mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Adding abstractions to check terms for shape symbol and remove the shape symbol from the end of the sequence of symbols, rather than manually manipulating the end() sequence externally.
883 lines
29 KiB
C++
883 lines
29 KiB
C++
//===--- GenericSignatureQueries.cpp --------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The various generic signature query operations on GenericSignature will
|
|
// lazily construct a requirement machine for the generic signature from the
|
|
// RewriteContext, then call the methods in this file.
|
|
//
|
|
// If you're working elsewhere in the compiler, use the methods on
|
|
// GenericSignature instead of calling into the RequirementMachine directly.
|
|
//
|
|
// Each query is generally implemented in the same manner:
|
|
//
|
|
// - First, convert the subject type parameter into a Term.
|
|
// - Simplify the Term to obtain a reduced Term.
|
|
// - Perform a property map lookup on the Term.
|
|
// - Return the appropriate piece of information from the property map.
|
|
//
|
|
// A few are slightly different; for example, getReducedType() takes an
|
|
// arbitrary type, not just a type parameter, and recursively transfozms the
|
|
// type parameters it contains, if any.
|
|
//
|
|
// Also, getConformancePath() is another one-off operation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include <vector>
|
|
#include "NameLookup.h"
|
|
#include "RequirementMachine.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
/// Collects all requirements on a type parameter that are used to construct
|
|
/// its ArchetypeType in a GenericEnvironment.
|
|
GenericSignature::LocalRequirements
|
|
RequirementMachine::getLocalRequirements(Type depType) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
GenericSignature::LocalRequirements result;
|
|
result.packShape = getReducedShape(depType, {});
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return result;
|
|
|
|
if (props->hasSuperclassBound())
|
|
result.superclass = props->getSuperclassBound({}, term, Map);
|
|
|
|
for (const auto *proto : props->getConformsTo())
|
|
result.protos.push_back(const_cast<ProtocolDecl *>(proto));
|
|
|
|
ProtocolType::canonicalizeProtocols(result.protos);
|
|
|
|
result.layout = props->getLayoutConstraint();
|
|
|
|
return result;
|
|
}
|
|
|
|
bool RequirementMachine::requiresClass(Type depType) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return false;
|
|
|
|
if (props->isConcreteType())
|
|
return false;
|
|
|
|
auto layout = props->getLayoutConstraint();
|
|
return (layout && layout->isClass());
|
|
}
|
|
|
|
LayoutConstraint RequirementMachine::getLayoutConstraint(Type depType) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return LayoutConstraint();
|
|
|
|
return props->getLayoutConstraint();
|
|
}
|
|
|
|
bool RequirementMachine::requiresProtocol(Type depType,
|
|
const ProtocolDecl *proto) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return false;
|
|
|
|
if (props->isConcreteType())
|
|
return false;
|
|
|
|
for (auto *otherProto : props->getConformsTo()) {
|
|
if (otherProto == proto)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
GenericSignature::RequiredProtocols
|
|
RequirementMachine::getRequiredProtocols(Type depType) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return { };
|
|
|
|
if (props->isConcreteType())
|
|
return { };
|
|
|
|
GenericSignature::RequiredProtocols result;
|
|
for (auto *otherProto : props->getConformsTo()) {
|
|
result.push_back(const_cast<ProtocolDecl *>(otherProto));
|
|
}
|
|
|
|
ProtocolType::canonicalizeProtocols(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
Type RequirementMachine::
|
|
getSuperclassBound(Type depType,
|
|
ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return Type();
|
|
|
|
if (!props->hasSuperclassBound())
|
|
return Type();
|
|
|
|
return props->getSuperclassBound(genericParams, term, Map);
|
|
}
|
|
|
|
/// Unlike the other queries, we have occasion to call this on a requirement
|
|
/// machine for a protocol connected component as well as a top-level
|
|
/// generic signature, so plumb through the protocol to use for the root
|
|
/// `Self` generic parameter here.
|
|
bool RequirementMachine::isConcreteType(Type depType,
|
|
const ProtocolDecl *proto) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
proto);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return false;
|
|
|
|
return props->isConcreteType();
|
|
}
|
|
|
|
/// Unlike the other queries, we have occasion to call this on a requirement
|
|
/// machine for a protocol connected component as well as a top-level
|
|
/// generic signature, so plumb through the protocol to use for the root
|
|
/// `Self` generic parameter here.
