mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Adding abstractions to check terms for shape symbol and remove the shape symbol from the end of the sequence of symbols, rather than manually manipulating the end() sequence externally.
707 lines
23 KiB
C++
707 lines
23 KiB
C++
//===--- RewriteSystem.cpp - Generics with term rewriting -----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "PropertyMap.h"
|
|
#include "RewriteContext.h"
|
|
#include "RewriteLoop.h"
|
|
#include "RewriteSystem.h"
|
|
#include "Rule.h"
|
|
#include "Trie.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
RewriteSystem::RewriteSystem(RewriteContext &ctx)
|
|
: Context(ctx), Debug(ctx.getDebugOptions()) {
|
|
Initialized = 0;
|
|
Complete = 0;
|
|
Minimized = 0;
|
|
Frozen = 0;
|
|
RecordLoops = 0;
|
|
LongestInitialRule = 0;
|
|
MaxNestingOfInitialRule = 0;
|
|
MaxSizeOfInitialRule = 0;
|
|
}
|
|
|
|
RewriteSystem::~RewriteSystem() {
|
|
Trie.updateHistograms(Context.RuleTrieHistogram,
|
|
Context.RuleTrieRootHistogram);
|
|
}
|
|
|
|
/// Initialize the rewrite system using rewrite rules built by the RuleBuilder.
|
|
///
|
|
/// - recordLoops: Whether this is a rewrite system built from user-written
|
|
/// requirements, in which case we will perform minimization using rewrite
|
|
/// loops recorded during completion.
|
|
///
|
|
/// - protos: If this is a rewrite system built from a protocol connected
|
|
/// component, this contains the members of the protocol. For a rewrite
|
|
/// system built from a generic signature, this is empty. Used by
|
|
/// RewriteSystem::isInMinimizationDomain().
|
|
///
|
|
/// These parameters should be populated from the corresponding fields of the
|
|
/// RuleBuilder instance:
|
|
///
|
|
/// - writtenRequirements: The user-written requirements, if any, used to
|
|
/// track source locations for redundancy diagnostics.
|
|
///
|
|
/// - importedRules: Rewrite rules for referenced protocols. These come from
|
|
/// the Requirement Machine instances for these protocols' connected
|
|
/// components, so they are already confluent and can be imported verbatim.
|
|
///
|
|
/// - permanentRules: Permanent rules, such as associated type introduction
|
|
/// rules for associated types defined in protocols in this connected
|
|
/// component.
|
|
///
|
|
/// - requirementRules: Rules corresponding to generic requirements written
|
|
/// by the user.
|
|
///
|
|
/// This can only be called once. It adds the rules to the rewrite system,
|
|
/// allowing computeConfluentCompletion() to be called to compute the
|
|
/// complete rewrite system.
|
|
void RewriteSystem::initialize(
|
|
bool recordLoops, ArrayRef<const ProtocolDecl *> protos,
|
|
std::vector<Rule> &&importedRules,
|
|
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
|
|
std::vector<std::pair<MutableTerm, MutableTerm>> &&requirementRules) {
|
|
ASSERT(!Initialized);
|
|
Initialized = 1;
|
|
|
|
RecordLoops = recordLoops;
|
|
Protos = protos;
|
|
|
|
addRules(std::move(importedRules),
|
|
std::move(permanentRules),
|
|
std::move(requirementRules));
|
|
|
|
for (const auto &rule : getLocalRules()) {
|
|
LongestInitialRule = std::max(LongestInitialRule, rule.getDepth());
|
|
|
|
auto nestingAndSize = rule.getNestingAndSize();
|
|
MaxNestingOfInitialRule = std::max(MaxNestingOfInitialRule,
|
|
nestingAndSize.first);
|
|
MaxSizeOfInitialRule = std::max(MaxSizeOfInitialRule,
|
|
nestingAndSize.second);
|
|
}
|
|
}
|
|
|
|
/// Reduce a term by applying all rewrite rules until fixed point.
|
|
///
|
|
/// If \p path is non-null, records the series of rewrite steps taken.
