Files
swift-mirror/lib/AST/Requirement.cpp
Hamish Knight edca7c85ad Adopt ABORT throughout the compiler
Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
2025-05-19 20:55:01 +01:00

402 lines
13 KiB
C++

//===--- Requirement.cpp - Generic requirement ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Requirement class.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
using namespace swift;
bool Requirement::hasError() const {
if (getFirstType()->hasError())
return true;
if (getKind() != RequirementKind::Layout && getSecondType()->hasError())
return true;
return false;
}
bool Requirement::isCanonical() const {
if (!getFirstType()->isCanonical())
return false;
switch (getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass:
if (!getSecondType()->isCanonical())
return false;
break;
case RequirementKind::Layout:
break;
}
return true;
}
/// Get the canonical form of this requirement.
Requirement Requirement::getCanonical() const {
Type firstType = getFirstType()->getCanonicalType();
switch (getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass: {
Type secondType = getSecondType()->getCanonicalType();
return Requirement(getKind(), firstType, secondType);
}
case RequirementKind::Layout:
return Requirement(getKind(), firstType, getLayoutConstraint());
}
llvm_unreachable("Unhandled RequirementKind in switch");
}
ProtocolDecl *Requirement::getProtocolDecl() const {
assert(getKind() == RequirementKind::Conformance);
return getSecondType()->castTo<ProtocolType>()->getDecl();
}
CheckRequirementResult Requirement::checkRequirement(
SmallVectorImpl<Requirement> &subReqs,
bool allowMissing,
SmallVectorImpl<ProtocolConformanceRef> *isolatedConformances
) const {
if (hasError())
return CheckRequirementResult::SubstitutionFailure;
auto firstType = getFirstType();
auto expandPackRequirement = [&](PackType *packType) {
for (auto eltType : packType->getElementTypes()) {
// FIXME: Doesn't seem right
if (auto *expansionType = eltType->getAs<PackExpansionType>())
eltType = expansionType->getPatternType();
auto kind = getKind();
if (kind == RequirementKind::Layout) {
subReqs.emplace_back(kind, eltType,
getLayoutConstraint());
} else {
subReqs.emplace_back(kind, eltType,
getSecondType());
}
}
return CheckRequirementResult::PackRequirement;
};
switch (getKind()) {
case RequirementKind::Conformance: {
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
auto *proto = getProtocolDecl();
if (firstType->isTypeParameter())
return CheckRequirementResult::RequirementFailure;
auto conformance = lookupConformance(
firstType, proto, allowMissing);
if (!conformance)
return CheckRequirementResult::RequirementFailure;
// Collect isolated conformances.
if (isolatedConformances) {
conformance.forEachIsolatedConformance(
[&](ProtocolConformanceRef isolatedConformance) {
isolatedConformances->push_back(isolatedConformance);
return false;
});
}
auto condReqs = conformance.getConditionalRequirements();
if (condReqs.empty())
return CheckRequirementResult::Success;
subReqs.append(condReqs.begin(), condReqs.end());
return CheckRequirementResult::ConditionalConformance;
}
case RequirementKind::Layout: {
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
if (auto *archetypeType = firstType->getAs<ArchetypeType>()) {
auto layout = archetypeType->getLayoutConstraint();
if (layout && layout.merge(getLayoutConstraint()))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
if (getLayoutConstraint()->isClass()) {
if (firstType->satisfiesClassConstraint())
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
// TODO: Statically check other layout constraints, once they can
// be spelled in Swift.
return CheckRequirementResult::Success;
}
case RequirementKind::Superclass:
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
if (getSecondType()->isExactSuperclassOf(firstType))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
case RequirementKind::SameType:
if (firstType->isEqual(getSecondType()))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
case RequirementKind::SameShape:
if (firstType->getReducedShape() ==
getSecondType()->getReducedShape())
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
llvm_unreachable("Bad requirement kind");
}
bool Requirement::canBeSatisfied() const {
switch (getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirements not supported here");
case RequirementKind::Conformance:
return getFirstType()->is<ArchetypeType>();
case RequirementKind::Layout: {
if (auto *archetypeType = getFirstType()->getAs<ArchetypeType>()) {
auto layout = archetypeType->getLayoutConstraint();
return (!layout || layout.merge(getLayoutConstraint()));
}
return false;
}
case RequirementKind::Superclass:
return (getFirstType()->isBindableTo(getSecondType()) ||
getSecondType()->isBindableTo(getFirstType()));
case RequirementKind::SameType:
return (getFirstType()->isBindableTo(getSecondType()) ||
getSecondType()->isBindableTo(getFirstType()));
}
llvm_unreachable("Bad requirement kind");
}
bool Requirement::isInvertibleProtocolRequirement() const {
return getKind() == RequirementKind::Conformance
&& getFirstType()->is<GenericTypeParamType>()
&& getProtocolDecl()->getInvertibleProtocolKind();
}
/// Determine the canonical ordering of requirements.
static unsigned getRequirementKindOrder(RequirementKind kind) {
switch (kind) {
case RequirementKind::SameShape: return 4;
case RequirementKind::Conformance: return 2;
case RequirementKind::Superclass: return 0;
case RequirementKind::SameType: return 3;
case RequirementKind::Layout: return 1;
}
llvm_unreachable("unhandled kind");
}
/// Linear order on requirements in a generic signature.