|
|
Type RequirementMachine::
|
|
getConcreteType(Type depType,
|
|
ArrayRef<GenericTypeParamType *> genericParams,
|
|
const ProtocolDecl *proto) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
proto);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return Type();
|
|
|
|
if (!props->isConcreteType())
|
|
return Type();
|
|
|
|
return props->getConcreteType(genericParams, term, Map);
|
|
}
|
|
|
|
bool RequirementMachine::areReducedTypeParametersEqual(Type depType1,
|
|
Type depType2) const {
|
|
auto term1 = Context.getMutableTermForType(depType1->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term1);
|
|
verify(term1);
|
|
|
|
auto term2 = Context.getMutableTermForType(depType2->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term2);
|
|
verify(term2);
|
|
|
|
return (term1 == term2);
|
|
}
|
|
|
|
MutableTerm
|
|
RequirementMachine::getLongestValidPrefix(const MutableTerm &term) const {
|
|
MutableTerm prefix;
|
|
|
|
for (auto symbol : term) {
|
|
switch (symbol.getKind()) {
|
|
case Symbol::Kind::Name:
|
|
return prefix;
|
|
|
|
case Symbol::Kind::Protocol:
|
|
ASSERT(prefix.empty() &&
|
|
"Protocol symbol can only appear at the start of a type term");
|
|
break;
|
|
|
|
case Symbol::Kind::GenericParam: {
|
|
ASSERT(prefix.empty() &&
|
|
"Generic parameter symbol can only appear at the start of a type term");
|
|
|
|
if (std::find_if(Params.begin(), Params.end(),
|
|
[&](Type otherParam) -> bool {
|
|
return otherParam->isEqual(symbol.getGenericParam());
|
|
}) == Params.end()) {
|
|
return prefix;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Symbol::Kind::AssociatedType: {
|
|
const auto *props = Map.lookUpProperties(prefix);
|
|
if (!props)
|
|
return prefix;
|
|
|
|
auto conformsTo = props->getConformsTo();
|
|
|
|
// T.[P:A] is valid iff T conforms to P.
|
|
if (std::find(conformsTo.begin(), conformsTo.end(), symbol.getProtocol())
|
|
== conformsTo.end())
|
|
return prefix;
|
|
|
|
break;
|
|
}
|
|
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
case Symbol::Kind::ConcreteConformance:
|
|
case Symbol::Kind::Shape:
|
|
case Symbol::Kind::PackElement:
|
|
ABORT([&](auto &out) {
|
|
out << "Invalid symbol in a type term: " << term;
|
|
});
|
|
}
|
|
|
|
// This symbol is valid, add it to the longest prefix.
|
|
prefix.add(symbol);
|
|
}
|
|
|
|
return prefix;
|
|
}
|
|
|
|
/// Unlike most other queries, the input type can be any type, not just a
|
|
/// type parameter.
|
|
///
|
|
/// Returns true if all structural components that are type parameters are
|
|
/// reduced, and in particular not concrete (in which case they're not
|
|
/// considered reduced, since they can be replaced with their concrete type).
|
|
bool RequirementMachine::isReducedType(Type type) const {
|
|
// Look for non-reduced type parameters.
|
|
class Walker : public TypeWalker {
|
|
const RequirementMachine &Self;
|
|
|
|
public:
|
|
explicit Walker(const RequirementMachine &self) : Self(self) {}
|
|
|
|
Action walkToTypePre(Type component) override {
|
|
if (!component->hasTypeParameter())
|
|
return Action::SkipNode;
|
|
|
|
if (!component->isTypeParameter())
|
|
return Action::Continue;
|
|
|
|
auto term = Self.Context.getMutableTermForType(
|
|
component->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
|
|
Self.System.simplify(term);
|
|
Self.verify(term);
|
|
|
|
auto anchor = Self.Map.getTypeForTerm(term, {});
|
|
if (CanType(anchor) != CanType(component))
|
|
return Action::Stop;
|
|
|
|
auto *props = Self.Map.lookUpProperties(term);
|
|
if (props && props->isConcreteType())
|
|
return Action::Stop;
|
|
|
|
// The parent of a reduced type parameter might be non-reduced
|
|
// because it is concrete.
