mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
If we failed to construct a rewrite system for a protocol, either because the Knuth-Bendix algorithm failed or because of a request cycle while resolving requirements, we would end up in a situation where the resulting rewrite system didn't include all conformance requirements and associated types, so name lookup would find declarations whose interface types are not valid type parameters. Fix this by propagating failure better and just doing nothing in getReducedTypeParameter(). Fixes rdar://147277543.
607 lines
22 KiB
C++
607 lines
22 KiB
C++
//===--- RequirementMachine.cpp - Generics with term rewriting ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A requirement machine is constructed from a collection of requirements over
|
|
// some set of generic parameters, and consists of a rewrite system together
|
|
// with a property map.
|
|
//
|
|
// The rewrite system and property map are used to answer questions about the
|
|
// type parameters expressed by this set of generic requirements. These are
|
|
// called "generic signature queries", and are defined as methods on the
|
|
// GenericSignature class; for example, two of the more common ones are
|
|
// getReducedType() and requiresProtocol().
|
|
//
|
|
// The terms of the rewrite system describe all possible type parameters that
|
|
// can be written -- the generic parameters themselves, together with all nested
|
|
// associated types generated by protocol conformances.
|
|
//
|
|
// The property map describes the requirements imposed on each type parameter,
|
|
// either directly by the user or implied by some protocol conformance.
|
|
//
|
|
// There are two "kinds" of requirement machines:
|
|
// - built from canonical, minimal generic signatures, used for queries,
|
|
// - built from user-written requirements, used to compute minimal generic
|
|
// signatures.
|
|
//
|
|
// Ultimately, all minimal generic signatures are built by the second kind of
|
|
// requirement machine; the first kind consumes a minimal generic signature
|
|
// that was previously constructed, for example from a deserialized module.
|
|
//
|
|
// The second kind of requirement machine records additional information
|
|
// during completion.
|
|
//
|
|
// The second kind can become the first; after a minimal generic signature has
|
|
// been computed, the rewrite loops and other information only needed for
|
|
// minimization can be discarded.
|
|
//
|
|
// # Requirement machine initialization
|
|
//
|
|
// Requirement machines of the first kind are constructed by:
|
|
// - initWithProtocolSignatureRequirements()
|
|
// - initWithGenericSignature()
|
|
//
|
|
// The RewriteContext::getRequirementMachine() methods wrap the above with
|
|
// a lazy cache.
|
|
//
|
|
// Requirement machines of the second kind are constructed by:
|
|
// - initWithProtocolWrittenRequirements()
|
|
// - initWithWrittenRequirements()
|
|
//
|
|
// These are used from the implementations of RequirementSignatureRequest,
|
|
// AbstractGenericSignatureRequest and InferredGenericSignatureRequest
|
|
// in RequirementMachineRequests.cpp.
|
|
//
|
|
// Both kinds of requirement machines undergo a multi-stage construction
|
|
// process which is best understood as a series of state transitions:
|
|
//
|
|
// /--------------------------\
|
|
// | Empty RequirementMachine |
|
|
// \--------------------------/
|
|
// | --------------
|
|
// | / Requirement /
|
|
// | --------------
|
|
// | |
|
|
// | v
|
|
// | +-------------+
|
|
// | | RuleBuilder |
|
|
// | +-------------+
|
|
// | |
|
|
// | v
|
|
// | -------
|
|
// | / Rule /
|
|
// | -------
|
|
// | |
|
|
// | +-----------------------+
|
|
// | |
|
|
// v v
|
|
// +----------------+
|
|
// | Initialization |
|
|
// +----------------+
|
|
// |
|
|
// v
|
|
// /-----------------------------\
|
|
// | Initial RequirementMachine |
|
|
// | /-----------------------\ |
|
|
// | | Initial RewriteSystem | |
|
|
// | \-----------------------/ |
|
|
// \------------------------------/
|
|
// |
|
|
// v
|
|
// +------------+
|
|
// | Completion |
|
|
// +------------+
|
|
// |
|
|
// v
|
|
// /------------------------------------------------------------------------\
|
|
// | Complete RequirementMachine |
|
|
// | +------ optional ----+ |
|
|
// | /-------------------------\ /-------------\ | /--------------\ | |
|
|
// | | Confluent RewriteSystem | | PropertyMap | | | RewriteLoops | | |
|
|
// | \-------------------------/ \-------------/ | \--------------/ | |
|
|
// | +--------------------+ |
|
|
// \------------------------------------------------------------------------/
|
|
//
|
|
//
|
|
// The RuleBuilder converts desugared requirements into rules. See
|
|
// RuleBuilder.cpp and RequirementLowering.cpp.
