Files
swift-mirror/lib/AST/RequirementMachine/Term.cpp
Kathy Gray fcb7d76e74 RequirementMachine: Adding shape abstractions
Adding abstractions to check terms for shape symbol and remove the shape
symbol from the end of the sequence of symbols, rather than manually
manipulating the end() sequence externally.
2025-10-31 17:29:45 +00:00

291 lines
8.3 KiB
C++

//===--- Term.cpp - A term in the generics rewrite system -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
#include "RewriteContext.h"
#include "Symbol.h"
#include "Term.h"
using namespace swift;
using namespace rewriting;
/// Terms are uniqued and immutable, stored as a single pointer;
/// the Storage type is the allocated backing storage.
struct Term::Storage final
: public llvm::FoldingSetNode,
public llvm::TrailingObjects<Storage, Symbol> {
friend class Symbol;
unsigned Size;
explicit Storage(unsigned size) : Size(size) {}
size_t numTrailingObjects(OverloadToken<Symbol>) const {
return Size;
}
MutableArrayRef<Symbol> getElements() { return getTrailingObjects(Size); }
ArrayRef<Symbol> getElements() const { return getTrailingObjects(Size); }
void Profile(llvm::FoldingSetNodeID &id) const;
};
size_t Term::size() const { return Ptr->Size; }
const Symbol *Term::begin() const {
return Ptr->getElements().begin();
}
const Symbol *Term::end() const {
return Ptr->getElements().end();
}
std::reverse_iterator<const Symbol *> Term::rbegin() const {
return Ptr->getElements().rbegin();
}
std::reverse_iterator<const Symbol *> Term::rend() const {
return Ptr->getElements().rend();
}
Symbol Term::back() const {
return Ptr->getElements().back();
}
bool Term::hasShape() const {
return back().getKind() == Symbol::Kind::Shape;
}
MutableTerm Term::termWithoutShape() const {
if (hasShape())
return MutableTerm(begin(), end() - 1);
else
return MutableTerm(begin(), end());
}
Symbol Term::operator[](size_t index) const {
return Ptr->getElements()[index];
}
void Term::dump(llvm::raw_ostream &out) const {
MutableTerm(*this).dump(out);
}
Term Term::get(const MutableTerm &mutableTerm, RewriteContext &ctx) {
unsigned size = mutableTerm.size();
DEBUG_ASSERT(size > 0 && "Term must have at least one symbol");
llvm::FoldingSetNodeID id;
id.AddInteger(size);
for (auto symbol : mutableTerm)
id.AddPointer(symbol.getOpaquePointer());
void *insertPos = nullptr;
if (auto *term = ctx.Terms.FindNodeOrInsertPos(id, insertPos))
return term;
void *mem = ctx.Allocator.Allocate(
Storage::totalSizeToAlloc<Symbol>(size),
alignof(Storage));
auto *term = new (mem) Storage(size);
for (unsigned i = 0; i < size; ++i)
term->getElements()[i] = mutableTerm[i];
ctx.Terms.InsertNode(term, insertPos);
ctx.TermHistogram.add(size);
return term;
}
void Term::Storage::Profile(llvm::FoldingSetNodeID &id) const {
id.AddInteger(Size);
for (auto symbol : getElements())
id.AddPointer(symbol.getOpaquePointer());
}
bool Term::containsNameSymbols() const {
for (auto symbol : *this) {
if (symbol.getKind() == Symbol::Kind::Name)
return true;
}
return false;
}
/// Weighted shortlex order on symbol ranges, used for implementing
/// Term::compare() and MutableTerm::compare().
///
/// We first compute a weight vector for both terms and compare the
/// vectors lexicographically:
/// - Weight of generic param symbols
/// - Number of name symbols
/// - Number of element symbols
///
/// If the terms have the same weight, we compare length.
///
/// If the terms have the same weight and length, we perform a
/// lexicographic comparison on symbols.