|
|
return Action::SkipNode;
|
|
}
|
|
};
|
|
|
|
return !type.walk(Walker(*this));
|
|
}
|
|
|
|
/// Given a type parameter 'T.A1.A2...An', a suffix length m where m <= n,
|
|
/// and a replacement type U, produce the type 'U.A(n-m)...An' by replacing
|
|
/// 'T.A1...A(n-m-1)' with 'U'.
|
|
///
|
|
/// FIXME: Remove this.
|
|
static Type substPrefixType(Type type, unsigned suffixLength, Type prefixType,
|
|
GenericSignature sig) {
|
|
if (suffixLength == 0)
|
|
return prefixType;
|
|
|
|
auto *memberType = type->castTo<DependentMemberType>();
|
|
auto substBaseType = substPrefixType(memberType->getBase(), suffixLength - 1,
|
|
prefixType, sig);
|
|
auto *assocDecl = memberType->getAssocType();
|
|
auto *proto = assocDecl->getProtocol();
|
|
auto conformance = lookupConformance(substBaseType, proto);
|
|
return conformance.getTypeWitness(assocDecl);
|
|
}
|
|
|
|
Type RequirementMachine::getReducedTypeParameter(
|
|
CanType t,
|
|
ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
if (Failed)
|
|
return ErrorType::get(t);
|
|
|
|
// Get a simplified term T.
|
|
auto term = Context.getMutableTermForType(t, /*proto=*/nullptr);
|
|
System.simplify(term);
|
|
|
|
// We need to handle "purely concrete" member types, eg if I have a
|
|
// signature <T where T == Foo>, and we're asked to reduce the
|
|
// type T.[P:A] where Foo : A.
|
|
//
|
|
// This comes up because we can derive the signature <T where T == Foo>
|
|
// from a generic signature like <T where T : P>; adding the
|
|
// concrete requirement 'T == Foo' renders 'T : P' redundant. We then
|
|
// want to take interface types written against the original signature
|
|
// and reduce them with respect to the derived signature.
|
|
//
|
|
// The problem is that T.[P:A] is not a valid term in the rewrite system
|
|
// for <T where T == Foo>, since we do not have the requirement T : P.
|
|
//
|
|
// A more principled solution would build a substitution map when
|
|
// building a derived generic signature that adds new requirements;
|
|
// interface types would first be substituted before being reduced
|
|
// in the new signature.
|
|
//
|
|
// For now, we handle this with a two-step process; we split a term up
|
|
// into a longest valid prefix, which must resolve to a concrete type,
|
|
// and the remaining suffix, which we use to perform a concrete
|
|
// substitution using subst().
|
|
|
|
// In the below, let T be a type term, with T == UV, where U is the
|
|
// longest valid prefix.
|
|
//
|
|
// Note that V can be empty if T is fully valid; we expect this to be
|
|
// true most of the time.
|
|
//
|
|
// FIXME: Remove all of this.
|
|
auto prefix = getLongestValidPrefix(term);
|
|
|
|
// Get a type (concrete or dependent) for U.
|
|
auto prefixType = [&]() -> Type {
|
|
if (prefix.empty())
|
|
return Type();
|
|
|
|
verify(prefix);
|
|
|
|
auto *props = Map.lookUpProperties(prefix);
|
|
if (props) {
|
|
if (props->isConcreteType()) {
|
|
auto concreteType = props->getConcreteType(genericParams,
|
|
prefix, Map);
|
|
if (!concreteType->hasTypeParameter())
|
|
return concreteType;
|
|
|
|
// FIXME: Recursion guard is needed here
|
|
return getReducedType(concreteType, genericParams);
|
|
}
|
|
|
|
// Skip this part if the entire input term is valid, because in that
|
|
// case we don't want to replace the term with its superclass bound;
|
|
// unlike a fixed concrete type, the superclass bound only comes into
|
|
// play when looking up a member type.
