Files
swift-mirror/lib/AST/Pattern.cpp
Hamish Knight 62f0926d25 [CS] Invalidate nested unresolved VarDecls when ignoring completion argument
Make sure we set types for any nested VarDecls in UnresolvedPatternExprs
to ensure we don't crash when attempting to solve the body.
2025-10-26 12:33:29 +00:00

866 lines
27 KiB
C++

//===--- Pattern.cpp - Swift Language Pattern-Matching ASTs ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Pattern class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Pattern.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeLoc.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
#define PATTERN(Id, _) \
static_assert(IsTriviallyDestructible<Id##Pattern>::value, \
"Patterns are BumpPtrAllocated; the d'tor is never called");
#include "swift/AST/PatternNodes.def"
DescriptivePatternKind Pattern::getDescriptiveKind() const {
#define TRIVIAL_PATTERN_KIND(Kind) \
case PatternKind::Kind: \
return DescriptivePatternKind::Kind
switch (getKind()) {
TRIVIAL_PATTERN_KIND(Paren);
TRIVIAL_PATTERN_KIND(Tuple);
TRIVIAL_PATTERN_KIND(Named);
TRIVIAL_PATTERN_KIND(Any);
TRIVIAL_PATTERN_KIND(Typed);
TRIVIAL_PATTERN_KIND(Is);
TRIVIAL_PATTERN_KIND(EnumElement);
TRIVIAL_PATTERN_KIND(OptionalSome);
TRIVIAL_PATTERN_KIND(Bool);
TRIVIAL_PATTERN_KIND(Expr);
case PatternKind::Binding:
switch (cast<BindingPattern>(this)->getIntroducer()) {
case VarDecl::Introducer::Let:
case VarDecl::Introducer::Borrowing:
return DescriptivePatternKind::Let;
case VarDecl::Introducer::Var:
case VarDecl::Introducer::InOut:
return DescriptivePatternKind::Var;
}
}
#undef TRIVIAL_PATTERN_KIND
llvm_unreachable("bad DescriptivePatternKind");
}
StringRef Pattern::getKindName(PatternKind K) {
switch (K) {
#define PATTERN(Id, Parent) case PatternKind::Id: return #Id;
#include "swift/AST/PatternNodes.def"
}
llvm_unreachable("bad PatternKind");
}
StringRef Pattern::getDescriptivePatternKindName(DescriptivePatternKind K) {
#define ENTRY(Kind, String) \
case DescriptivePatternKind::Kind: \
return String
switch (K) {
ENTRY(Paren, "parenthesized pattern");
ENTRY(Tuple, "tuple pattern");
ENTRY(Named, "pattern variable binding");
ENTRY(Any, "'_' pattern");
ENTRY(Typed, "pattern type annotation");
ENTRY(Is, "prefix 'is' pattern");
ENTRY(EnumElement, "enum case matching pattern");
ENTRY(OptionalSome, "optional pattern");
ENTRY(Bool, "bool matching pattern");
ENTRY(Expr, "expression pattern");
ENTRY(Var, "'var' binding pattern");
ENTRY(Let, "'let' binding pattern");
}
#undef ENTRY
llvm_unreachable("bad DescriptivePatternKind");
}
// Metaprogram to verify that every concrete class implements
// a 'static bool classof(const Pattern*)'.
template <bool fn(const Pattern*)> struct CheckClassOfPattern {
static const bool IsImplemented = true;
};
template <> struct CheckClassOfPattern<Pattern::classof> {
static const bool IsImplemented = false;
};
#define PATTERN(ID, PARENT) \
static_assert(CheckClassOfPattern<ID##Pattern::classof>::IsImplemented, \
#ID "Pattern is missing classof(const Pattern*)");
#include "swift/AST/PatternNodes.def"
// Metaprogram to verify that every concrete class implements
// 'SourceRange getSourceRange()'.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Pattern::*)() const);
/// getSourceRange - Return the full source range of the pattern.
