-Copyable types to
// be owned is consistent with the fact that their type is non-Trivial and
// simplifies reasoning about non-Copyable ownership.
ValueOwnershipKind forwardToInit(SILType nominalType) {
if (nominalType.isMoveOnly()) {
switch (value) {
case OwnershipKind::Any:
case OwnershipKind::None:
case OwnershipKind::Owned:
return OwnershipKind::Owned;
case OwnershipKind::Guaranteed:
case OwnershipKind::Unowned:
ABORT("Cannot initialize a nonCopyable type with a guaranteed value");
}
}
return *this;
}
StringRef asString() const;
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &os, ValueOwnershipKind Kind);
/// This is the base class of the SIL value hierarchy, which represents a
/// runtime computed value. Some examples of ValueBase are SILArgument and
/// SingleValueInstruction.
class ValueBase : public SILNode, public SILAllocated<ValueBase> {
friend class Operand;
SILType Type;
Operand *FirstUse = nullptr;
ValueBase(const ValueBase &) = delete;
ValueBase &operator=(const ValueBase &) = delete;
protected:
ValueBase(ValueKind kind, SILType type)
: SILNode(SILNodeKind(kind)), Type(type) {}
public:
~ValueBase() {
assert(use_empty() && "Cannot destroy a value that still has uses!");
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
ValueKind getKind() const { return ValueKind(SILNode::getKind()); }
SILType getType() const {
return Type;
}
/// Replace every use of a result of this instruction with the corresponding
/// result from RHS.
///
/// The method assumes that both instructions have the same number of
/// results. To replace just one result use SILValue::replaceAllUsesWith.
void replaceAllUsesWith(ValueBase *RHS);
/// Replace all uses of this instruction with an undef value of the
/// same type as the result of this instruction.
void replaceAllUsesWithUndef();
void replaceAllTypeDependentUsesWith(ValueBase *RHS);
/// Is this value a direct result of the given instruction?
bool isResultOf(SILInstruction *I) const;
/// Returns true if this value has no uses.
/// To ignore debug-info instructions use swift::onlyHaveDebugUses instead
/// (see comment in DebugUtils.h).
bool use_empty() const { return FirstUse == nullptr; }
using use_iterator = ValueBaseUseIterator;
using use_range = iterator_range<use_iterator>;
using consuming_use_iterator = ConsumingUseIterator;
using consuming_use_range = iterator_range<consuming_use_iterator>;
using non_consuming_use_iterator = NonConsumingUseIterator;
using non_consuming_use_range = iterator_range<non_consuming_use_iterator>;
using typedependent_use_iterator = TypeDependentUseIterator;
using typedependent_use_range = iterator_range<typedependent_use_iterator>;
using non_typedependent_use_iterator = NonTypeDependentUseIterator;
using non_typedependent_use_range =
iterator_range<non_typedependent_use_iterator>;
inline use_iterator use_begin() const;
inline use_iterator use_end() const;
inline consuming_use_iterator consuming_use_begin() const;
inline consuming_use_iterator consuming_use_end() const;
inline non_consuming_use_iterator non_consuming_use_begin() const;
inline non_consuming_use_iterator non_consuming_use_end() const;
inline typedependent_use_iterator typedependent_use_begin() const;
inline typedependent_use_iterator typedependent_use_end() const;
inline non_typedependent_use_iterator non_typedependent_use_begin() const;
inline non_typedependent_use_iterator non_typedependent_use_end() const;
/// Returns a range of all uses, which is useful for iterating over all uses.
/// To ignore debug-info instructions use swift::getNonDebugUses instead
/// (see comment in DebugUtils.h).
inline use_range getUses() const;
/// Returns true if this value has exactly one use.
/// To ignore debug-info instructions use swift::hasOneNonDebugUse instead
/// (see comment in DebugUtils.h).
inline bool hasOneUse() const;
/// Returns .some(single user) if this value has a single user. Returns .none
/// otherwise.
inline Operand *getSingleUse() const;
/// Returns .some(single user) if this value is non-trivial, we are in ossa,
/// and it has a single consuming user. Returns .none otherwise.
inline Operand *getSingleConsumingUse() const;
/// Returns a range of all consuming uses
inline consuming_use_range getConsumingUses() const;
/// Returns a range of all non consuming uses
inline non_consuming_use_range getNonConsumingUses() const;
/// Returns a range of uses that are classified as a type dependent
/// operand of the user.
inline typedependent_use_range getTypeDependentUses() const;
/// Returns a range of uses that are not classified as a type dependent
/// operand of the user.
inline non_typedependent_use_range getNonTypeDependentUses() const;
template <class T>
inline T *getSingleUserOfType() const;
template <class T> inline T *getSingleConsumingUserOfType() const;
/// Returns true if this operand has exactly two uses.
///
/// This is useful if one has found a predefined set of 2 unique users and
/// wants to check if there are any other users without iterating over the
/// entire use list.
inline bool hasTwoUses() const;
/// Helper struct for DowncastUserFilterRange and UserRange
struct UseToUser;
using UserRange =
llvm::iterator_range<llvm::mapped_iterator<swift::ValueBaseUseIterator,
swift::ValueBase::UseToUser,
swift::SILInstruction *>>;
inline UserRange getUsers() const;
template <typename Subclass>
using DowncastUserFilterRange =
DowncastFilterRange<Subclass,
iterator_range<llvm::mapped_iterator<
use_iterator, UseToUser, SILInstruction *>>>;
/// Iterate over the use list of this ValueBase visiting all users that are of
/// class T.