|
|
//
|
|
// Completion is an iterated process involving the Knuth-Bendix algorithm and
|
|
// property map construction, which are implemented in KnuthBendix.cpp and
|
|
// PropertyMap.cpp.
|
|
//
|
|
// # Requirement machine minimization
|
|
//
|
|
// A complete RequirementMachine of the second kind -- built from user-written
|
|
// requirements, with RewriteLoops recorded -- undergoes an additional state
|
|
// transition into a minimized state via a minimization process which identifies
|
|
// redundant rules. This is implemented in HomotopyReduction.cpp and
|
|
// MinimalConformances.cpp.
|
|
//
|
|
// After minimization, the remaining non-redundant rules are converted into
|
|
// the Requirements of a minimal generic signature by the RequirementBuilder.
|
|
// Then, the requirement machine undergoes a final state transition into the
|
|
// immutable "frozen" state:
|
|
//
|
|
// /-----------------------------\
|
|
// | Complete RequirementMachine |
|
|
// \-----------------------------/
|
|
// |
|
|
// v
|
|
// +--------------+ -------------------
|
|
// | Minimization | ------> / RequirementError /
|
|
// +--------------+ -------------------
|
|
// |
|
|
// v
|
|
// /------------------------------\
|
|
// | Minimized RequirementMachine | ---------------+
|
|
// \------------------------------/ |
|
|
// | v
|
|
// | -------
|
|
// | / Rule /
|
|
// v -------
|
|
// | |
|
|
// | v
|
|
// | +--------------------+
|
|
// | | RequirementBuilder |
|
|
// | +--------------------+
|
|
// | |
|
|
// | v
|
|
// | --------------
|
|
// | / Requirement /
|
|
// v --------------
|
|
// +----------+
|
|
// | Freezing |
|
|
// +----------+
|
|
// |
|
|
// v
|
|
// /---------------------------\
|
|
// | Frozen RequirementMachine |
|
|
// \---------------------------/
|
|
//
|
|
// # Generic signature queries
|
|
//
|
|
// Requirement machines of the first kind move into the "frozen" state
|
|
// immediately after completion.
|
|
//
|
|
// /-----------------------------\
|
|
// | Complete RequirementMachine |
|
|
// \-----------------------------/
|
|
// |
|
|
// v
|
|
// +----------+
|
|
// | Freezing |
|
|
// +----------+
|
|
// |
|
|
// v
|
|
// /---------------------------\
|
|
// | Frozen RequirementMachine |
|
|
// \---------------------------/
|
|
//
|
|
// Once frozen, generic signature queries can be issued against the new
|
|
// requirement machine of either kind. These are implemented as methods on
|
|
// RequirementMachine in GenericSignatureQueries.cpp.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RequirementMachine.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "swift/AST/Requirement.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "RequirementLowering.h"
|
|
#include "RuleBuilder.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
RequirementMachine::RequirementMachine(RewriteContext &ctx)
|
|
: Context(ctx), System(ctx), Map(System) {
|
|
auto &langOpts = ctx.getASTContext().LangOpts;
|
|
Dump = langOpts.DumpRequirementMachine;
|
|
MaxRuleCount = langOpts.RequirementMachineMaxRuleCount;
|
|
MaxRuleLength = langOpts.RequirementMachineMaxRuleLength;
|
|
MaxConcreteNesting = langOpts.RequirementMachineMaxConcreteNesting;
|
|
MaxConcreteSize = langOpts.RequirementMachineMaxConcreteSize;
|
|
MaxTypeDifferences = langOpts.RequirementMachineMaxTypeDifferences;
|
|
Stats = ctx.getASTContext().Stats;
|
|
|
|
if (Stats)
|
|
++Stats->getFrontendCounters().NumRequirementMachines;
|
|
}
|
|
|
|
RequirementMachine::~RequirementMachine() {}
|
|
|
|
/// Checks the result of a completion in a context where we can't diagnose
|
|
/// failure, either when building a rewrite system from an existing
|
|
/// minimal signature (which should have been checked when it was
|
|
/// minimized) or from AbstractGenericSignatureRequest (where failure
|
|
/// is fatal).