SourceRange Pattern::getSourceRange() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
static_assert(sizeof(checkSourceRangeType(&ID##Pattern::getSourceRange)) == 1, \
#ID "Pattern is missing getSourceRange()"); \
return cast<ID##Pattern>(this)->getSourceRange();
#include "swift/AST/PatternNodes.def"
}
llvm_unreachable("pattern type not handled!");
}
void Pattern::setDelayedInterfaceType(Type interfaceTy, DeclContext *dc) {
assert(interfaceTy->hasTypeParameter() && "Not an interface type");
Ty = interfaceTy;
ASTContext &ctx = interfaceTy->getASTContext();
ctx.DelayedPatternContexts[this] = dc;
Bits.Pattern.hasInterfaceType = true;
}
Type Pattern::getType() const {
assert(hasType());
// If this pattern has an interface type, map it into the context type.
if (Bits.Pattern.hasInterfaceType) {
ASTContext &ctx = Ty->getASTContext();
// Retrieve the generic environment to use for the mapping.
auto found = ctx.DelayedPatternContexts.find(this);
assert(found != ctx.DelayedPatternContexts.end());
auto dc = found->second;
if (auto genericEnv = dc->getGenericEnvironmentOfContext()) {
ctx.DelayedPatternContexts.erase(this);
Ty = genericEnv->mapTypeIntoContext(Ty);
const_cast<Pattern*>(this)->Bits.Pattern.hasInterfaceType = false;
}
}
return Ty;
}
/// getLoc - Return the caret location of the pattern.
SourceLoc Pattern::getLoc() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
if (&Pattern::getLoc != &ID##Pattern::getLoc) \
return cast<ID##Pattern>(this)->getLoc(); \
break;
#include "swift/AST/PatternNodes.def"
}
return getStartLoc();
}
void Pattern::collectVariables(SmallVectorImpl<VarDecl *> &variables) const {
forEachVariable([&](VarDecl *VD) { variables.push_back(VD); });
}
VarDecl *Pattern::getSingleVar() const {
auto pattern = getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pattern))
return named->getDecl();
return nullptr;
}
namespace {
class WalkToVarDecls : public ASTWalker {
const std::function<void(VarDecl*)> &fn;
public:
WalkToVarDecls(const std::function<void(VarDecl*)> &fn) : fn(fn) {}
/// Walk everything that's available; there shouldn't be macro expansions
/// that matter anyway.
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
PostWalkResult<Pattern *> walkToPatternPost(Pattern *P) override {
// Handle vars.
if (auto *Named = dyn_cast<NamedPattern>(P))
fn(Named->getDecl());
return Action::Continue(P);
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
// Only walk into an expression insofar as it doesn't open a new scope -
// that is, don't walk into a closure body, TapExpr, or
// SingleValueStmtExpr. Also don't walk into key paths since any nested
// VarDecls are invalid there, and after being diagnosed by key path
// resolution the ASTWalker won't visit them.
if (isa<ClosureExpr>(E) || isa<TapExpr>(E) ||
isa<SingleValueStmtExpr>(E) || isa<KeyPathExpr>(E)) {
return Action::SkipNode(E);
}
return Action::Continue(E);
}
PreWalkAction walkToTypeReprPre(TypeRepr *T) override {
// ErrorTypeReprs can contain invalid expressions.
return Action::Continue();
}
// Don't walk into anything else.