///
/// Example:
///
/// ValueBase *v = ...;
/// for (CopyValueInst *cvi : v->getUsersOfType<CopyValueInst>()) { ... }
///
/// NOTE: Uses llvm::dyn_cast internally.
template <typename T>
inline DowncastUserFilterRange<T> getUsersOfType() const;
/// Return the instruction that defines this value, or null if it is
/// not defined by an instruction.
const SILInstruction *getDefiningInstruction() const {
return const_cast<ValueBase*>(this)->getDefiningInstruction();
}
SILInstruction *getDefiningInstruction();
/// Return the instruction that defines this value, terminator instruction
/// that produces this result, or null if it is not defined by an instruction.
const SILInstruction *getDefiningInstructionOrTerminator() const {
return const_cast<ValueBase*>(this)->getDefiningInstructionOrTerminator();
}
SILInstruction *getDefiningInstructionOrTerminator();
/// Return the SIL instruction that can be used to describe the first time
/// this value is available.
///
/// For instruction results, this returns getDefiningInstruction(). For
/// arguments, this returns SILBasicBlock::begin() for the argument's parent
/// block. Returns nullptr for SILUndef.
///
/// FIXME: remove this redundant API from SILValue.
SILInstruction *getDefiningInsertionPoint();
// Const version of \see getDefiningInsertionPoint.
const SILInstruction *getDefiningInsertionPoint() const {
return const_cast<ValueBase *>(this)->getDefiningInsertionPoint();
}
/// Return the next SIL instruction to execute /after/ this value is
/// available.
///
/// Operationally this means that:
///
/// * For SILArguments, this returns the first instruction in the block.
///
/// * For SILInstructions, this returns std::next. This is the main divergence
/// from getDefiningInsertionPoint() (see discussion below).
///
/// * For SILUndef, this returns nullptr.
///
/// DISCUSSION: The reason that this exists is that when one wants a "next"
/// instruction pointer, one often times wants to write:
///
/// if (auto *insertPt = value->getDefiningInsertionPoint())
/// return std::next(insertPt);
///
/// This is incorrect for SILArguments since after processing a SILArgument,
/// we need to process the actual first instruction in the block. With this
/// API, one can simply do:
///
/// if (auto *inst = value->getNextInstruction())
/// return inst;
///
/// And get the correct answer every time.
SILInstruction *getNextInstruction();
// Const version of \see getDefiningInsertionPoint.
const SILInstruction *getNextInstruction() const {
return const_cast<ValueBase *>(this)->getNextInstruction();
}
struct DefiningInstructionResult {
SILInstruction *Instruction;
size_t ResultIndex;
};
/// Return the instruction that defines this value and the appropriate
/// result index, or None if it is not defined by an instruction.
std::optional<DefiningInstructionResult> getDefiningInstructionResult();
/// Returns the ValueOwnershipKind that describes this SILValue's ownership
/// semantics if the SILValue has ownership semantics. Returns is a value
/// without any Ownership Semantics.
///
/// An example of a SILValue without ownership semantics is a
/// struct_element_addr.
///
/// NOTE: This is implemented in ValueOwnership.cpp not SILValue.cpp.
ValueOwnershipKind getOwnershipKind() const;
bool isLexical() const;
bool isGuaranteedForwarding() const;
bool isBeginApplyToken() const;
bool isBorrowAccessorResult() const;
/// Unsafely eliminate moveonly from this value's type. Returns true if the
/// value's underlying type was move only and thus was changed. Returns false
/// otherwise.
///
/// NOTE: Please do not use this directly! It is only meant to be used by the
/// optimizer pass: SILMoveOnlyWrappedTypeEliminator.
bool unsafelyEliminateMoveOnlyWrapper(const SILFunction *fn) {
if (!Type.hasAnyMoveOnlyWrapping(fn))
return false;
Type = Type.removingAnyMoveOnlyWrapping(fn);
return true;
}
/// Returns true if this value should be traced for optimization debugging
/// (it has a debug_value [trace] user).
bool hasDebugTrace() const;
/// Does this SILValue begin a VarDecl scope? Only true in OSSA.
bool isFromVarDecl();
static bool classof(SILNodePointer node) {
return node->getKind() >= SILNodeKind::First_ValueBase &&
node->getKind() <= SILNodeKind::Last_ValueBase;
}
static bool classof(const ValueBase *V) { return true; }
/// This is supportable but usually suggests a logic mistake.
static bool classof(const SILInstruction *) = delete;
};
} // end namespace swift
namespace llvm {
/// ValueBase * is always at least eight-byte aligned; make the three tag bits
/// available through PointerLikeTypeTraits.
template<>
struct PointerLikeTypeTraits<swift::ValueBase *> {
public:
static inline void *getAsVoidPointer(swift::ValueBase *I) {
return (void*)I;
}
static inline swift::ValueBase *getFromVoidPointer(void *P) {
return (swift::ValueBase *)P;
}
enum { NumLowBitsAvailable = 3 };
};
} // end namespace llvm
namespace swift {
/// SILValue - A SILValue is a wrapper around a ValueBase pointer.
class SILValue {
ValueBase *Value;
public:
SILValue(const ValueBase *V = nullptr)
: Value(const_cast<ValueBase *>(V)) { }
ValueBase *operator->() const { return Value; }
ValueBase &operator*() const { return *Value; }
operator ValueBase *() const { return Value; }
// Comparison.
bool operator==(SILValue RHS) const { return Value == RHS.Value; }
bool operator==(ValueBase *RHS) const { return Value == RHS; }
bool operator!=(SILValue RHS) const { return !(*this == RHS); }
bool operator!=(ValueBase *RHS) const { return Value != RHS; }
/// Return true if underlying ValueBase of this SILValue is non-null. Return
/// false otherwise.
explicit operator bool() const { return Value != nullptr; }
/// Get a location for this value.