|
|
bool RewriteSystem::simplify(MutableTerm &term, RewritePath *path) const {
|
|
bool changed = false;
|
|
|
|
MutableTerm original;
|
|
RewritePath subpath;
|
|
|
|
bool debug = false;
|
|
if (Debug.contains(DebugFlags::Simplify)) {
|
|
original = term;
|
|
debug = true;
|
|
}
|
|
|
|
while (true) {
|
|
bool tryAgain = false;
|
|
|
|
auto from = term.begin();
|
|
auto end = term.end();
|
|
while (from < end) {
|
|
auto ruleID = Trie.find(from, end);
|
|
if (ruleID) {
|
|
const auto &rule = getRule(*ruleID);
|
|
|
|
auto to = from + rule.getLHS().size();
|
|
DEBUG_ASSERT(std::equal(from, to, rule.getLHS().begin()));
|
|
|
|
unsigned startOffset = (unsigned)(from - term.begin());
|
|
unsigned endOffset = term.size() - rule.getLHS().size() - startOffset;
|
|
|
|
term.rewriteSubTerm(from, to, rule.getRHS());
|
|
|
|
if (path || debug) {
|
|
subpath.add(RewriteStep::forRewriteRule(startOffset, endOffset, *ruleID,
|
|
/*inverse=*/false));
|
|
}
|
|
|
|
changed = true;
|
|
tryAgain = true;
|
|
break;
|
|
}
|
|
|
|
++from;
|
|
}
|
|
|
|
if (!tryAgain)
|
|
break;
|
|
}
|
|
|
|
if (debug) {
|
|
if (changed) {
|
|
llvm::dbgs() << "= Simplified " << original << " to " << term << " via ";
|
|
subpath.dump(llvm::dbgs(), original, *this);
|
|
llvm::dbgs() << "\n";
|
|
} else {
|
|
llvm::dbgs() << "= Irreducible term: " << term << "\n";
|
|
}
|
|
}
|
|
|
|
if (path != nullptr) {
|
|
ASSERT(changed != subpath.empty());
|
|
path->append(subpath);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/// Adds a rewrite rule, returning true if the new rule was non-trivial.
|
|
///
|
|
/// If both sides simplify to the same term, the rule is trivial and discarded,
|
|
/// and this method returns false.
|
|
///
|
|
/// If \p path is non-null, the new rule is derived from existing rules in the
|
|
/// rewrite system; the path records a series of rewrite steps which transform
|
|
/// \p lhs to \p rhs.
|
|
bool RewriteSystem::addRule(MutableTerm lhs, MutableTerm rhs,
|
|
const RewritePath *path) {
|
|
ASSERT(!Frozen);
|
|
|
|
ASSERT(!lhs.empty());
|
|
ASSERT(!rhs.empty());
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "# Adding rule " << lhs << " == " << rhs << "\n\n";
|
|
}
|
|
|
|
// Now simplify both sides as much as possible with the rules we have so far.
|
|
//
|
|
// This avoids unnecessary work in the completion algorithm.
|
|
RewritePath lhsPath;
|
|
RewritePath rhsPath;
|
|
|
|
simplify(lhs, &lhsPath);
|
|
simplify(rhs, &rhsPath);
|
|
|
|
RewritePath loop;
|
|
if (path) {
|
|
// Produce a path from the simplified lhs to the simplified rhs.
|
|
|
|
// (1) First, apply lhsPath in reverse to produce the original lhs.
|
|
lhsPath.invert();
|
|
loop.append(lhsPath);
|
|
|
|
// (2) Now, apply the path from the original lhs to the original rhs
|
|
// given to us by the completion procedure.
|
|
loop.append(*path);
|
|
|
|
// (3) Finally, apply rhsPath to produce the simplified rhs, which
|
|
// is the same as the simplified lhs.
|
|
loop.append(rhsPath);
|
|
}
|
|
|
|
// If the left hand side and right hand side are already equivalent, we're
|
|
// done.
|
|
std::optional<int> result = lhs.compare(rhs, Context);
|
|
if (*result == 0) {
|
|
// If this rule is a consequence of existing rules, add a homotopy
|
|
// generator.
|
|
if (path) {
|
|
// We already have a loop, since the simplified lhs is identical to the
|
|
// simplified rhs.
|
|
recordRewriteLoop(lhs, loop);
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "## Recorded trivial loop at " << lhs << ": ";
|
|
loop.dump(llvm::dbgs(), lhs, *this);
|
|
llvm::dbgs() << "\n\n";
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Orient the two terms so that the left hand side is greater than the
|
|
// right hand side.