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
return Action::SkipNode(S);
}
PreWalkAction walkToParameterListPre(ParameterList *PL) override {
return Action::SkipNode();
}
PreWalkAction walkToDeclPre(Decl *D) override {
return Action::SkipNode();
}
};
} // end anonymous namespace
void Expr::forEachUnresolvedVariable(llvm::function_ref<void(VarDecl *)> f) const {
const_cast<Expr *>(this)->walk(WalkToVarDecls(f));
}
/// apply the specified function to all variables referenced in this
/// pattern.
void Pattern::forEachVariable(llvm::function_ref<void(VarDecl *)> fn) const {
switch (getKind()) {
case PatternKind::Any:
case PatternKind::Bool:
return;
case PatternKind::Is:
if (auto SP = cast<IsPattern>(this)->getSubPattern())
SP->forEachVariable(fn);
return;
case PatternKind::Named:
fn(cast<NamedPattern>(this)->getDecl());
return;
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Binding:
return getSemanticsProvidingPattern()->forEachVariable(fn);
case PatternKind::Tuple:
for (auto elt : cast<TuplePattern>(this)->getElements())
elt.getPattern()->forEachVariable(fn);
return;
case PatternKind::EnumElement:
if (auto SP = cast<EnumElementPattern>(this)->getSubPattern())
SP->forEachVariable(fn);
return;
case PatternKind::OptionalSome:
cast<OptionalSomePattern>(this)->getSubPattern()->forEachVariable(fn);
return;
case PatternKind::Expr:
// An ExprPattern only exists before sema has resolved a refutable pattern
// into a concrete pattern. We have to use an AST Walker to find the
// VarDecls buried down inside of it.
const_cast<Pattern*>(this)->walk(WalkToVarDecls(fn));
return;
}
}
/// apply the specified function to all pattern nodes recursively in
/// this pattern. This is a pre-order traversal.
void Pattern::forEachNode(llvm::function_ref<void(Pattern*)> f) {
f(this);
switch (getKind()) {
// Leaf patterns have no recursion.
case PatternKind::Any:
case PatternKind::Named:
case PatternKind::Expr:// FIXME: expr nodes are not modeled right in general.
case PatternKind::Bool:
return;
case PatternKind::Is:
if (auto SP = cast<IsPattern>(this)->getSubPattern())
SP->forEachNode(f);
return;
case PatternKind::Paren:
return cast<ParenPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Typed:
return cast<TypedPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Binding:
return cast<BindingPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Tuple:
for (auto elt : cast<TuplePattern>(this)->getElements())
elt.getPattern()->forEachNode(f);
return;
case PatternKind::EnumElement: {
auto *OP = cast<EnumElementPattern>(this);
if (OP->hasSubPattern())
OP->getSubPattern()->forEachNode(f);
return;
}
case PatternKind::OptionalSome:
cast<OptionalSomePattern>(this)->getSubPattern()->forEachNode(f);
return;
}
}
bool Pattern::hasStorage() const {
bool HasStorage = false;
forEachVariable([&](VarDecl *VD) {
if (VD->hasStorage())
HasStorage = true;
});
return HasStorage;
}
bool Pattern::hasAnyMutableBindings() const {
auto HasMutable = false;
forEachVariable([&](VarDecl *VD) {
if (!VD->isLet())
HasMutable = true;
});
return HasMutable;
}
BindingPattern *BindingPattern::createParsed(ASTContext &ctx, SourceLoc loc,
VarDecl::Introducer introducer,
Pattern *sub) {
// Reset the introducer of the all variables in the pattern.
sub->forEachVariable([&](VarDecl *vd) { vd->setIntroducer(introducer); });
return new (ctx) BindingPattern(loc, introducer, sub);
}
BindingPattern *BindingPattern::createImplicitCatch(DeclContext *dc,
SourceLoc loc) {
auto &ctx = dc->getASTContext();
auto var = new (ctx) VarDecl(/*IsStatic=*/false, VarDecl::Introducer::Let,
loc, ctx.Id_error, dc);
var->setImplicit();
auto namePattern = new (ctx) NamedPattern(var);
auto varPattern =
new (ctx) BindingPattern(loc, VarDecl::Introducer::Let, namePattern);
varPattern->setImplicit();
return varPattern;
}
OptionalSomePattern *OptionalSomePattern::create(ASTContext &ctx,
Pattern *subPattern,
SourceLoc questionLoc) {
return new (ctx) OptionalSomePattern(ctx, subPattern, questionLoc);
}
OptionalSomePattern *OptionalSomePattern::createImplicit(ASTContext &ctx,
Pattern *subPattern) {
auto *P = OptionalSomePattern::create(ctx, subPattern,
/*questionLoc*/ SourceLoc());
P->setImplicit();
return P;
}
EnumElementDecl *OptionalSomePattern::getElementDecl() const {
return Ctx.getOptionalSomeDecl();
}
/// Return true if this is a non-resolved ExprPattern which is syntactically
/// irrefutable.