|
|
void RequirementMachine::checkCompletionResult(CompletionResult result) const {
|
|
switch (result) {
|
|
case CompletionResult::Success:
|
|
break;
|
|
|
|
case CompletionResult::MaxRuleCount:
|
|
ABORT([&](auto &out) {
|
|
out << "Rewrite system exceeded maximum rule count\n";
|
|
dump(out);
|
|
});
|
|
|
|
case CompletionResult::MaxRuleLength:
|
|
ABORT([&](auto &out) {
|
|
out << "Rewrite system exceeded rule length limit\n";
|
|
dump(out);
|
|
});
|
|
|
|
case CompletionResult::MaxConcreteNesting:
|
|
ABORT([&](auto &out) {
|
|
out << "Rewrite system exceeded concrete type nesting depth limit\n";
|
|
dump(out);
|
|
});
|
|
|
|
case CompletionResult::MaxConcreteSize:
|
|
ABORT([&](auto &out) {
|
|
out << "Rewrite system exceeded concrete type size limit\n";
|
|
dump(out);
|
|
});
|
|
|
|
case CompletionResult::MaxTypeDifferences:
|
|
ABORT([&](auto &out) {
|
|
out << "Rewrite system exceeded concrete type difference limit\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Build a requirement machine for the previously-computed requirement
|
|
/// signatures connected component of protocols.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
///
|
|
/// Used by RewriteContext::getRequirementMachine(const ProtocolDecl *).
|
|
///
|
|
/// Returns failure if completion fails within the configured number of steps.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::initWithProtocolSignatureRequirements(
|
|
ArrayRef<const ProtocolDecl *> protos) {
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding protocols";
|
|
for (auto *proto : protos) {
|
|
llvm::dbgs() << " " << proto->getName();
|
|
}
|
|
llvm::dbgs() << " {\n";
|
|
}
|
|
|
|
RuleBuilder builder(Context, System.getReferencedProtocols());
|
|
builder.initWithProtocolSignatureRequirements(protos);
|
|
|
|
// Remember if any of our upstream protocols failed to complete.
|
|
Failed = builder.Failed;
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system.
|
|
System.initialize(/*recordLoops=*/false, protos,
|
|
std::move(builder.ImportedRules),
|
|
std::move(builder.PermanentRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
auto result = computeCompletion(RewriteSystem::DisallowInvalidRequirements);
|
|
|
|
freeze();
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Build a requirement machine for the requirements of a generic signature.
|
|
///
|
|
/// In this mode, minimization is not going to be performed, so rewrite loops
|
|
/// are not recorded.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
///
|
|
/// Used by ASTContext::getOrCreateRequirementMachine().
|
|
///
|
|
/// Returns failure if completion fails within the configured number of steps.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::initWithGenericSignature(GenericSignature sig) {
|
|
Sig = sig;
|
|
Params.append(sig.getGenericParams().begin(),
|
|
sig.getGenericParams().end());
|
|
|
|
PrettyStackTraceGenericSignature debugStack("building rewrite system for", sig);
|
|
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding generic signature " << sig << " {\n";
|
|
}
|
|
|
|
// Collect the top-level requirements, and all transitively-referenced
|
|
// protocol requirement signatures.
|
|
RuleBuilder builder(Context, System.getReferencedProtocols());
|
|
builder.initWithGenericSignature(sig.getGenericParams(),
|
|
sig.getRequirements());
|
|
|
|
// Remember if any of our upstream protocols failed to complete.
|
|
Failed = builder.Failed;
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system.
|
|
System.initialize(/*recordLoops=*/false,
|
|
/*protos=*/ArrayRef<const ProtocolDecl *>(),
|
|
std::move(builder.ImportedRules),
|
|
std::move(builder.PermanentRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
auto result = computeCompletion(RewriteSystem::DisallowInvalidRequirements);
|
|
|
|
freeze();
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Build a requirement machine for the user-written requirements of connected
|
|
/// component of protocols.