SILLocation getLoc() const;
/// Convert this SILValue into an opaque pointer like type. For use with
/// PointerLikeTypeTraits.
void *getOpaqueValue() const {
return (void *)Value;
}
/// Convert the given opaque pointer into a SILValue. For use with
/// PointerLikeTypeTraits.
static SILValue getFromOpaqueValue(void *p) {
return SILValue((ValueBase *)p);
}
enum {
NumLowBitsAvailable =
llvm::PointerLikeTypeTraits<ValueBase *>::
NumLowBitsAvailable
};
/// If this SILValue is a result of an instruction, return its
/// defining instruction. Returns nullptr otherwise.
SILInstruction *getDefiningInstruction() {
return Value->getDefiningInstruction();
}
/// If this SILValue is a result of an instruction, return its
/// defining instruction. Returns nullptr otherwise.
const SILInstruction *getDefiningInstruction() const {
return Value->getDefiningInstruction();
}
/// Verify that this SILValue and its uses respects ownership invariants.
///
/// \p DEBlocks is nullptr when OSSA lifetimes are complete.
void verifyOwnership(DeadEndBlocks *DEBlocks) const;
SWIFT_DEBUG_DUMP;
};
inline SILNodePointer::SILNodePointer(SILValue value) : node(value) { }
inline bool ValueOwnershipKind::isCompatibleWith(SILValue other) const {
return isCompatibleWith(other->getOwnershipKind());
}
/// Constraints on the ownership of an operand value.
///
/// The ownershipKind component constrains the operand's value ownership to be
/// the same or "above" the constraint in the lattice, such that
/// join(constraint, valueOwnership) == valueOwnership. In other words, applying
/// the constraint does not change the value's ownership. For example, a value
/// with None ownership is accepted by any OwnershipConstraint, and an
/// OwnershipConstraint with 'Any' ownership kind can accept any value. Note
/// that operands commonly allow either Owned or Guaranteed operands. These
/// operands have an Any ownership constraint to allow either. However,
/// enforcement of Unowned value is more strict. This requires separate logic in
/// canAcceptUnownedValue() to avoid complicating the OwnershipKind lattice.
class OwnershipConstraint {
OwnershipKind ownershipKind;
UseLifetimeConstraint lifetimeConstraint;
public:
OwnershipConstraint(OwnershipKind inputOwnershipKind,
UseLifetimeConstraint inputLifetimeConstraint)
: ownershipKind(inputOwnershipKind),
lifetimeConstraint(inputLifetimeConstraint) {
assert((ownershipKind != OwnershipKind::None ||
lifetimeConstraint == UseLifetimeConstraint::NonLifetimeEnding) &&
"ValueOwnershipKind::None can never have their lifetime ended");
}
OwnershipKind getPreferredKind() const {
return ownershipKind;
}
bool isLifetimeEnding() const {
return lifetimeConstraint == UseLifetimeConstraint::LifetimeEnding;
}
UseLifetimeConstraint getLifetimeConstraint() const {
return lifetimeConstraint;
}
bool isConsuming() const {
return ownershipKind == OwnershipKind::Owned
&& lifetimeConstraint == UseLifetimeConstraint::LifetimeEnding;
}
bool satisfiedBy(const Operand *use) const;
bool satisfiesConstraint(ValueOwnershipKind testKind) const {
return ownershipKind.join(testKind) == testKind;
}
bool operator==(const OwnershipConstraint &other) const {
return ownershipKind == other.ownershipKind &&
isLifetimeEnding() == other.isLifetimeEnding();
}
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
OwnershipConstraint constraint);
/// Categorize all uses in terms of their ownership effect.
///
/// Used to verify completeness of the ownership use model and exhaustively
/// switch over any category of ownership use. Implies ownership constraints and
/// lifetime constraints.
///
/// OperandOwnership may be statically determined by the user's opcode alone, or
/// by the opcode and operand type. Or it may be dynamically determined by an
/// ownership kind variable in the user's state. However, it may never be
/// inferred from the ownership of the incoming value. This way, the logic for
/// determining which ValueOwnershipKind an operand may accept is reliable.
///
/// Any use that takes an Owned or Guaranteed value may also take a trivial
/// value (ownership None), because the ownership semantics are irrelevant.
struct OperandOwnership {
enum innerty : uint8_t {
/// Operands that do not use the value. They only represent a dependence
/// on a dominating definition and do not require liveness.
/// (type-dependent operands)
NonUse,
/// Uses that can only handle trivial values. The operand value must have
/// None ownership. These uses require liveness but are otherwise
/// unverified.
TrivialUse,
/// Use the value only for the duration of the operation, which may have
/// side effects. Requires an owned or guaranteed value.
/// (single-instruction apply with @guaranteed argument)
InstantaneousUse,
/// MARK: Uses of Any ownership values:
/// Use a value without requiring or propagating ownership. The operation
/// may not have side-effects that could affect ownership. This is limited
/// to a small number of operations that are allowed to take Unowned values.
/// (copy_value, single-instruction apply with @unowned argument))
UnownedInstantaneousUse,
/// Forwarding instruction with an Unowned result. Its operands may have any
/// ownership.