static bool isIrrefutableExprPattern(const ExprPattern *EP) {
// If the pattern is resolved, it must be irrefutable.
if (EP->isResolved()) return false;
auto expr = EP->getSubExpr();
while (true) {
// Drill into parens.
if (auto parens = dyn_cast<ParenExpr>(expr)) {
expr = parens->getSubExpr();
continue;
}
// A '_' is an untranslated AnyPattern.
if (isa<DiscardAssignmentExpr>(expr))
return true;
// Everything else is non-exhaustive.
return false;
}
}
/// Return true if this pattern (or a subpattern) is refutable.
bool Pattern::isRefutablePattern() const {
bool foundRefutablePattern = false;
const_cast<Pattern*>(this)->forEachNode([&](Pattern *Node) {
// If this is an always matching 'is' pattern, then it isn't refutable.
if (auto *is = dyn_cast<IsPattern>(Node))
if (is->getCastKind() == CheckedCastKind::Coercion ||
is->getCastKind() == CheckedCastKind::BridgingCoercion)
return;
// If this is an ExprPattern that isn't resolved yet, do some simple
// syntactic checks.
// FIXME: This is unsound, since type checking will turn other more
// complicated patterns into non-refutable forms.
if (auto *ep = dyn_cast<ExprPattern>(Node))
if (isIrrefutableExprPattern(ep))
return;
switch (Node->getKind()) {
#define PATTERN(ID, PARENT) case PatternKind::ID: break;
#define REFUTABLE_PATTERN(ID, PARENT) \
case PatternKind::ID: foundRefutablePattern = true; break;
#include "swift/AST/PatternNodes.def"
}
});
return foundRefutablePattern;
}
/// Find the name directly bound by this pattern. When used as a
/// tuple element in a function signature, such names become part of
/// the type.
Identifier Pattern::getBoundName() const {
if (auto *NP = dyn_cast<NamedPattern>(getSemanticsProvidingPattern()))
return NP->getBoundName();
return Identifier();
}
Identifier NamedPattern::getBoundName() const {
return Var->getName();
}
/// Allocate a new pattern that matches a tuple.
TuplePattern *TuplePattern::create(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elts,
SourceLoc rp) {
#ifndef NDEBUG
if (elts.size() == 1)
assert(!elts[0].getLabel().empty());
#endif
unsigned n = elts.size();
void *buffer = C.Allocate(totalSizeToAlloc<TuplePatternElt>(n),
alignof(TuplePattern));
TuplePattern *pattern = ::new (buffer) TuplePattern(lp, n, rp);
std::uninitialized_copy(elts.begin(), elts.end(),
pattern->getTrailingObjects());
return pattern;
}
Pattern *TuplePattern::createSimple(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elements,
SourceLoc rp) {
assert(lp.isValid() == rp.isValid());
if (elements.size() == 1 &&
elements[0].getLabel().empty()) {
auto &first = const_cast<TuplePatternElt&>(elements.front());
return new (C) ParenPattern(lp, first.getPattern(), rp);
}
return create(C, lp, elements, rp);
}
SourceRange TuplePattern::getSourceRange() const {
if (LPLoc.isValid())
return { LPLoc, RPLoc };
auto Fields = getElements();
if (Fields.empty())
return {};
return { Fields.front().getPattern()->getStartLoc(),
Fields.back().getPattern()->getEndLoc() };
}
TypedPattern::TypedPattern(Pattern *pattern, TypeRepr *tr)
: Pattern(PatternKind::Typed), SubPattern(pattern), PatTypeRepr(tr) {
Bits.TypedPattern.IsPropagatedType = false;
}
SourceLoc TypedPattern::getLoc() const {
if (SubPattern->isImplicit() && PatTypeRepr)
return PatTypeRepr->getSourceRange().Start;
return SubPattern->getLoc();
}
SourceRange TypedPattern::getSourceRange() const {
if (isImplicit() || isPropagatedType()) {
// If a TypedPattern is implicit, then its type is definitely implicit, so
// we should ignore its location. On the other hand, the sub-pattern can
// be explicit or implicit.