|
|
///
|
|
/// This is used when actually building the requirement signatures of these
|
|
/// protocols. In this mode, minimization will be performed, so rewrite loops
|
|
/// are recorded during completion.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
///
|
|
/// Used by RequirementSignatureRequest.
|
|
///
|
|
/// Returns failure if completion fails within the configured number of steps.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::initWithProtocolWrittenRequirements(
|
|
ArrayRef<const ProtocolDecl *> component,
|
|
const llvm::DenseMap<const ProtocolDecl *,
|
|
SmallVector<StructuralRequirement, 4>> protos) {
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
// For RequirementMachine::verify() when called by generic signature queries;
|
|
// We have a single valid generic parameter at depth 0, index 0.
|
|
Params.push_back(component[0]->getSelfInterfaceType()->castTo<GenericTypeParamType>());
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding protocols";
|
|
for (auto *proto : component) {
|
|
llvm::dbgs() << " " << proto->getName();
|
|
}
|
|
llvm::dbgs() << " {\n";
|
|
}
|
|
|
|
RuleBuilder builder(Context, System.getReferencedProtocols());
|
|
builder.initWithProtocolWrittenRequirements(component, protos);
|
|
|
|
// Remember if any of our upstream protocols failed to complete.
|
|
Failed = builder.Failed;
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system.
|
|
System.initialize(/*recordLoops=*/true, component,
|
|
std::move(builder.ImportedRules),
|
|
std::move(builder.PermanentRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
auto result = computeCompletion(RewriteSystem::AllowInvalidRequirements);
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Build a requirement machine from a set of generic parameters and
|
|
/// structural requirements.
|
|
///
|
|
/// In this mode, minimization will be performed, so rewrite loops are recorded
|
|
/// during completion.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
///
|
|
/// Used by AbstractGenericSignatureRequest and InferredGenericSignatureRequest.
|
|
///
|
|
/// Returns failure if completion fails within the configured number of steps.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::initWithWrittenRequirements(
|
|
ArrayRef<GenericTypeParamType *> genericParams,
|
|
ArrayRef<StructuralRequirement> requirements) {
|
|
Params.append(genericParams.begin(), genericParams.end());
|
|
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding generic parameters:";
|
|
for (auto *paramTy : genericParams)
|
|
llvm::dbgs() << " " << Type(paramTy);
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
|
|
// Collect the top-level requirements, and all transitively-referenced
|
|
// protocol requirement signatures.
|
|
RuleBuilder builder(Context, System.getReferencedProtocols());
|
|
builder.initWithWrittenRequirements(genericParams, requirements);
|
|
|
|
// Remember if any of our upstream protocols failed to complete.
|
|
Failed = builder.Failed;
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system.
|
|
System.initialize(/*recordLoops=*/true,
|
|
/*protos=*/ArrayRef<const ProtocolDecl *>(),
|
|
std::move(builder.ImportedRules),
|
|
std::move(builder.PermanentRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
auto result = computeCompletion(RewriteSystem::AllowInvalidRequirements);
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Attempt to obtain a confluent rewrite system by iterating the Knuth-Bendix
|
|
/// completion procedure together with property map construction until fixed
|
|
/// point.
|
|
///
|
|
/// Returns a pair where the first element is the status. If the status is not
|
|
/// CompletionResult::Success, the second element of the pair is the rule ID
|
|
/// which triggered failure.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::computeCompletion(RewriteSystem::ValidityPolicy policy) {
|
|
while (true) {
|
|
{
|
|
unsigned ruleCount = System.getRules().size();
|
|
|
|
// First, run the Knuth-Bendix algorithm to resolve overlapping rules.
|
|
auto result = System.performKnuthBendix(MaxRuleCount, MaxRuleLength);
|
|
|
|
unsigned rulesAdded = (System.getRules().size() - ruleCount);
|
|
|
|
if (Stats) {
|
|
Stats->getFrontendCounters()
|
|
.NumRequirementMachineCompletionSteps += rulesAdded;
|
|
}
|
|
|
|
// Check for failure.
|
|
if (result.first != CompletionResult::Success)
|
|
return result;
|
|
|
|
// Check invariants.