ForwardingUnowned,
// Escape a pointer into a value which cannot be tracked or verified.
//
// TODO: Eliminate the PointerEscape category. All pointer escapes should be
// InteriorPointer, guarded by a borrow scope, and verified.
PointerEscape,
/// Bitwise escape. Escapes the nontrivial contents of the value.
/// OSSA does not enforce the lifetime of the escaping bits.
/// The programmer must explicitly force lifetime extension.
/// (ref_to_unowned, unchecked_trivial_bitcast)
BitwiseEscape,
/// Borrow. Propagates the owned or guaranteed value within a scope, without
/// ending its lifetime.
/// (begin_borrow, begin_apply with @guaranteed argument)
Borrow,
/// MARK: Uses of Owned (or None) values:
/// Destroying Consume. Destroys the owned value immediately.
/// (store, destroy, @owned destructure).
DestroyingConsume,
/// Forwarding Consume. Consumes the owned value indirectly via a move.
/// (br, destructure, tuple, struct, cast, switch).
ForwardingConsume,
/// MARK: Uses of Guaranteed (or None) values:
/// Interior Pointer. Propagates a trivial value (e.g. address, pointer, or
/// no-escape closure) that depends on the guaranteed value within the
/// base's borrow scope. The verifier checks that all uses of the trivial
/// value are in scope.
/// (ref_element_addr, open_existential_box)
InteriorPointer,
// TODO: Remove AnyInteriorPointer after fixing
// OperandOwnership::getOwnershipConstraint() to allow InteriorPointer
// operands to take any operand ownership. This will prevent useless borrow
// scopes from being generated, so it will require some SIL migration. But
// all OSSA utilities need to correctly handle interior uses anyway.
AnyInteriorPointer,
/// Forwarded Borrow. Propagates the guaranteed value within the base's
/// borrow scope.
/// (tuple_extract, struct_extract, cast, switch)
GuaranteedForwarding,
/// End Borrow. End the borrow scope opened directly by the operand.
/// The operand must be a begin_borrow, begin_apply, or function argument.
/// (end_borrow, end_apply)
EndBorrow,
// Reborrow. Ends the borrow scope opened directly by the operand and begins
// one or multiple disjoint borrow scopes. If a forwarded value is
// reborrowed, then its base must also be reborrowed at the same point.
// (br, FIXME: should also include destructure, tuple, struct)
Reborrow
} value;
OperandOwnership(innerty newValue) : value(newValue) {}
OperandOwnership(const OperandOwnership &other): value(other.value) {}
OperandOwnership &operator=(const OperandOwnership &other) {
value = other.value;
return *this;
}
OperandOwnership &operator=(OperandOwnership::innerty other) {
value = other;
return *this;
}
operator innerty() const { return value; }
StringRef asString() const;
/// Return the OwnershipConstraint corresponding to this OperandOwnership.
OwnershipConstraint getOwnershipConstraint();
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
const OperandOwnership &operandOwnership);
/// Map OperandOwnership to the OwnershipConstraint used in OSSA validation.
///
/// Each OperandOwnership kind maps directly to a fixed OwnershipConstraint. Any
/// value that can be legally passed to this operand must have an ownership kind
/// permitted by this constraint. A constraint permits an ownership kind if,
/// when it is applied to that ownership kind via a lattice join, it returns the
/// same ownership kind, indicating that no restriction exists.
///
/// Consequently, OperandOwnership kinds that are allowed to take either Owned
/// or Guaranteed values map to an OwnershipKind::Any constraint.
///
/// Unowned values are more restricted than Owned or Guaranteed values in
/// terms of their valid uses, which helps limit the situations where the
/// implementation needs to consider this special case. This additional
/// restriction is validated by `canAcceptUnownedValue`.
///
/// Forwarding instructions that produce Owned or Guaranteed values always
/// forward an operand of the same ownership kind. Each case has a distinct
/// OperandOwnership (ForwardingConsume and GuaranteedForwarding), which
/// enforces a specific constraint on the operand's ownership. Forwarding
/// instructions that produce an Unowned value, however, may forward an operand
/// of any ownership. Therefore, ForwardingUnowned is mapped to
/// OwnershipKind::Any.
///
/// This design yields the following advantages:
///
/// 1. Keeping the verification of Unowned in a separate utility avoids
/// the need to add an extra OwnedOrGuaranteed state to the OwnershipKind
/// lattice. That state would be meaningless as a representation of value
/// ownership, would serve no purpose as a data flow state, and would make
/// the basic definition of ownership less approachable to developers.
///
/// 2. Owned or Guaranteed values can be passed to instructions that want to
/// produce an unowned result from a parent operand. This simplifies the IR
/// and makes RAUWing Unowned values with Owned or Guaranteed values much
/// easier since it does not need to introduce operations that convert those
/// values to Unowned. This significantly simplifies the implementation of
/// OSSA utilities.