return SubPattern->getSourceRange();
}
if (!PatTypeRepr)
return SourceRange();
if (SubPattern->isImplicit())
return PatTypeRepr->getSourceRange();
return { SubPattern->getSourceRange().Start,
PatTypeRepr->getSourceRange().End };
}
IsPattern::IsPattern(SourceLoc IsLoc, TypeExpr *CastTy, Pattern *SubPattern,
CheckedCastKind Kind)
: Pattern(PatternKind::Is), IsLoc(IsLoc), SubPattern(SubPattern),
CastKind(Kind), CastType(CastTy) {
assert(IsLoc.isValid() == CastTy->getLoc().isValid());
}
IsPattern *IsPattern::createImplicit(ASTContext &Ctx, Type castTy,
Pattern *SubPattern,
CheckedCastKind Kind) {
assert(castTy);
auto *CastTE = TypeExpr::createImplicit(castTy, Ctx);
auto *ip = new (Ctx) IsPattern(SourceLoc(), CastTE, SubPattern, Kind);
ip->setImplicit();
return ip;
}
SourceRange IsPattern::getSourceRange() const {
SourceLoc beginLoc = SubPattern ? SubPattern->getSourceRange().Start : IsLoc;
SourceLoc endLoc = (isImplicit() ? beginLoc : CastType->getEndLoc());
return {beginLoc, endLoc};
}
Type IsPattern::getCastType() const { return CastType->getInstanceType(); }
void IsPattern::setCastType(Type type) {
assert(type);
CastType->setType(MetatypeType::get(type));
}
TypeRepr *IsPattern::getCastTypeRepr() const { return CastType->getTypeRepr(); }
ExprPattern *ExprPattern::createParsed(ASTContext &ctx, Expr *E,
DeclContext *DC) {
return new (ctx) ExprPattern(E, DC, /*isResolved*/ false);
}
ExprPattern *ExprPattern::createResolved(ASTContext &ctx, Expr *E,
DeclContext *DC) {
return new (ctx) ExprPattern(E, DC, /*isResolved*/ true);
}
ExprPattern *ExprPattern::createImplicit(ASTContext &ctx, Expr *E,
DeclContext *DC) {
auto *EP = ExprPattern::createResolved(ctx, E, DC);
EP->setImplicit();
return EP;
}
Expr *ExprPattern::getMatchExpr() const {
auto &eval = DC->getASTContext().evaluator;
return evaluateOrDefault(eval, ExprPatternMatchRequest{this}, std::nullopt)
.getMatchExpr();
}
VarDecl *ExprPattern::getMatchVar() const {
auto &eval = DC->getASTContext().evaluator;
return evaluateOrDefault(eval, ExprPatternMatchRequest{this}, std::nullopt)
.getMatchVar();
}
void ExprPattern::updateMatchExpr(Expr *e) const {
class FindMatchOperatorDeclRef: public ASTWalker {
public:
ValueOwnership Ownership = ValueOwnership::Default;
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
// See if this is the reference to the ~= operator used.