|
|
System.verifyRewriteRules(policy);
|
|
}
|
|
|
|
{
|
|
unsigned ruleCount = System.getRules().size();
|
|
|
|
// Build the property map, which also performs concrete term
|
|
// unification; if this added any new rules, run the completion
|
|
// procedure again.
|
|
Map.buildPropertyMap();
|
|
|
|
unsigned rulesAdded = (System.getRules().size() - ruleCount);
|
|
|
|
// If buildPropertyMap() didn't add any new rules, we are done.
|
|
if (rulesAdded == 0)
|
|
break;
|
|
|
|
if (Stats) {
|
|
Stats->getFrontendCounters()
|
|
.NumRequirementMachineUnifiedConcreteTerms += rulesAdded;
|
|
}
|
|
|
|
// Check new rules added by the property map against configured limits.
|
|
for (unsigned i = 0; i < rulesAdded; ++i) {
|
|
const auto &newRule = System.getRule(ruleCount + i);
|
|
if (newRule.getDepth() > MaxRuleLength + System.getLongestInitialRule()) {
|
|
return std::make_pair(CompletionResult::MaxRuleLength,
|
|
ruleCount + i);
|
|
}
|
|
auto nestingAndSize = newRule.getNestingAndSize();
|
|
if (nestingAndSize.first > MaxConcreteNesting + System.getMaxNestingOfInitialRule()) {
|
|
return std::make_pair(CompletionResult::MaxConcreteNesting,
|
|
ruleCount + i);
|
|
}
|
|
if (nestingAndSize.second > MaxConcreteSize + System.getMaxSizeOfInitialRule()) {
|
|
return std::make_pair(CompletionResult::MaxConcreteSize,
|
|
ruleCount + i);
|
|
}
|
|
}
|
|
|
|
if (System.getLocalRules().size() > MaxRuleCount) {
|
|
return std::make_pair(CompletionResult::MaxRuleCount,
|
|
System.getRules().size() - 1);
|
|
}
|
|
|
|
if (System.getTypeDifferenceCount() > MaxTypeDifferences) {
|
|
return std::make_pair(CompletionResult::MaxTypeDifferences,
|
|
System.getRules().size() - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Dump) {
|
|
dump(llvm::dbgs());
|
|
}
|
|
|
|
ASSERT(!Complete);
|
|
Complete = true;
|
|
|
|
return std::make_pair(CompletionResult::Success, 0);
|
|
}
|
|
|
|
/// Transitions into a "frozen" state, where the requirement machine is now
|
|
/// immutable, and generic signature queries may be performed.
|
|
void RequirementMachine::freeze() {
|
|
System.freeze();
|
|
}
|
|
|
|
ArrayRef<Rule> RequirementMachine::getLocalRules() const {
|
|
return System.getLocalRules();
|
|
}
|
|
|
|
GenericSignatureErrors RequirementMachine::getErrors() const {
|
|
// FIXME: Assert if we had errors but we didn't emit any diagnostics?
|
|
return System.getErrors();
|
|
}
|
|
|
|
void RequirementMachine::dump(llvm::raw_ostream &out) const {
|
|
out << "Requirement machine for ";
|
|
if (Sig)
|
|
out << Sig;
|
|
else if (!System.getProtocols().empty()) {
|
|
auto protos = System.getProtocols();
|
|
out << "protocols [";
|
|
for (auto *proto : protos) {
|
|
out << " " << proto->getName();
|
|
}
|
|
out << " ]";
|
|
} else {
|
|
out << "fresh signature <";
|
|
for (auto paramTy : Params) {
|
|
out << " " << Type(paramTy);
|
|
if (paramTy->isParameterPack())
|
|
out << " " << paramTy;
|
|
}
|
|
out << " >";
|
|
}
|
|
out << "\n";
|
|
|
|
System.dump(out);
|
|
Map.dump(out);
|
|
|
|
out << "Conformance paths: {\n";
|
|
for (auto pair : ConformancePaths) {
|
|
out << "- " << pair.first.first << " : ";
|
|
out << pair.first.second->getName() << " => ";
|
|
pair.second.print(out);
|
|
out << "\n";
|
|
}
|
|
out << "}\n";
|
|
}
|