|
|
if (props->hasSuperclassBound() &&
|
|
prefix.size() != term.size()) {
|
|
auto superclass = props->getSuperclassBound(genericParams,
|
|
prefix, Map);
|
|
if (!superclass->hasTypeParameter())
|
|
return superclass;
|
|
|
|
// FIXME: Recursion guard is needed here
|
|
return getReducedType(superclass, genericParams);
|
|
}
|
|
}
|
|
|
|
return Map.getTypeForTerm(prefix, genericParams);
|
|
}();
|
|
|
|
// If T is already valid, the longest valid prefix U of T is T itself, and
|
|
// V is empty. Just return the type we computed above.
|
|
//
|
|
// This is the only case where U is allowed to be dependent.
|
|
if (prefix.size() == term.size())
|
|
return prefixType;
|
|
|
|
// If U is not concrete, we have an invalid member type of a dependent
|
|
// type, which is not valid in this generic signature. Give up.
|
|
if (prefix.empty() || prefixType->isTypeParameter()) {
|
|
ABORT([&](auto &out) {
|
|
out << "getReducedTypeParameter() was called\n";
|
|
out << " with " << Sig << ",\n";
|
|
out << " and " << t << ".\n\n";
|
|
if (prefix.empty()) {
|
|
out << "This type parameter contains the generic parameter "
|
|
<< Type(t->getRootGenericParam()) << ".\n\n";
|
|
out << "This generic parameter is not part of the given "
|
|
<< "generic signature.\n\n";
|
|
} else {
|
|
out << "This type parameter's reduced term is " << term << ".\n\n";
|
|
out << "This is not a valid term, because " << prefix << " does not "
|
|
<< "have a member type named " << term[prefix.size()] << ".\n\n";
|
|
}
|
|
out << "This usually indicates the caller passed the wrong type or "
|
|
<< "generic signature to getReducedType().\n\n";
|
|
|
|
dump(out);
|
|
});
|
|
}
|
|
|
|
// Compute the type of the unresolved suffix term V.
|
|
auto substType = substPrefixType(t, term.size() - prefix.size(),
|
|
prefixType, Sig);
|
|
|
|
// FIXME: Recursion guard is needed here
|
|
return getReducedType(substType, genericParams);
|
|
}
|
|
|
|
/// Unlike most other queries, the input type can be any type, not just a
|
|
/// type parameter.
|
|
///
|
|
/// Replaces all structural components that are type parameters with their
|
|
/// reduced form, which is either a (possibly different) type parameter,
|
|
/// or a concrete type, in which case we recursively reduce any type
|
|
/// parameters appearing in structural positions of that concrete type
|
|
/// as well, and so on.
|
|
Type RequirementMachine::getReducedType(
|
|
Type type,
|
|
ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
|
|
return type.transformRec([&](Type t) -> std::optional<Type> {
|
|
if (!t->hasTypeParameter())
|
|
return t;
|
|
|
|
// The reduced type of a PackExpansionType has a reduced *shape* for
|
|
// the count type.
|
|
if (auto *packExpansionType = t->getAs<PackExpansionType>()) {
|
|
auto reducedPattern = getReducedType(packExpansionType->getPatternType(),
|
|
genericParams);
|
|
auto reducedShape = packExpansionType->getCountType();
|
|
if (reducedShape->isParameterPack())
|
|
reducedShape = getReducedShape(reducedShape, genericParams);
|
|
return Type(PackExpansionType::get(reducedPattern, reducedShape));
|
|
}
|
|
|
|
if (!t->isTypeParameter())
|
|
return std::nullopt;
|
|
|
|
return getReducedTypeParameter(t->getCanonicalType(), genericParams);
|
|
});
|
|
}
|
|
|
|
/// Determine if the given type parameter is valid with respect to this
|
|
/// requirement machine's generic signature.
|
|
bool RequirementMachine::isValidTypeParameter(Type type) const {
|
|
auto term = Context.getMutableTermForType(type->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
|
|
auto prefix = getLongestValidPrefix(term);
|
|
return (prefix == term);
|
|
}
|
|
|
|
/// Retrieve the conformance path used to extract the conformance of
|
|
/// interface \c type to the given \c protocol.
|
|
///
|
|
/// \param type The interface type whose conformance access path is to be
|
|
/// queried.
|
|
/// \param protocol A protocol to which \c type conforms.
|
|
///
|
|
/// \returns the conformance access path that starts at a requirement of
|
|
/// this generic signature and ends at the conformance that makes \c type
|
|
/// conform to \c protocol.
