Files
swift-mirror/lib/IDE/PostfixCompletion.cpp
Hamish Knight 5171b84dba [CS] Replace UnresolvedType with ErrorType in simplifyType/resolveType
This means we now either produce a bare ErrorType, or an ErrorType
with a generic parameter original type for a generic parameter hole.
We ought to further consolidate this logic by sinking the generic
parameter original type replacement into `simplifyType` itself, but
I'm leaving that for a future patch since it affects completion
results and I want to try keep this close to NFC.
2025-10-03 09:50:42 +01:00

437 lines
15 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- DotExprCodeCompletion.cpp ----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/IDE/PostfixCompletion.h"
#include "swift/Basic/Assertions.h"
#include "swift/IDE/CodeCompletion.h"
#include "swift/IDE/CompletionLookup.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
using namespace swift;
using namespace swift::constraints;
using namespace swift::ide;
bool PostfixCompletionCallback::Result::tryMerge(const Result &Other,
DeclContext *DC) {
if (BaseDecl != Other.BaseDecl)
return false;
// This should match if we are talking about the same BaseDecl.
assert(BaseIsStaticMetaType == Other.BaseIsStaticMetaType);
auto baseTy = tryMergeBaseTypeForCompletionLookup(BaseTy, Other.BaseTy, DC);
if (!baseTy)
return false;
BaseTy = baseTy;
// There could be multiple results that have different actor isolations if the
// closure is an argument to a function that has multiple overloads with
// different isolations for the closure. Producing multiple results for these
// is usually not very enlightning. For now, we just pick the first actor
// isolation that we find. This is good enough in practice.
// What we should really do is probably merge these two actor isolations and
// pick the weakest isolation for each closure.
for (auto &OtherExpectedTy : Other.ExpectedTypes) {
auto IsEqual = [&](Type Ty) { return Ty->isEqual(OtherExpectedTy); };
if (llvm::any_of(ExpectedTypes, IsEqual)) {
// We already know if this expected type
continue;
}
ExpectedTypes.push_back(OtherExpectedTy);
}
ExpectsNonVoid &= Other.ExpectsNonVoid;
IsImpliedResult |= Other.IsImpliedResult;
IsInAsyncContext |= Other.IsInAsyncContext;
// Note this may differ if we pre-check multiple times since pre-checking
// changes the recorded apply level.
// FIXME: We ought to fix completion to not pre-check multiple times.
IsBaseDeclUnapplied |= Other.IsBaseDeclUnapplied;
return true;
}
void PostfixCompletionCallback::addResult(const Result &Res) {
for (auto idx : indices(Results)) {
if (Results[idx].tryMerge(Res, DC))
return;
}
Results.push_back(Res);
}
static ActorIsolation
getClosureActorIsolation(const Solution &S, AbstractClosureExpr *ACE) {
auto getType = [&S](Expr *E) -> Type {
// Prefer the contextual type of the closure because it might be 'weaker'
// than the type determined for the closure by the constraints system. E.g.
// the contextual type might have a global actor attribute but because no
// methods from that global actor are called in the closure, the closure has
// a non-actor type.
if (auto target = S.getTargetFor(dyn_cast<ClosureExpr>(E))) {
if (auto Ty = target->getClosureContextualType())
return Ty;
}
return getTypeForCompletion(S, E);
};
auto getClosureActorIsolationThunk = [&S](AbstractClosureExpr *ACE) {
return getClosureActorIsolation(S, ACE);
};
return determineClosureActorIsolation(ACE, getType,
getClosureActorIsolationThunk);
}
/// Returns \c true if \p Choice refers to a function that has been fully
/// applied, including the curried self if present.
static bool isFullyAppliedFunctionRef(const Solution &S,
const OverloadChoice &Choice) {
auto *D = Choice.getDeclOrNull();
if (!D)
return false;
switch (Choice.getFunctionRefInfo().getApplyLevel()) {
case FunctionRefInfo::ApplyLevel::Unapplied:
// No argument lists have been applied.
return false;
case FunctionRefInfo::ApplyLevel::SingleApply:
// The arguments have been applied, check to see if the curried self has
// been applied if present.
return !D->hasCurriedSelf() || hasAppliedSelf(S, Choice);
case FunctionRefInfo::ApplyLevel::DoubleApply:
// All argument lists have been applied.