///
/// Defined inline so the switch is eliminated for constant OperandOwnership.
inline OwnershipConstraint OperandOwnership::getOwnershipConstraint() {
switch (value) {
case OperandOwnership::TrivialUse:
return {OwnershipKind::None, UseLifetimeConstraint::NonLifetimeEnding};
case OperandOwnership::NonUse:
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
case OperandOwnership::BitwiseEscape:
case OperandOwnership::Borrow:
return {OwnershipKind::Any, UseLifetimeConstraint::NonLifetimeEnding};
case OperandOwnership::DestroyingConsume:
case OperandOwnership::ForwardingConsume:
return {OwnershipKind::Owned, UseLifetimeConstraint::LifetimeEnding};
case OperandOwnership::AnyInteriorPointer:
return {OwnershipKind::Any, UseLifetimeConstraint::NonLifetimeEnding};
// TODO: InteriorPointer should be handled like AnyInteriorPointer.
case OperandOwnership::InteriorPointer:
case OperandOwnership::GuaranteedForwarding:
return {OwnershipKind::Guaranteed,
UseLifetimeConstraint::NonLifetimeEnding};
case OperandOwnership::EndBorrow:
case OperandOwnership::Reborrow:
return {OwnershipKind::Guaranteed, UseLifetimeConstraint::LifetimeEnding};
}
llvm_unreachable("covered switch");
}
/// Return true if this use can accept Unowned values.
///
/// This extra restriction is applied on top of the OwnershipConstraint to limit
/// the spread of Unowned values.
inline bool canAcceptUnownedValue(OperandOwnership operandOwnership) {
switch (operandOwnership) {
case OperandOwnership::NonUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
case OperandOwnership::BitwiseEscape:
return true;
case OperandOwnership::TrivialUse:
case OperandOwnership::InstantaneousUse:
case OperandOwnership::Borrow:
case OperandOwnership::DestroyingConsume:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::InteriorPointer:
case OperandOwnership::AnyInteriorPointer:
case OperandOwnership::GuaranteedForwarding:
case OperandOwnership::EndBorrow:
case OperandOwnership::Reborrow:
return false;
}
llvm_unreachable("covered switch");
}
/// Return true if all OperandOwnership invariants hold.
bool checkOperandOwnershipInvariants(const Operand *operand,
SILModuleConventions *silConv = nullptr);
/// Return the OperandOwnership for a forwarded operand when the forwarding
/// operation has this "forwarding ownership" (as returned by
/// getForwardingOwnershipKind()). \p allowUnowned is true for a subset of
/// forwarding operations that are allowed to propagate Unowned values.
///
/// Forwarding ownership is determined by the forwarding instruction's constant
/// ownership attribute. If forwarding ownership is owned, then the instruction
/// moves owned operand to its result, ending its lifetime. If forwarding
/// ownership is guaranteed, then the instruction propagates the lifetime of its
/// borrows operand through its result.
///
/// The resulting forwarded value typically has forwarding ownership, but may
/// differ when the result is trivial type. e.g. an owned or guaranteed value
/// can be cast to a trivial type using owned or guaranteed forwarding.
inline OperandOwnership
ValueOwnershipKind::getForwardingOperandOwnership(bool allowUnowned) const {
switch (value) {
case OwnershipKind::Any:
llvm_unreachable("invalid value ownership");
case OwnershipKind::Unowned:
if (allowUnowned) {
return OperandOwnership::ForwardingUnowned;
}
llvm_unreachable("invalid value ownership");
case OwnershipKind::None:
return OperandOwnership::TrivialUse;
case OwnershipKind::Guaranteed:
return OperandOwnership::GuaranteedForwarding;
case OwnershipKind::Owned:
return OperandOwnership::ForwardingConsume;
}
}
/// A formal SIL reference to a value, suitable for use as a stored
/// operand.
class Operand {
public:
enum { numCustomBits = 8 };
constexpr static const uint64_t maxBitfieldID =
std::numeric_limits<uint64_t>::max() >> numCustomBits;
private:
template <class, class> friend class SILBitfield;
/// The value used as this operand.
SILValue TheValue;
/// The next operand in the use-chain. Note that the chain holds
/// every use of the current ValueBase, not just those of the
/// designated result.
Operand *NextUse = nullptr;
/// A back-pointer in the use-chain, required for fast patching
/// of use-chains.
Operand **Back = nullptr;
/// The owner of this operand.
/// If null, the Owner was deleted (but not freed, yet).
/// FIXME: this could be space-compressed.
SILInstruction *Owner;
uint64_t customBits : numCustomBits;
// For details see SILNode::lastInitializedBitfieldID
uint64_t lastInitializedBitfieldID : (64 - numCustomBits);
public:
Operand(SILInstruction *owner)
: Owner(owner), customBits(0), lastInitializedBitfieldID(0) {}
Operand(SILInstruction *owner, SILValue theValue)
: TheValue(theValue), Owner(owner),
customBits(0), lastInitializedBitfieldID(0) {
insertIntoCurrent();
}
/// Operands are not copyable.
Operand(const Operand &use) = delete;
Operand &operator=(const Operand &use) = delete;
Operand(Operand &&) = default;
Operand &operator=(Operand &&) = default;
/// Return the current value being used by this operand.
SILValue get() const { return TheValue; }
/// Set the current value being used by this operand.
void set(SILValue newValue) {
// It's probably not worth optimizing for the case of switching
// operands on a single value.
removeFromCurrent();
TheValue = newValue;
insertIntoCurrent();
updateReborrowFlags();
verify();
}
void updateReborrowFlags();
void verify() const;
/// Swap the given operand with the current one.
void swap(Operand &Op) {
SILValue OtherV = Op.get();
Op.set(get());
set(OtherV);
}
/// Remove this use of the operand.
void drop() {
removeFromCurrent();
TheValue = SILValue();
Back = nullptr;
Owner = nullptr;
// Note: we are _not_ clearing the `NextUse` pointer to be able to delete
// users while iterating over the use list.
// In such a case, the iterator can detect that the Owner is null and skip
// to the next (non-deleted) use by following the non-null `NextUse` pointer.