|
|
///
|
|
/// \seealso ConformancePath
|
|
ConformancePath
|
|
RequirementMachine::getConformancePath(Type type,
|
|
ProtocolDecl *protocol) {
|
|
auto mutTerm = Context.getMutableTermForType(type->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(mutTerm);
|
|
verify(mutTerm);
|
|
|
|
if (CONDITIONAL_ASSERT_enabled()) {
|
|
auto *props = Map.lookUpProperties(mutTerm);
|
|
ASSERT(props &&
|
|
"Subject type of conformance access path should be known");
|
|
ASSERT(!props->isConcreteType() &&
|
|
"Concrete types do not have conformance access paths");
|
|
auto conformsTo = props->getConformsTo();
|
|
ASSERT(std::find(conformsTo.begin(), conformsTo.end(), protocol) &&
|
|
"Subject type of conformance access path must conform to protocol");
|
|
}
|
|
|
|
auto term = Term::get(mutTerm, Context);
|
|
|
|
// Check if we've already cached the result before doing anything else.
|
|
auto found = ConformancePaths.find(
|
|
std::make_pair(term, protocol));
|
|
if (found != ConformancePaths.end()) {
|
|
return found->second;
|
|
}
|
|
|
|
auto &ctx = Context.getASTContext();
|
|
|
|
FrontendStatsTracer tracer(Stats, "get-conformance-access-path");
|
|
|
|
auto recordPath = [&](Term term, ProtocolDecl *proto,
|
|
ConformancePath path) {
|
|
// Add the path to the buffer.
|
|
CurrentConformancePaths.emplace_back(term, path);
|
|
|
|
// Add the path to the map.
|
|
auto key = std::make_pair(term, proto);
|
|
auto inserted = ConformancePaths.insert(
|
|
std::make_pair(key, path));
|
|
ASSERT(inserted.second);
|
|
|
|
if (Stats)
|
|
++Stats->getFrontendCounters().NumConformancePathsRecorded;
|
|
};
|
|
|
|
// If this is the first time we're asked to look up a conformance access path,
|
|
// visit all of the root conformance requirements in our generic signature and
|
|
// add them to the buffer.
|
|
if (ConformancePaths.empty()) {
|
|
for (const auto &req : Sig.getRequirements()) {
|
|
// We only care about conformance requirements.
|
|
if (req.getKind() != RequirementKind::Conformance)
|
|
continue;
|
|
|
|
auto rootType = CanType(req.getFirstType());
|
|
auto *rootProto = req.getProtocolDecl();
|
|
|
|
ConformancePath::Entry root(rootType, rootProto);
|
|
ArrayRef<ConformancePath::Entry> path(root);
|
|
ConformancePath result(ctx.AllocateCopy(path));
|
|
|
|
auto mutTerm = Context.getMutableTermForType(rootType, nullptr);
|
|
System.simplify(mutTerm);
|
|
|
|
auto rootTerm = Term::get(mutTerm, Context);
|
|
recordPath(rootTerm, rootProto, result);
|
|
}
|
|
}
|
|
|
|
// We enumerate conformance paths in shortlex order until we find the
|
|
// path whose corresponding type reduces to the one we are looking for.
|
|
while (true) {
|
|
auto found = ConformancePaths.find(
|
|
std::make_pair(term, protocol));
|
|
if (found != ConformancePaths.end()) {
|
|
return found->second;
|
|
}
|
|
|
|
if (CurrentConformancePaths.empty()) {
|
|
ABORT([&](auto &out) {
|
|
out << "Failed to find conformance path for ";
|
|
out << type << " (" << term << ")" << " : ";
|
|
out << protocol->getName() << ":\n";
|
|
type.dump(out);
|
|
out << "\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
|
|
// The buffer consists of all conformance paths of length N.
|
|
// Swap it out with an empty buffer, and fill it with all paths of
|
|
// length N+1.
|
|
std::vector<std::pair<Term, ConformancePath>> oldPaths;
|
|
std::swap(CurrentConformancePaths, oldPaths);
|
|
|
|
for (const auto &pair : oldPaths) {
|
|
const auto &lastElt = pair.second.back();
|
|
auto *lastProto = lastElt.second;
|
|
|
|
// A copy of the current path, populated as needed.