int Requirement::compare(const Requirement &other) const {
int compareLHS =
compareDependentTypes(getFirstType(), other.getFirstType());
if (compareLHS != 0)
return compareLHS;
int compareKind = (getRequirementKindOrder(getKind()) -
getRequirementKindOrder(other.getKind()));
if (compareKind != 0)
return compareKind;
// We should only have multiple conformance requirements.
if (getKind() != RequirementKind::Conformance) {
ABORT([&](auto &out) {
out << "Unordered generic requirements\n";
out << "LHS: "; dump(out); out << "\n";
out << "RHS: "; other.dump(out);
});
}
int compareProtos =
TypeDecl::compare(getProtocolDecl(), other.getProtocolDecl());
assert(compareProtos != 0 && "Duplicate conformance requirements");
return compareProtos;
}
static std::optional<CheckRequirementsResult>
checkRequirementsImpl(ArrayRef<Requirement> requirements,
bool allowTypeParameters) {
SmallVector<Requirement, 4> worklist(requirements.begin(), requirements.end());
bool hadSubstFailure = false;
while (!worklist.empty()) {
auto req = worklist.pop_back_val();
// Check preconditions.
auto firstType = req.getFirstType();
ASSERT((allowTypeParameters || !firstType->hasTypeParameter())
&& "must take a contextual type. if you really are ok with an "
"indefinite answer (and usually YOU ARE NOT), then consider whether "
"you really, definitely are ok with an indefinite answer, and "
"use `checkRequirementsWithoutContext` instead");
ASSERT(!firstType->hasTypeVariable());
if (req.getKind() != RequirementKind::Layout) {
auto secondType = req.getSecondType();
ASSERT((allowTypeParameters || !secondType->hasTypeParameter())
&& "must take a contextual type. if you really are ok with an "
"indefinite answer (and usually YOU ARE NOT), then consider whether "
"you really, definitely are ok with an indefinite answer, and "
"use `checkRequirementsWithoutContext` instead");
ASSERT(!secondType->hasTypeVariable());
}
switch (req.checkRequirement(worklist, /*allowMissing=*/true)) {
case CheckRequirementResult::Success:
case CheckRequirementResult::ConditionalConformance:
case CheckRequirementResult::PackRequirement:
break;
case CheckRequirementResult::RequirementFailure:
// If a requirement failure was caused by a context-free type parameter,
// then we can't definitely know whether it would have satisfied the
// requirement without context.
if (req.getFirstType()->isTypeParameter()) {
return std::nullopt;
}
return CheckRequirementsResult::RequirementFailure;
case CheckRequirementResult::SubstitutionFailure:
hadSubstFailure = true;
break;
}
}
if (hadSubstFailure)
return CheckRequirementsResult::SubstitutionFailure;
return CheckRequirementsResult::Success;
}
CheckRequirementsResult
swift::checkRequirements(ArrayRef<Requirement> requirements) {
// This entry point requires that there are no type parameters in any of the
// requirements, so the underlying check should always produce a result.
return checkRequirementsImpl(requirements, /*allow type parameters*/ false)
.value();
}
std::optional<CheckRequirementsResult>
swift::checkRequirementsWithoutContext(ArrayRef<Requirement> requirements) {
return checkRequirementsImpl(requirements, /*allow type parameters*/ true);
}
CheckRequirementsResult swift::checkRequirements(
ArrayRef<Requirement> requirements,
TypeSubstitutionFn substitutions, SubstOptions options) {
SmallVector<Requirement, 4> substReqs;
for (auto req : requirements) {
substReqs.push_back(req.subst(substitutions,
LookUpConformanceInModule(), options));
}
return checkRequirements(substReqs);
}
InverseRequirement::InverseRequirement(Type subject,
ProtocolDecl *protocol,
SourceLoc loc)
: subject(subject), protocol(protocol), loc(loc) {
// Ensure it's an invertible protocol.
assert(protocol);
assert(protocol->getKnownProtocolKind());
assert(getInvertibleProtocolKind(*(protocol->getKnownProtocolKind())));
}
InvertibleProtocolKind InverseRequirement::getKind() const {
return *getInvertibleProtocolKind(*(protocol->getKnownProtocolKind()));
}
void InverseRequirement::expandDefaults(
ASTContext &ctx,
ArrayRef<Type> gps,
SmallVectorImpl<StructuralRequirement> &result) {
for (auto gp : gps) {
// Value generics never have inverses (or the positive thereof).
if (auto gpTy = gp->getAs<GenericTypeParamType>()) {
if (gpTy->isValue()) {
continue;
}
}
for (auto ip : InvertibleProtocolSet::allKnown()) {
auto proto = ctx.getProtocol(getKnownProtocolKind(ip));
result.push_back({{RequirementKind::Conformance, gp,
proto->getDeclaredInterfaceType()},
SourceLoc()});
}
}
}
/// Linear order on inverse requirements in a generic signature.
int InverseRequirement::compare(const InverseRequirement &other) const {
int compareLHS =
compareDependentTypes(subject, other.subject);
if (compareLHS != 0)
return compareLHS;
int compareProtos =
TypeDecl::compare(protocol, other.protocol);
assert(compareProtos != 0 && "Duplicate conformance requirements");
return compareProtos;
}