return true;
}
}
void PostfixCompletionCallback::sawSolutionImpl(
const constraints::Solution &S) {
auto &CS = S.getConstraintSystem();
auto *ParsedExpr = CompletionExpr->getBase();
auto *SemanticExpr = ParsedExpr->getSemanticsProvidingExpr();
if (!S.hasType(ParsedExpr)) {
return;
}
auto BaseTy = getTypeForCompletion(S, ParsedExpr);
// If base type couldn't be determined (e.g. because base expression
// is an invalid reference), let's not attempt to do a lookup since
// it wouldn't produce any useful results anyway.
if (!BaseTy)
return;
auto *Locator = CS.getConstraintLocator(SemanticExpr);
Type ExpectedTy = getTypeForCompletion(S, CompletionExpr);
Expr *ParentExpr = CS.getParentExpr(CompletionExpr);
auto *CalleeLocator = S.getCalleeLocator(Locator);
ValueDecl *ReferencedDecl = nullptr;
bool IsBaseDeclUnapplied = false;
if (auto SelectedOverload = S.getOverloadChoiceIfAvailable(CalleeLocator)) {
ReferencedDecl = SelectedOverload->choice.getDeclOrNull();
IsBaseDeclUnapplied = ReferencedDecl && !isFullyAppliedFunctionRef(
S, SelectedOverload->choice);
}
bool BaseIsStaticMetaType = S.isStaticallyDerivedMetatype(ParsedExpr);
bool ExpectsNonVoid = false;
SmallVector<Type, 4> ExpectedTypes;
if (ExpectedTy) {
ExpectedTypes.push_back(ExpectedTy);
ExpectsNonVoid = !ExpectedTy->isVoid();
} else {
// If we don't know what the expected type is, assume it must be non-Void
// if we have a contextual type that is not unused. This prevents us from
// suggesting Void values for e.g bindings without explicit types.
ExpectsNonVoid |= !ParentExpr &&
CS.getContextualTypePurpose(CompletionExpr) != CTP_Unused;
for (auto SAT : S.targets) {
if (ExpectsNonVoid) {
// ExpectsNonVoid is already set. No need to iterate further.
break;
}
if (SAT.second.getAsExpr() == CompletionExpr) {
ExpectsNonVoid |=
SAT.second.getExprContextualTypePurpose() != CTP_Unused;
}
}
}
bool IsImpliedResult = isImpliedResult(S, CompletionExpr);
bool IsInAsyncContext = isContextAsync(S, DC);
llvm::DenseMap<AbstractClosureExpr *, ActorIsolation>
ClosureActorIsolations;
for (auto SAT : S.targets) {
if (auto ACE = getAsExpr<AbstractClosureExpr>(SAT.second.getAsASTNode())) {
ClosureActorIsolations[ACE] = getClosureActorIsolation(S, ACE);
}
}
Result Res = {
BaseTy,
ReferencedDecl,
IsBaseDeclUnapplied,
BaseIsStaticMetaType,
ExpectedTypes,
ExpectsNonVoid,
IsImpliedResult,
IsInAsyncContext,
ClosureActorIsolations
};
addResult(Res);
}
/// Returns \c true if \p T is '_OptionalNilComparisonType'.
static bool isOptionalNilComparisonType(Type T) {
if (!T) {
return false;
}
auto *nominal = T->getAnyNominal();
if (!nominal) {
return false;
}
return (nominal->isStdlibDecl() &&
nominal->getName() ==
nominal->getASTContext().Id_OptionalNilComparisonType);
}
static DeclRefKind getDeclRefKindOfOperator(OperatorDecl *op) {
switch (op->getKind()) {
case DeclKind::PrefixOperator:
return DeclRefKind::PrefixOperator;
case DeclKind::PostfixOperator:
return DeclRefKind::PostfixOperator;
case DeclKind::InfixOperator:
return DeclRefKind::BinaryOperator;
default:
llvm_unreachable("unexpected operator kind");
}
}
/// Return type of \c getOperatorCompletionTypes.
struct OperatorResultTypes {
/// If we are trying to complete a binary operator, the type the operator
/// expects for the RHS. Null for postfix operators.
Type RHSType;
/// The type the operator returns when called.