///
static std::optional<int> compareImpl(const Symbol *lhsBegin,
const Symbol *lhsEnd,
const Symbol *rhsBegin,
const Symbol *rhsEnd,
RewriteContext &ctx) {
ASSERT(lhsBegin != lhsEnd);
ASSERT(rhsBegin != rhsEnd);
// First compare weights on generic parameters. The implicit
// assumption here is we don't form terms with generic parameter
// symbols in the middle, which is true. Otherwise, we'd need
// to add up their weights like we do below for name symbols,
// of course.
if (lhsBegin->getKind() == Symbol::Kind::GenericParam &&
rhsBegin->getKind() == Symbol::Kind::GenericParam) {
unsigned lhsWeight = lhsBegin->getGenericParam()->getWeight();
unsigned rhsWeight = rhsBegin->getGenericParam()->getWeight();
if (lhsWeight != rhsWeight)
return lhsWeight > rhsWeight ? 1 : -1;
}
// Compare the number of name and pack element symbols.
unsigned lhsNameCount = 0;
unsigned lhsPackElementCount = 0;
for (auto *iter = lhsBegin; iter != lhsEnd; ++iter) {
if (iter->getKind() == Symbol::Kind::Name)
++lhsNameCount;
if (iter->getKind() == Symbol::Kind::PackElement)
++lhsPackElementCount;
}
unsigned rhsNameCount = 0;
unsigned rhsPackElementCount = 0;
for (auto *iter = rhsBegin; iter != rhsEnd; ++iter) {
if (iter->getKind() == Symbol::Kind::Name)
++rhsNameCount;
if (iter->getKind() == Symbol::Kind::PackElement)
++rhsPackElementCount;
}
// A term with more pack element symbols orders after a term with
// fewer pack element symbols.
if (lhsPackElementCount != rhsPackElementCount)
return lhsPackElementCount > rhsPackElementCount ? 1 : -1;
// A term with more name symbols orders after a term with fewer name symbols.
if (lhsNameCount != rhsNameCount)
return lhsNameCount > rhsNameCount ? 1 : -1;
// Next, compare term length.
unsigned lhsSize = (lhsEnd - lhsBegin);
unsigned rhsSize = (rhsEnd - rhsBegin);
// A longer term orders after a shorter term.
if (lhsSize != rhsSize)
return lhsSize < rhsSize ? -1 : 1;
// Finally, compare symbols pairwise.
while (lhsBegin != lhsEnd) {
auto lhs = *lhsBegin;
auto rhs = *rhsBegin;
++lhsBegin;
++rhsBegin;
std::optional<int> result = lhs.compare(rhs, ctx);
if (!result.has_value() || *result != 0) {
DEBUG_ASSERT(lhs != rhs);
return result;
}
DEBUG_ASSERT(lhs == rhs);
}
return 0;
}
/// Reduction order on terms. Returns None if the terms are identical except
/// for an incomparable superclass or concrete type symbol at the end.
std::optional<int> Term::compare(Term other, RewriteContext &ctx) const {
return compareImpl(begin(), end(), other.begin(), other.end(), ctx);
}
/// Reduction order on mutable terms. Returns None if the terms are identical
/// except for an incomparable superclass or concrete type symbol at the end.
std::optional<int> MutableTerm::compare(const MutableTerm &other,
RewriteContext &ctx) const {
return compareImpl(begin(), end(), other.begin(), other.end(), ctx);
}
bool MutableTerm::hasShape() const {
return back().getKind() == Symbol::Kind::Shape;
}
void MutableTerm::removeShape() {
if (hasShape())
Symbols.pop_back();
}
/// Replace the subterm in the range [from,to) of this term with \p rhs.
void MutableTerm::rewriteSubTerm(Symbol *from, Symbol *to, Term rhs) {
auto oldSize = size();
size_t lhsLength = (size_t)(to - from);
if (lhsLength == rhs.size()) {
// Copy the RHS to the LHS.
auto newTo = std::copy(rhs.begin(), rhs.end(), from);
// The RHS has the same length as the LHS, so we're done.
DEBUG_ASSERT(newTo == to);
(void) newTo;
} else if (lhsLength > rhs.size()) {
// Copy the RHS to the LHS.
auto newTo = std::copy(rhs.begin(), rhs.end(), from);
// Shorten the term.
Symbols.erase(newTo, to);
} else {
DEBUG_ASSERT(lhsLength < rhs.size());
// Copy the LHS-sized prefix of RHS to the LHS.
auto newTo = std::copy_n(rhs.begin(), lhsLength, from);
DEBUG_ASSERT(newTo == to);
// Insert the remainder of the RHS term.
Symbols.insert(to, rhs.begin() + lhsLength, rhs.end());
}
DEBUG_ASSERT(size() == oldSize - lhsLength + rhs.size());
}
void MutableTerm::dump(llvm::raw_ostream &out) const {
bool first = true;
for (auto symbol : Symbols) {
if (!first)
out << ".";
else
first = false;
symbol.dump(out);
}
}