|
|
if (*result < 0) {
|
|
std::swap(lhs, rhs);
|
|
loop.invert();
|
|
}
|
|
|
|
DEBUG_ASSERT(*lhs.compare(rhs, Context) > 0);
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "## Simplified and oriented rule " << lhs << " => " << rhs << "\n\n";
|
|
}
|
|
|
|
unsigned newRuleID = Rules.size();
|
|
|
|
Rules.emplace_back(Term::get(lhs, Context), Term::get(rhs, Context));
|
|
|
|
if (path) {
|
|
// We have a rewrite path from the simplified lhs to the simplified rhs;
|
|
// add a rewrite step applying the new rule in reverse to close the loop.
|
|
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
|
|
newRuleID, /*inverse=*/true));
|
|
recordRewriteLoop(lhs, loop);
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "## Recorded non-trivial loop at " << lhs << ": ";
|
|
loop.dump(llvm::dbgs(), lhs, *this);
|
|
llvm::dbgs() << "\n\n";
|
|
}
|
|
}
|
|
|
|
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
|
|
if (oldRuleID) {
|
|
ABORT([&](auto &out) {
|
|
out << "Duplicate rewrite rule!\n";
|
|
const auto &oldRule = getRule(*oldRuleID);
|
|
out << "Old rule #" << *oldRuleID << ": ";
|
|
oldRule.dump(out);
|
|
out << "\nTrying to replay what happened when I simplified this term:\n";
|
|
Debug |= DebugFlags::Simplify;
|
|
MutableTerm term = lhs;
|
|
simplify(lhs);
|
|
|
|
dump(out);
|
|
});
|
|
}
|
|
|
|
// Tell the caller that we added a new rule.
|
|
return true;
|
|
}
|
|
|
|
/// Add a new rule, marking it permanent.
|
|
bool RewriteSystem::addPermanentRule(MutableTerm lhs, MutableTerm rhs) {
|
|
bool added = addRule(std::move(lhs), std::move(rhs));
|
|
if (added)
|
|
Rules.back().markPermanent();
|
|
|
|
return added;
|
|
}
|
|
|
|
/// Add a new rule, marking it explicit.
|
|
bool RewriteSystem::addExplicitRule(MutableTerm lhs, MutableTerm rhs) {
|
|
bool added = addRule(std::move(lhs), std::move(rhs));
|
|
if (added)
|
|
Rules.back().markExplicit();
|
|
|
|
return added;
|
|
}
|
|
|
|
/// Add a set of rules from a RuleBuilder.
|
|
///
|
|
/// This is used when building a rewrite system in initialize() above.
|
|
///
|
|
/// It is also used when conditional requirement inference pulls in additional
|
|
/// protocols after the fact.
|
|
void RewriteSystem::addRules(
|
|
std::vector<Rule> &&importedRules,
|
|
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
|
|
std::vector<std::pair<MutableTerm, MutableTerm>> &&requirementRules) {
|
|
unsigned ruleCount = Rules.size();
|
|
|
|
if (ruleCount == 0) {
|
|
// Fast path if this is called from initialization; just steal the
|
|
// underlying storage of the imported rule vector.
|
|
Rules = std::move(importedRules);
|
|
}
|
|
else {
|
|
// Otherwise, copy the imported rules in.
|
|
Rules.insert(Rules.end(), importedRules.begin(), importedRules.end());
|
|
}
|
|
|
|
// If this is the initial call, note the first non-imported rule so that
|
|
// we can skip over imported rules later.
|
|
if (ruleCount == 0)
|
|
FirstLocalRule = Rules.size();
|
|
|
|
// Add the imported rules to the trie.
|
|
for (unsigned newRuleID = ruleCount, e = Rules.size();
|
|
newRuleID < e; ++newRuleID) {
|
|
const auto &newRule = Rules[newRuleID];
|
|
// Skip simplified rules. At the very least we need to skip RHS-simplified
|
|
// rules since their left hand sides might duplicate existing rules; the
|
|
// others are skipped purely as an optimization. We can't skip subst-
|
|
// simplified rules, since property map construction considers them.
|
|
if (newRule.isLHSSimplified() ||
|
|
newRule.isRHSSimplified())
|
|
continue;
|
|
|
|
auto oldRuleID = Trie.insert(newRule.getLHS().begin(),
|
|
newRule.getLHS().end(),
|
|
newRuleID);
|
|
if (oldRuleID) {
|
|
ABORT([&](auto &out) {
|
|
out << "Imported rules have duplicate left hand sides!\n";
|
|
out << "New rule #" << newRuleID << ": " << newRule << "\n";
|
|
const auto &oldRule = getRule(*oldRuleID);
|
|
out << "Old rule #" << *oldRuleID << ": " << oldRule << "\n\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
}
|
|
|
|
// Now add our own rules.