}
~Operand() {
removeFromCurrent();
}
/// Return the user that owns this use.
SILInstruction *getUser() { return Owner; }
const SILInstruction *getUser() const { return Owner; }
Operand *getNextUse() const { return NextUse; }
/// Return true if this operand is a type dependent operand.
///
/// Implemented in SILInstruction.h
bool isTypeDependent() const;
/// Return which operand this is in the operand list of the using instruction.
unsigned getOperandNumber() const;
/// Return the use ownership of this operand.
///
/// NOTE: This is implemented in OperandOwnership.cpp.
OperandOwnership
getOperandOwnership(SILModuleConventions *silConv = nullptr) const;
/// Return the ownership constraint that restricts what types of values this
/// Operand can contain.
OwnershipConstraint
getOwnershipConstraint(SILModuleConventions *silConv = nullptr) const {
return getOperandOwnership(silConv).getOwnershipConstraint();
}
/// Returns true if changing the operand to use a value with the given
/// ownership kind, without rewriting the instruction, would not cause the
/// operand to violate the operand's ownership constraints.
bool canAcceptKind(ValueOwnershipKind kind,
SILModuleConventions *silConv = nullptr) const;
/// Returns true if this operand and its value satisfy the operand's
/// operand constraint.
bool satisfiesConstraints(SILModuleConventions *silConv = nullptr) const;
/// Returns true if this operand acts as a use that ends the lifetime its
/// associated value, either by consuming the owned value or ending the
/// guaranteed scope.
bool isLifetimeEnding() const;
/// Returns true if this ends the lifetime of an owned operand.
bool isConsuming() const;
bool endsLocalBorrowScope() const {
auto ownership = getOperandOwnership();
return ownership == OperandOwnership::EndBorrow
|| ownership == OperandOwnership::Reborrow;
}
SILBasicBlock *getParentBlock() const;
SILFunction *getParentFunction() const;
unsigned getCustomBits() const { return customBits; }
void setCustomBits(unsigned bits) {customBits = bits; }
// Called when transferring basic blocks from one function to another.
void resetBitfields() {
lastInitializedBitfieldID = 0;
}
SILFunction *getFunction() const;
void print(llvm::raw_ostream &os) const;
SWIFT_DEBUG_DUMP;
private:
void removeFromCurrent() {
if (!Back)
return;
*Back = NextUse;
if (NextUse)
NextUse->Back = Back;
}
void insertIntoCurrent() {
Back = &TheValue->FirstUse;
NextUse = TheValue->FirstUse;
if (NextUse)
NextUse->Back = &NextUse;
TheValue->FirstUse = this;
}
friend class ValueBase;
friend class ValueBaseUseIterator;
friend class ConsumingUseIterator;
friend class NonConsumingUseIterator;
friend class TypeDependentUseIterator;
friend class NonTypeDependentUseIterator;
template <unsigned N> friend class FixedOperandList;
friend class TrailingOperandsList;
};
/// A class which adapts an array of Operands into an array of Values.
///
/// The intent is that this should basically act exactly like
/// ArrayRef except projecting away the Operand-ness.
inline SILValue getSILValueType(const Operand &op) {
return op.get();
}
using OperandValueArrayRef = ArrayRefView<Operand, SILValue, getSILValueType>;
/// An iterator over all uses of a ValueBase.
class ValueBaseUseIterator {
protected:
Operand *Cur;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = Operand*;
using difference_type = std::ptrdiff_t;
using pointer = value_type*;
using reference = value_type&;
ValueBaseUseIterator() = default;
explicit ValueBaseUseIterator(Operand *cur) : Cur(cur) {}
Operand *operator->() const { return Cur; }
Operand *operator*() const { return Cur; }
SILInstruction *getUser() const {
return Cur->getUser();
}
ValueBaseUseIterator &operator++() {
assert(Cur && "incrementing past end()!");
Cur = Cur->getNextUse();
return *this;
}
ValueBaseUseIterator operator++(int unused) {
ValueBaseUseIterator copy = *this;
++*this;
return copy;
}
friend bool operator==(ValueBaseUseIterator lhs,
ValueBaseUseIterator rhs) {
return lhs.Cur == rhs.Cur;
}
friend bool operator!=(ValueBaseUseIterator lhs,
ValueBaseUseIterator rhs) {
return !(lhs == rhs);
}
};
inline ValueBase::use_iterator ValueBase::use_begin() const {
return ValueBase::use_iterator(FirstUse);
}
inline ValueBase::use_iterator ValueBase::use_end() const {
return ValueBase::use_iterator(nullptr);
}
inline iterator_range<ValueBase::use_iterator> ValueBase::getUses() const {
return { use_begin(), use_end() };
}
class ConsumingUseIterator : public ValueBaseUseIterator {
public:
explicit ConsumingUseIterator(Operand *cur) : ValueBaseUseIterator(cur) {}
ConsumingUseIterator &operator++() {
assert(Cur && "incrementing past end()!");
assert(Cur->isLifetimeEnding());
while ((Cur = Cur->getNextUse())) {
if (Cur->isLifetimeEnding())
break;
}
return *this;
}
ConsumingUseIterator operator++(int unused) {
ConsumingUseIterator copy = *this;
++*this;
return copy;
}
};
inline ValueBase::consuming_use_iterator
ValueBase::consuming_use_begin() const {
auto cur = FirstUse;
while (cur && !cur->isLifetimeEnding()) {
cur = cur->getNextUse();
}
return ValueBase::consuming_use_iterator(cur);
}
inline ValueBase::consuming_use_iterator ValueBase::consuming_use_end() const {
return ValueBase::consuming_use_iterator(nullptr);
}
class NonConsumingUseIterator : public ValueBaseUseIterator {
public:
explicit NonConsumingUseIterator(Operand *cur) : ValueBaseUseIterator(cur) {}
NonConsumingUseIterator &operator++() {
assert(Cur && "incrementing past end()!");
assert(!Cur->isLifetimeEnding());
while ((Cur = Cur->getNextUse())) {
if (!Cur->isLifetimeEnding())
break;
}
return *this;
}
NonConsumingUseIterator operator++(int unused) {
NonConsumingUseIterator copy = *this;
++*this;
return copy;
}
};
inline ValueBase::non_consuming_use_iterator
ValueBase::non_consuming_use_begin() const {
auto cur = FirstUse;
while (cur && cur->isLifetimeEnding()) {
cur = cur->getNextUse();
}
return ValueBase::non_consuming_use_iterator(cur);
}
inline ValueBase::non_consuming_use_iterator
ValueBase::non_consuming_use_end() const {
return ValueBase::non_consuming_use_iterator(nullptr);
}
class TypeDependentUseIterator : public ValueBaseUseIterator {
public:
explicit TypeDependentUseIterator(Operand *cur) : ValueBaseUseIterator(cur) {}
TypeDependentUseIterator &operator++() {
assert(Cur && "incrementing past end()!");
while ((Cur = Cur->getNextUse())) {
if (Cur->isTypeDependent())
break;
}
return *this;
}
TypeDependentUseIterator operator++(int unused) {
TypeDependentUseIterator copy = *this;
++*this;
return copy;
}
};
inline ValueBase::typedependent_use_iterator
ValueBase::typedependent_use_begin() const {
auto cur = FirstUse;
while (cur && !cur->isTypeDependent()) {
cur = cur->getNextUse();
}
return ValueBase::typedependent_use_iterator(cur);
}
inline ValueBase::typedependent_use_iterator
ValueBase::typedependent_use_end() const {
return ValueBase::typedependent_use_iterator(nullptr);
}
class NonTypeDependentUseIterator : public ValueBaseUseIterator {
public:
explicit NonTypeDependentUseIterator(Operand *cur)
: ValueBaseUseIterator(cur) {}
NonTypeDependentUseIterator &operator++() {
assert(Cur && "incrementing past end()!");
assert(!Cur->isTypeDependent());
while ((Cur = Cur->getNextUse())) {
if (!Cur->isTypeDependent())
break;
}
return *this;
}
NonTypeDependentUseIterator operator++(int unused) {
NonTypeDependentUseIterator copy = *this;
++*this;
return copy;
}
};
inline ValueBase::non_typedependent_use_iterator
ValueBase::non_typedependent_use_begin() const {
auto cur = FirstUse;
while (cur && cur->isTypeDependent()) {
cur = cur->getNextUse();
}
return ValueBase::non_typedependent_use_iterator(cur);
}
inline ValueBase::non_typedependent_use_iterator
ValueBase::non_typedependent_use_end() const {
return ValueBase::non_typedependent_use_iterator(nullptr);
}
inline bool ValueBase::hasOneUse() const {
auto I = use_begin(), E = use_end();
if (I == E) return false;
return ++I == E;
}
inline Operand *ValueBase::getSingleUse() const {
auto I = use_begin(), E = use_end();
// If we have no elements, return nullptr.
if (I == E) return nullptr;
// Otherwise, grab the first element and then increment.
Operand *Op = *I;
++I;
// If the next element is not the end list, then return nullptr. We do not
// have one user.
if (I != E) return nullptr;
// Otherwise, the element that we accessed.
return Op;
}
inline Operand *ValueBase::getSingleConsumingUse() const {
Operand *result = nullptr;
for (auto *op : getUses()) {
if (op->isLifetimeEnding()) {
if (result) {
return nullptr;
}
result = op;
}
}
return result;
}
inline ValueBase::consuming_use_range ValueBase::getConsumingUses() const {
return {consuming_use_begin(), consuming_use_end()};
}
inline ValueBase::non_consuming_use_range
ValueBase::getNonConsumingUses() const {
return {non_consuming_use_begin(), non_consuming_use_end()};
}
inline ValueBase::typedependent_use_range
ValueBase::getTypeDependentUses() const {
return {typedependent_use_begin(), typedependent_use_end()};
}
inline ValueBase::non_typedependent_use_range
ValueBase::getNonTypeDependentUses() const {
return {non_typedependent_use_begin(), non_typedependent_use_end()};
}
inline bool ValueBase::hasTwoUses() const {
auto iter = use_begin(), end = use_end();
for (unsigned i = 0; i < 2; ++i) {
if (iter == end)
return false;
++iter;
}
return iter == end;
}
template <class T>
inline T *ValueBase::getSingleUserOfType() const {
T *result = nullptr;
for (auto *op : getUses()) {
if (auto *tmp = dyn_cast<T>(op->getUser())) {
if (result)
return nullptr;
result = tmp;
}
}
return result;
}
template <class T> inline T *ValueBase::getSingleConsumingUserOfType() const {
auto *op = getSingleConsumingUse();
if (!op)
return nullptr;
return dyn_cast<T>(op->getUser());
}
struct ValueBase::UseToUser {
SILInstruction *operator()(const Operand *use) const {
return const_cast<SILInstruction *>(use->getUser());
}
SILInstruction *operator()(const Operand &use) const {
return const_cast<SILInstruction *>(use.getUser());
}
SILInstruction *operator()(Operand *use) { return use->getUser(); }
SILInstruction *operator()(Operand &use) { return use.getUser(); }
};
inline ValueBase::UserRange ValueBase::getUsers() const {
return llvm::map_range(getUses(), ValueBase::UseToUser());
}
template <typename T>
inline ValueBase::DowncastUserFilterRange<T> ValueBase::getUsersOfType() const {
auto begin = llvm::map_iterator(use_begin(), UseToUser());
auto end = llvm::map_iterator(use_end(), UseToUser());
auto transformRange = llvm::make_range(begin, end);
return makeDowncastFilterRange<T>(transformRange);
}
/// A constant-size list of the operands of an instruction.