|
|
SmallVector<ConformancePath::Entry, 4> entries;
|
|
|
|
auto reqs = lastProto->getRequirementSignature().getRequirements();
|
|
for (const auto &req : reqs) {
|
|
// We only care about conformance requirements.
|
|
if (req.getKind() != RequirementKind::Conformance)
|
|
continue;
|
|
|
|
auto nextSubjectType = req.getFirstType()->getCanonicalType();
|
|
auto *nextProto = req.getProtocolDecl();
|
|
|
|
MutableTerm mutTerm(pair.first);
|
|
mutTerm.append(Context.getMutableTermForType(nextSubjectType,
|
|
/*proto=*/lastProto));
|
|
System.simplify(mutTerm);
|
|
|
|
auto nextTerm = Term::get(mutTerm, Context);
|
|
|
|
// If we've already seen a path for this conformance, skip it and
|
|
// don't add it to the buffer. Note that because we iterate over
|
|
// conformance access paths in shortlex order, the existing
|
|
// conformance access path is shorter than the one we found just now.
|
|
if (ConformancePaths.count(
|
|
std::make_pair(nextTerm, nextProto)))
|
|
continue;
|
|
|
|
if (entries.empty()) {
|
|
// Fill our temporary vector.
|
|
entries.insert(entries.begin(),
|
|
pair.second.begin(),
|
|
pair.second.end());
|
|
}
|
|
|
|
// Add the next entry.
|
|
entries.emplace_back(nextSubjectType, nextProto);
|
|
ConformancePath result = ctx.AllocateCopy(entries);
|
|
entries.pop_back();
|
|
|
|
recordPath(nextTerm, nextProto, result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TypeDecl *
|
|
RequirementMachine::lookupNestedType(Type depType, Identifier name) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return nullptr;
|
|
|
|
// Look for types with the given name in protocols that we know about.
|
|
AssociatedTypeDecl *bestAssocType = nullptr;
|
|
SmallVector<TypeDecl *, 4> concreteDecls;
|
|
|
|
for (const auto *proto : props->getConformsTo()) {
|
|
// Look for an associated type and/or concrete type with this name.
|
|
for (auto member : const_cast<ProtocolDecl *>(proto)->lookupDirect(name)) {
|
|
// If this is an associated type, record whether it is the best
|
|
// associated type we've seen thus far.
|
|
if (auto assocType = dyn_cast<AssociatedTypeDecl>(member)) {
|
|
// Retrieve the associated type anchor.
|
|
assocType = assocType->getAssociatedTypeAnchor();
|
|
|
|
if (!bestAssocType ||
|
|
compareAssociatedTypes(assocType, bestAssocType) < 0)
|
|
bestAssocType = assocType;
|
|
|
|
continue;
|
|
}
|
|
|
|
// If this is another type declaration, record it.
|
|
if (auto type = dyn_cast<TypeDecl>(member)) {
|
|
concreteDecls.push_back(type);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we haven't found anything yet but have a concrete type or a superclass,
|
|
// look for a type in that.
|
|
// FIXME: Shouldn't we always look here?
|
|
if (!bestAssocType && concreteDecls.empty()) {
|
|
Type typeToSearch;
|
|
if (props->isConcreteType())
|
|
typeToSearch = props->getConcreteType();
|
|
else if (props->hasSuperclassBound())
|
|
typeToSearch = props->getSuperclassBound();
|
|
|
|
if (typeToSearch)
|
|
lookupConcreteNestedType(typeToSearch, name, concreteDecls);
|
|
}
|
|
|
|
if (bestAssocType) {
|
|
ASSERT(bestAssocType->getOverriddenDecls().empty() &&
|
|
"Lookup should never keep a non-anchor associated type");
|
|
return bestAssocType;
|
|
|
|
} else if (!concreteDecls.empty()) {
|
|
// Find the best concrete type.
|
|
return findBestConcreteNestedType(concreteDecls);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
MutableTerm
|
|
RequirementMachine::getReducedShapeTerm(Type type) const {
|
|
ASSERT(type->isParameterPack());
|
|
|
|
auto term = Context.getMutableTermForType(type->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
|
|
// From a type term T, form the shape term `T.[shape]`.
|
|
term.add(Symbol::forShape(Context));
|
|
|
|
// Compute the reduced shape term `T'.[shape]`.