|
|
for (const auto &rule : permanentRules)
|
|
addPermanentRule(rule.first, rule.second);
|
|
|
|
for (const auto &rule : requirementRules)
|
|
addExplicitRule(rule.first, rule.second);
|
|
}
|
|
|
|
/// Delete any rules whose left hand sides can be reduced by other rules.
|
|
///
|
|
/// Must be run after the completion procedure, since the deletion of
|
|
/// rules is only valid to perform if the rewrite system is confluent.
|
|
void RewriteSystem::simplifyLeftHandSides() {
|
|
ASSERT(Complete);
|
|
|
|
for (unsigned ruleID = FirstLocalRule, e = Rules.size(); ruleID < e; ++ruleID) {
|
|
auto &rule = getRule(ruleID);
|
|
if (rule.isLHSSimplified())
|
|
continue;
|
|
|
|
// First, see if the left hand side of this rule can be reduced using
|
|
// some other rule.
|
|
auto lhs = rule.getLHS();
|
|
auto begin = lhs.begin();
|
|
auto end = lhs.end();
|
|
while (begin < end) {
|
|
if (auto otherRuleID = Trie.find(begin++, end)) {
|
|
// A rule does not obsolete itself.
|
|
if (*otherRuleID == ruleID)
|
|
continue;
|
|
|
|
// Ignore other deleted rules.
|
|
const auto &otherRule = getRule(*otherRuleID);
|
|
if (otherRule.isLHSSimplified())
|
|
continue;
|
|
|
|
if (Debug.contains(DebugFlags::Completion)) {
|
|
const auto &otherRule = getRule(*otherRuleID);
|
|
llvm::dbgs() << "$ Deleting rule " << rule << " because "
|
|
<< "its left hand side contains " << otherRule
|
|
<< "\n";
|
|
}
|
|
|
|
rule.markLHSSimplified();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Reduce the right hand sides of all remaining rules as much as
|
|
/// possible.
|
|
///
|
|
/// Must be run after the completion procedure, since the deletion of
|
|
/// rules is only valid to perform if the rewrite system is confluent.
|
|
void RewriteSystem::simplifyRightHandSides() {
|
|
ASSERT(Complete);
|
|
|
|
for (unsigned ruleID = FirstLocalRule, e = Rules.size(); ruleID < e; ++ruleID) {
|
|
auto &rule = getRule(ruleID);
|
|
if (rule.isRHSSimplified())
|
|
continue;
|
|
|
|
// Now, try to reduce the right hand side.
|
|
RewritePath rhsPath;
|
|
MutableTerm rhs(rule.getRHS());
|
|
if (!simplify(rhs, &rhsPath))
|
|
continue;
|
|
|
|
auto lhs = rule.getLHS();
|
|
|
|
// We're adding a new rule, so the old rule won't apply anymore.
|
|
rule.markRHSSimplified();
|
|
|
|
unsigned newRuleID = Rules.size();
|
|
|
|
if (Debug.contains(DebugFlags::Add)) {
|
|
llvm::dbgs() << "## RHS simplification adds a rule " << lhs << " => " << rhs << "\n\n";
|
|
}
|
|
|
|
// Add a new rule with the simplified right hand side.
|
|
Rules.emplace_back(lhs, Term::get(rhs, Context));
|
|
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
|
|
ASSERT(oldRuleID == ruleID);
|
|
|
|
// Produce a loop at the original lhs.
|
|
RewritePath loop;
|
|
|
|
// (1) First, apply the original rule to produce the original rhs.
|
|
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
|
|
ruleID, /*inverse=*/false));
|
|
|
|
// (2) Next, apply rhsPath to produce the simplified rhs.
|
|
loop.append(rhsPath);
|
|
|
|
// (3) Finally, apply the new rule in reverse to produce the original lhs.
|
|
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
|
|
newRuleID, /*inverse=*/true));
|
|
|
|
if (Debug.contains(DebugFlags::Completion)) {
|
|
llvm::dbgs() << "$ Right hand side simplification recorded a loop at ";
|
|
llvm::dbgs() << lhs << ": ";
|
|
loop.dump(llvm::dbgs(), MutableTerm(lhs), *this);
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
|
|
recordRewriteLoop(MutableTerm(lhs), loop);
|
|
}
|
|
}
|
|
|
|
/// When minimizing a generic signature, we only care about loops where the
|
|
/// basepoint is a generic parameter symbol.