template <unsigned N> class FixedOperandList {
Operand Buffer[N];
FixedOperandList(const FixedOperandList &) = delete;
FixedOperandList &operator=(const FixedOperandList &) = delete;
public:
template <class... T> FixedOperandList(SILInstruction *user, T&&...args)
: Buffer{ { user, std::forward<T>(args) }... } {
static_assert(sizeof...(args) == N, "wrong number of initializers");
}
/// Returns the full list of operands.
MutableArrayRef<Operand> asArray() {
return MutableArrayRef<Operand>(Buffer, N);
}
ArrayRef<Operand> asArray() const {
return ArrayRef<Operand>(Buffer, N);
}
/// Returns the full list of operand values.
OperandValueArrayRef asValueArray() const {
return OperandValueArrayRef(asArray());
}
/// Indexes into the full list of operands.
Operand &operator[](unsigned i) { return asArray()[i]; }
const Operand &operator[](unsigned i) const { return asArray()[i]; }
};
/// A helper class for initializing the list of trailing operands.
class TrailingOperandsList {
public:
static void InitOperandsList(Operand *p, SILInstruction *user,
SILValue operand, ArrayRef<SILValue> operands) {
assert(p && "Trying to initialize operands using a nullptr");
new (p++) Operand(user, operand);
for (auto op : operands) {
new (p++) Operand(user, op);
}
}
static void InitOperandsList(Operand *p, SILInstruction *user,
SILValue operand0, SILValue operand1,
ArrayRef<SILValue> operands) {
assert(p && "Trying to initialize operands using a nullptr");
new (p++) Operand(user, operand0);
new (p++) Operand(user, operand1);
for (auto op : operands) {
new (p++) Operand(user, op);
}
}
static void InitOperandsList(Operand *p, SILInstruction *user,
ArrayRef<SILValue> operands) {
assert(p && "Trying to initialize operands using a nullptr");
for (auto op : operands) {
new (p++) Operand(user, op);
}
}
};
/// SILValue hashes just like a pointer.
static inline llvm::hash_code hash_value(SILValue V) {
return llvm::hash_value((ValueBase *)V);
}
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, SILValue V) {
V->print(OS);
return OS;
}
/// Used internally in e.g. the SIL parser and deserializer to handle forward-
/// referenced values.
///
/// A PlaceholderValue must not appear in valid SIL.
class PlaceholderValue : public ValueBase {
SILFunction *parentFunction;
static int numPlaceholderValuesAlive;
public:
PlaceholderValue(SILFunction *parentFunction, SILType type);
~PlaceholderValue();
static int getNumPlaceholderValuesAlive() { return numPlaceholderValuesAlive; }
SILFunction *getParent() const { return parentFunction; }
static bool classof(const SILArgument *) = delete;
static bool classof(const SILInstruction *) = delete;
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind::PlaceholderValue;
}
};
} // end namespace swift
namespace llvm {
/// A SILValue casts like a ValueBase *.
template<> struct simplify_type<const ::swift::SILValue> {
using SimpleType = ::swift::ValueBase *;
static SimpleType getSimplifiedValue(::swift::SILValue Val) {
return Val;
}
};
template<> struct simplify_type< ::swift::SILValue>
: public simplify_type<const ::swift::SILValue> {};
// Values hash just like pointers.
template<> struct DenseMapInfo<swift::SILValue> {
static swift::SILValue getEmptyKey() {
return swift::SILValue::getFromOpaqueValue(
llvm::DenseMapInfo<void*>::getEmptyKey());
}
static swift::SILValue getTombstoneKey() {
return swift::SILValue::getFromOpaqueValue(
llvm::DenseMapInfo<void*>::getTombstoneKey());
}
static unsigned getHashValue(swift::SILValue V) {
return DenseMapInfo<swift::ValueBase *>::getHashValue(V);
}
static bool isEqual(swift::SILValue LHS, swift::SILValue RHS) {
return LHS == RHS;
}
};
/// SILValue is a PointerLikeType.
template<> struct PointerLikeTypeTraits<::swift::SILValue> {
using SILValue = ::swift::SILValue;
public:
static void *getAsVoidPointer(SILValue v) {
return v.getOpaqueValue();
}
static SILValue getFromVoidPointer(void *p) {
return SILValue::getFromOpaqueValue(p);
}
enum { NumLowBitsAvailable = swift::SILValue::NumLowBitsAvailable };
};
/// A SILValue can be checked if a value is present, so we can use it with
/// dyn_cast_or_null.
template <>
struct ValueIsPresent<swift::SILValue> {
using SILValue = swift::SILValue;
using UnwrappedType = SILValue;
static inline bool isPresent(const SILValue &t) { return bool(t); }
static inline decltype(auto) unwrapValue(SILValue &t) { return t; }
};
} // end namespace llvm
#endif