auto declRef = dyn_cast<DeclRefExpr>(E);
if (!declRef) {
return Action::Continue(E);
}
auto decl = declRef->getDecl();
auto declName = decl->getName();
if (!declName.isOperator()) {
return Action::Continue(E);
}
if (!declName.getBaseIdentifier().is("~=")) {
return Action::Continue(E);
}
// We found a `~=` declref. Get the value ownership from the parameter.
auto fnTy = decl->getInterfaceType()->castTo<AnyFunctionType>();
if (decl->isStatic()) {
fnTy = fnTy->getResult()->castTo<AnyFunctionType>();
}
// Subject value is the right-hand operand to the operator.
assert(fnTy->getParams().size() == 2);
Ownership = fnTy->getParams()[1].getValueOwnership();
// Operators are always normal functions or methods, so their default
// parameter ownership is always borrowing.
if (Ownership == ValueOwnership::Default) {
Ownership = ValueOwnership::Shared;
}
return Action::Stop();
}
};
FindMatchOperatorDeclRef walker;
e->walk(walker);
MatchExprAndOperandOwnership = {e, walker.Ownership};
}
EnumElementPattern *
EnumElementPattern::createImplicit(Type parentTy, SourceLoc dotLoc,
DeclNameLoc nameLoc, EnumElementDecl *decl,
Pattern *subPattern, DeclContext *DC) {
auto &ctx = DC->getASTContext();
auto *parentExpr = TypeExpr::createImplicit(parentTy, ctx);
auto *P = new (ctx) EnumElementPattern(
parentExpr, dotLoc, nameLoc, decl->createNameRef(), decl, subPattern, DC);
P->setImplicit();
P->setType(parentTy);
return P;
}
SourceLoc EnumElementPattern::getStartLoc() const {
return (ParentType && !ParentType->isImplicit())
? ParentType->getSourceRange().Start
: DotLoc.isValid() ? DotLoc : NameLoc.getBaseNameLoc();
}
SourceLoc EnumElementPattern::getEndLoc() const {
if (SubPattern && SubPattern->getSourceRange().isValid()) {
return SubPattern->getSourceRange().End;
}
return NameLoc.getEndLoc();
}
TypeRepr *EnumElementPattern::getParentTypeRepr() const {
if (!ParentType)
return nullptr;
return ParentType->getTypeRepr();
}
Type EnumElementPattern::getParentType() const {
if (!ParentType)
return Type();
return ParentType->getInstanceType();
}
void EnumElementPattern::setParentType(Type type) {
assert(type);
if (ParentType) {
ParentType->setType(MetatypeType::get(type));
} else {
ParentType = TypeExpr::createImplicit(type, type->getASTContext());
}
}
SourceLoc ExprPattern::getLoc() const {
return getSubExpr()->getLoc();
}
SourceRange ExprPattern::getSourceRange() const {
return getSubExpr()->getSourceRange();
}
// See swift/Basic/Statistic.h for declaration: this enables tracing Patterns, is
// defined here to avoid too much layering violation / circular linkage
// dependency.