|
|
///
|
|
/// When minimizing protocol requirement signatures, we only care about loops
|
|
/// where the basepoint is a protocol symbol or associated type symbol whose
|
|
/// protocol is part of the connected component.
|
|
///
|
|
/// All other loops can be discarded since they do not encode redundancies
|
|
/// that are relevant to us.
|
|
bool RewriteSystem::isInMinimizationDomain(const ProtocolDecl *proto) const {
|
|
ASSERT(Protos.empty() || proto != nullptr);
|
|
|
|
if (proto == nullptr && Protos.empty())
|
|
return true;
|
|
|
|
if (std::find(Protos.begin(), Protos.end(), proto) != Protos.end())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void RewriteSystem::recordRewriteLoop(MutableTerm basepoint,
|
|
RewritePath path) {
|
|
ASSERT(!Frozen);
|
|
|
|
RewriteLoop loop(basepoint, path);
|
|
loop.verify(*this);
|
|
|
|
if (!RecordLoops)
|
|
return;
|
|
|
|
// Ignore the rewrite loop if it is not part of our minimization domain.
|
|
//
|
|
// Completion might record a rewrite loop where the basepoint is just
|
|
// the term [shape]. In this case though, we know it's in our domain,
|
|
// since completion only checks local rules for overlap. Other callers
|
|
// of recordRewriteLoop() always pass in a valid basepoint, so we
|
|
// check.
|
|
if (basepoint[0].getKind() != Symbol::Kind::Shape &&
|
|
!isInMinimizationDomain(basepoint.getRootProtocol())) {
|
|
return;
|
|
}
|
|
|
|
Loops.push_back(loop);
|
|
}
|
|
|
|
void RewriteSystem::verifyRewriteRules(ValidityPolicy policy) const {
|
|
#define ASSERT_RULE(expr) \
|
|
if (!(expr)) { \
|
|
ABORT([&](auto &out) { \
|
|
out << "&&& Malformed rewrite rule: " << rule << "\n"; \
|
|
out << "&&& " << #expr << "\n\n"; \
|
|
dump(out); \
|
|
}); \
|
|
}
|
|
|
|
for (const auto &rule : getLocalRules()) {
|
|
const auto &lhs = rule.getLHS();
|
|
const auto &rhs = rule.getRHS();
|
|
|
|
for (unsigned index : indices(lhs)) {
|
|
auto symbol = lhs[index];
|
|
|
|
// The left hand side can contain a single name symbol if it has the form
|
|
// T.N or T.N.[p], where T is some prefix that does not contain name
|
|
// symbols, N is a name symbol, and [p] is an optional property symbol.
|
|
//
|
|
// In the latter case, we have a protocol typealias, or a rule derived
|
|
// via resolving a critical pair involving a protocol typealias.
|
|
//
|
|
// Any other valid occurrence of a name symbol should have been reduced by
|
|
// an associated type introduction rule [P].N, marking the rule as
|
|
// LHS-simplified.
|
|
if (!rule.isLHSSimplified() &&
|
|
(rule.isPropertyRule()
|
|
? index != lhs.size() - 2
|
|
: index != lhs.size() - 1)) {
|
|
// This is only true if the input requirements were valid.
|
|
if (policy == DisallowInvalidRequirements) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Name);
|
|
} else {
|
|
// FIXME: Assert that we diagnosed an error
|
|
}
|
|
}
|
|
|
|
if (index != lhs.size() - 1) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Superclass);
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteType);
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Shape);
|
|
}
|
|
|
|
if (!rule.isLHSSimplified() &&
|
|
index != lhs.size() - 1) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteConformance);
|
|
}
|
|
|
|
if (index != 0) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam ||
|
|
(index == 1 &&
|
|
lhs[index - 1].getKind() == Symbol::Kind::PackElement));
|
|
}
|
|
|
|
if (!rule.isLHSSimplified() &&
|
|
index != 0 && index != lhs.size() - 1) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
|
|
}
|
|
}
|
|
|
|
for (unsigned index : indices(rhs)) {
|
|
auto symbol = rhs[index];
|
|
|
|
// The right hand side can contain a single name symbol if it has the form
|
|
// T.N, where T is some prefix that does not contain name symbols, and
|
|
// N is a name symbol.