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
// Get the term T', which is the reduced shape of T.
|
|
if (term.size() != 2 ||
|
|
term[0].getKind() != Symbol::Kind::GenericParam ||
|
|
!term.hasShape()) {
|
|
ABORT([&](auto &out) {
|
|
out << "Invalid reduced shape\n";
|
|
out << "Type: " << type << "\n";
|
|
out << "Term: " << term;
|
|
});
|
|
}
|
|
|
|
term.removeShape();
|
|
return term;
|
|
}
|
|
|
|
Type RequirementMachine::getReducedShape(Type type,
|
|
ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
if (!type->isParameterPack())
|
|
return Type();
|
|
|
|
return Map.getTypeForTerm(getReducedShapeTerm(type), genericParams);
|
|
}
|
|
|
|
bool RequirementMachine::haveSameShape(Type type1, Type type2) const {
|
|
auto term1 = getReducedShapeTerm(type1);
|
|
auto term2 = getReducedShapeTerm(type2);
|
|
|
|
return term1 == term2;
|
|
}
|
|
|
|
void RequirementMachine::verify(const MutableTerm &term) const {
|
|
if (!CONDITIONAL_ASSERT_enabled())
|
|
return;
|
|
|
|
// If the term is in the generic parameter domain, ensure we have a valid
|
|
// generic parameter.
|
|
if (term.begin()->getKind() == Symbol::Kind::GenericParam) {
|
|
auto *genericParam = term.begin()->getGenericParam();
|
|
auto genericParams = getGenericParams();
|
|
auto found = std::find_if(genericParams.begin(),
|
|
genericParams.end(),
|
|
[&](GenericTypeParamType *otherType) {
|
|
return genericParam->isEqual(otherType);
|
|
});
|
|
if (found == genericParams.end()) {
|
|
ABORT([&](auto &out) {
|
|
out << "Bad generic parameter in " << term << "\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
}
|
|
|
|
if (Failed)
|
|
return;
|
|
|
|
MutableTerm erased;
|
|
|
|
// First, "erase" resolved associated types from the term, and try
|
|
// to simplify it again.
|
|
for (auto symbol : term) {
|
|
if (erased.empty()) {
|
|
switch (symbol.getKind()) {
|
|
case Symbol::Kind::Protocol:
|
|
case Symbol::Kind::GenericParam:
|
|
case Symbol::Kind::PackElement:
|
|
erased.add(symbol);
|
|
continue;
|
|
|
|
case Symbol::Kind::AssociatedType:
|
|
erased.add(Symbol::forProtocol(symbol.getProtocol(), Context));
|
|
break;
|
|
|
|
case Symbol::Kind::Name:
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
case Symbol::Kind::ConcreteConformance:
|
|
case Symbol::Kind::Shape:
|
|
ABORT([&](auto &out) {
|
|
out << "Bad initial symbol in " << term;
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (symbol.getKind()) {
|
|
case Symbol::Kind::Name:
|
|
ASSERT(!erased.empty());
|
|
erased.add(symbol);
|
|
break;
|
|
|
|
case Symbol::Kind::AssociatedType:
|
|
erased.add(Symbol::forName(symbol.getName(), Context));
|
|
break;
|
|
|
|
case Symbol::Kind::Shape:
|
|
erased.add(symbol);
|
|
break;
|
|
|
|
case Symbol::Kind::Protocol:
|
|
case Symbol::Kind::GenericParam:
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
case Symbol::Kind::ConcreteConformance:
|
|
case Symbol::Kind::PackElement:
|
|
ABORT([&](auto &out) {
|
|
out << "Bad interior symbol " << symbol << " in " << term;
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
|
|
MutableTerm simplified = erased;
|
|
System.simplify(simplified);
|
|
|
|
// We should end up with the same term.
|
|
if (simplified != term) {
|
|
ABORT([&](auto &out) {
|
|
out << "Term verification failed\n";
|
|
out << "Initial term: " << term << "\n";
|
|
out << "Erased term: " << erased << "\n";
|
|
out << "Simplified term: " << simplified << "\n";
|
|
out << "\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
}
|