struct PatternTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const override {
if (!Entity)
return;
const Pattern *P = static_cast<const Pattern *>(Entity);
if (const NamedPattern *NP = dyn_cast<NamedPattern>(P)) {
OS << NP->getBoundName();
}
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const override {
if (!Entity)
return;
const Pattern *P = static_cast<const Pattern *>(Entity);
P->getSourceRange().print(OS, *SM, false);
}
};
static PatternTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const Pattern *>() {
return &TF;
}
ContextualPattern ContextualPattern::forPatternBindingDecl(
PatternBindingDecl *pbd, unsigned index) {
return ContextualPattern(
pbd->getPattern(index), /*isTopLevel=*/true, pbd, index);
}
DeclContext *ContextualPattern::getDeclContext() const {
if (auto pbd = getPatternBindingDecl())
return pbd->getDeclContext();
return cast<DeclContext *>(declOrContext);
}
PatternBindingDecl *ContextualPattern::getPatternBindingDecl() const {
return declOrContext.dyn_cast<PatternBindingDecl *>();
}
bool ContextualPattern::allowsInference() const {
if (auto pbd = getPatternBindingDecl()) {
return pbd->isInitialized(index) ||
pbd->isDefaultInitializableViaPropertyWrapper(index);
}
return true;
}
void swift::simple_display(llvm::raw_ostream &out,
const ContextualPattern &pattern) {
simple_display(out, pattern.getPattern());
}
void swift::simple_display(llvm::raw_ostream &out, const Pattern *pattern) {
out << "(pattern @ " << pattern << ")";
}
SourceLoc swift::extractNearestSourceLoc(const Pattern *pattern) {
return pattern->getLoc();
}
ValueOwnership
Pattern::getOwnership(
SmallVectorImpl<Pattern *> *mostRestrictiveSubpatterns) const
{
class GetPatternOwnership: public PatternVisitor<GetPatternOwnership, void> {
public:
ValueOwnership Ownership = ValueOwnership::Shared;
SmallVectorImpl<Pattern *> *RestrictingPatterns = nullptr;
void increaseOwnership(ValueOwnership newOwnership, Pattern *p) {
// If the new ownership is stricter than the current ownership, then
// clear the restricting patterns we'd collected and start over with the
// new stricter ownership.
if (newOwnership > Ownership) {
Ownership = newOwnership;
if (RestrictingPatterns) {
RestrictingPatterns->clear();
}
}
if (RestrictingPatterns
&& newOwnership == Ownership
&& Ownership > ValueOwnership::Shared) {
RestrictingPatterns->push_back(p);
}
}
#define USE_SUBPATTERN(Kind) \
void visit##Kind##Pattern(Kind##Pattern *pattern) { \
return visit(pattern->getSubPattern()); \
}
USE_SUBPATTERN(Paren)
USE_SUBPATTERN(Typed)
USE_SUBPATTERN(Binding)
#undef USE_SUBPATTERN
void visitTuplePattern(TuplePattern *p) {
for (auto &element : p->getElements()) {
visit(element.getPattern());
}
}
void visitNamedPattern(NamedPattern *p) {
switch (p->getDecl()->getIntroducer()) {
case VarDecl::Introducer::Let:
// `let` defaults to the prevailing ownership of the switch.
break;
case VarDecl::Introducer::Var:
// If the subpattern type is copyable, then we can bind the variable
// by copying without requiring more than a borrow of the original.
if (!p->hasType() || p->getType()->isCopyable()) {
break;
}
// TODO: An explicit `consuming` binding kind consumes regardless of
// type.
// Noncopyable `var` consumes the bound value to move it into
// a new independent variable.
increaseOwnership(ValueOwnership::Owned, p);
break;
case VarDecl::Introducer::InOut:
// `inout` bindings modify the value in-place.
increaseOwnership(ValueOwnership::InOut, p);
break;
case VarDecl::Introducer::Borrowing:
// `borrow` bindings borrow parts of the value in-place.
increaseOwnership(ValueOwnership::Shared, p);
break;
}
}
void visitAnyPattern(AnyPattern *p) {
/* no change */
}
void visitBoolPattern(BoolPattern *p) {
/* no change */
}
void visitIsPattern(IsPattern *p) {
// Casting has to either be possible by borrowing or copying the subject,
// or can't be supported in a pattern match.
/* no change */
}
void visitEnumElementPattern(EnumElementPattern *p) {
if (p->hasSubPattern()) {
visit(p->getSubPattern());
}
}
void visitOptionalSomePattern(OptionalSomePattern *p) {
visit(p->getSubPattern());
}
void visitExprPattern(ExprPattern *p) {
// A `~=` operator has to be able to either borrow or copy the operand,
// or can't be used.
/* no change */
}
};
GetPatternOwnership visitor;
visitor.RestrictingPatterns = mostRestrictiveSubpatterns;
visitor.visit(const_cast<Pattern *>(this));
return visitor.Ownership;
}