|
|
//
|
|
// In this case, we have a protocol typealias, or a rule derived via
|
|
// resolving a critical pair involving a protocol typealias.
|
|
//
|
|
// Any other valid occurrence of a name symbol should have been reduced by
|
|
// an associated type introduction rule [P].N, marking the rule as
|
|
// RHS-simplified.
|
|
if (!rule.isRHSSimplified() &&
|
|
index != rhs.size() - 1) {
|
|
// This is only true if the input requirements were valid.
|
|
if (policy == DisallowInvalidRequirements) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Name);
|
|
} else {
|
|
// FIXME: Assert that we diagnosed an error
|
|
}
|
|
}
|
|
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Superclass);
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteType);
|
|
|
|
if (index != rhs.size() - 1) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Shape);
|
|
}
|
|
|
|
// Completion can introduce a rule of the form
|
|
//
|
|
// (T.[P] => T.[concrete: C : P])
|
|
//
|
|
// Such rules are immediately simplified away. Otherwise, we should
|
|
// never see a symbol with substitutions (concrete type, superclass,
|
|
// concrete conformance) on the right hand side of a rule.
|
|
if (!(rule.isRHSSimplified() &&
|
|
index == rhs.size() - 1)) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Superclass);
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteType);
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteConformance);
|
|
}
|
|
|
|
if (index != 0) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam ||
|
|
(index == 1 &&
|
|
lhs[index - 1].getKind() == Symbol::Kind::PackElement));
|
|
}
|
|
|
|
if (!rule.isRHSSimplified() &&
|
|
index != 0) {
|
|
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
|
|
}
|
|
}
|
|
|
|
if (rhs.size() == 1 && rhs[0].getKind() == Symbol::Kind::Shape) {
|
|
// We can have a rule like T.[shape] => [shape].
|
|
ASSERT_RULE(lhs.hasShape());
|
|
} else {
|
|
// Otherwise, LHS and RHS must have the same domain.
|
|
auto lhsDomain = lhs.getRootProtocol();
|
|
auto rhsDomain = rhs.getRootProtocol();
|
|
ASSERT_RULE(lhsDomain == rhsDomain);
|
|
}
|
|
}
|
|
|
|
#undef ASSERT_RULE
|
|
}
|
|
|
|
/// Free up memory by purging unused data structures after completion
|
|
/// (for a rewrite system built from a generic signature) or minimization
|
|
/// (for a rewrite system built from user-written requirements).
|
|
void RewriteSystem::freeze() {
|
|
ASSERT(Complete);
|
|
ASSERT(!Frozen);
|
|
|
|
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
|
|
ruleID < e; ++ruleID) {
|
|
getRule(ruleID).freeze();
|
|
}
|
|
|
|
CheckedOverlaps.clear();
|
|
RelationMap.clear();
|
|
Relations.clear();
|
|
DifferenceMap.clear();
|
|
Differences.clear();
|
|
CheckedDifferences.clear();
|
|
Loops.clear();
|
|
RedundantRules.clear();
|
|
ConflictingRules.clear();
|
|
}
|
|
|
|
void RewriteSystem::dump(llvm::raw_ostream &out) const {
|
|
out << "Rewrite system: {\n";
|
|
for (const auto &rule : Rules) {
|
|
out << "- " << rule << "\n";
|
|
}
|
|
out << "}\n";
|
|
if (!Relations.empty()) {
|
|
out << "Relations: {\n";
|
|
for (const auto &relation : Relations) {
|
|
out << "- " << relation.first << " =>> " << relation.second << "\n";
|
|
}
|
|
out << "}\n";
|
|
}
|
|
if (!Differences.empty()) {
|
|
out << "Type differences: {\n";
|
|
for (const auto &difference : Differences) {
|
|
difference.dump(out);
|
|
out << "\n";
|
|
}
|
|
out << "}\n";
|
|
}
|
|
if (!Loops.empty()) {
|
|
out << "Rewrite loops: {\n";
|
|
for (unsigned loopID : indices(Loops)) {
|
|
const auto &loop = Loops[loopID];
|
|
if (loop.isDeleted())
|
|
continue;
|
|
|
|
out << "- (#" << loopID << ") ";
|
|
loop.dump(out, *this);
|
|
out << "\n";
|
|
}
|
|
out << "}\n";
|
|
}
|
|
}
|