Type ResultType;
bool operator==(const OperatorResultTypes &Other) const {
return nullableTypesEqual(RHSType, Other.RHSType) &&
nullableTypesEqual(ResultType, Other.ResultType);
}
};
/// Builds a constriant system that tries applying the operator \p op on a LHS
/// of type \p LHSType. If that succeeds, returns the result type of the
/// operator call and (in case of binary operators) the expected type for the
/// RHS.
static SmallVector<OperatorResultTypes>
getOperatorCompletionTypes(DeclContext *DC, Type LHSType, OperatorDecl *Op) {
ConstraintSystemOptions options;
options |= ConstraintSystemFlags::SuppressDiagnostics;
ConstraintSystem CS(DC, options);
// The source loc of the generated expression doesn't matter.
SourceLoc Loc;
// We represent the LHS and RHS by CodeCompletionExprs because there's no
// other better choice. rhs will have its type set in the constraint system
// below and, in case of binary operators, rhs will be inspected for its type
// when the constraint system has been solved.
CodeCompletionExpr LHS(Loc);
CodeCompletionExpr RHS(Loc);
UnresolvedDeclRefExpr UDRE(DeclNameRef(Op->getName()),
getDeclRefKindOfOperator(Op), DeclNameLoc(Loc));
DiagnosticTransaction IgnoreDiags(DC->getASTContext().Diags);
Expr *OpExpr = resolveDeclRefExpr(&UDRE, DC);
IgnoreDiags.abort();
if (isa<ErrorExpr>(OpExpr)) {
// If we couldn't resolve the operator (e.g. because there is only an
// operator definition but no decls that implement it), we can't call the
// operator.
return {};
}
Expr *OpCallExpr;
switch (Op->getKind()) {
case DeclKind::PrefixOperator:
// Don't insert prefix operators in postfix position.
return {};
case DeclKind::PostfixOperator:
OpCallExpr = PostfixUnaryExpr::create(DC->getASTContext(), OpExpr, &LHS);
break;
case DeclKind::InfixOperator:
OpCallExpr = BinaryExpr::create(DC->getASTContext(), &LHS, OpExpr, &RHS,
/*implicit*/ true);
break;
default:
llvm_unreachable("unexpected operator kind");
}
auto target = SyntacticElementTarget(OpCallExpr, DC, CTP_Unused, Type(),
/*isDiscarded*/ true);
if (CS.preCheckTarget(target))
return {};
if (CS.generateConstraints(target))
return {};
OpCallExpr = target.getAsExpr();
CS.assignFixedType(CS.getType(&LHS)->getAs<TypeVariableType>(), LHSType);
SmallVector<Solution, 1> Solutions;
CS.solve(Solutions);
SmallVector<OperatorResultTypes> Results;
for (auto &S : Solutions) {
Type RHSType;
if (Op->getKind() == DeclKind::InfixOperator) {
RHSType = getTypeForCompletion(S, &RHS);
}
Type ResultType = getTypeForCompletion(S, OpCallExpr);
OperatorResultTypes ResultTypes = {RHSType, ResultType};
if (llvm::is_contained(Results, ResultTypes)) {
continue;
}
if (S.getFixedScore().Data[SK_ValueToOptional] > 0) {
if (Op->getName().str() == "??" || isOptionalNilComparisonType(RHSType)) {
// Don't suggest optional operators that need to demote the LHS to an
// Optional to become applicable.
continue;
}
}
Results.push_back(ResultTypes);
}
return Results;
}
/// Adds applicable operator suggestions to \p Lookup.
static void addOperatorResults(Type LHSType, ArrayRef<OperatorDecl *> Operators,
DeclContext *DC, CompletionLookup &Lookup) {
for (auto Op : Operators) {
switch (Op->getKind()) {
case DeclKind::PrefixOperator:
break;
case DeclKind::PostfixOperator:
for (auto operatorType : getOperatorCompletionTypes(DC, LHSType, Op)) {
Lookup.addPostfixOperatorCompletion(Op, operatorType.ResultType);
}
break;
case DeclKind::InfixOperator:
for (auto operatorType : getOperatorCompletionTypes(DC, LHSType, Op)) {
Lookup.addInfixOperatorCompletion(Op, operatorType.ResultType,
operatorType.RHSType);
}
break;
default:
llvm_unreachable("unexpected operator kind");
}
}
if (LHSType->hasLValueType()) {
Lookup.addAssignmentOperator(LHSType->getRValueType());
}
if (auto ValueT = LHSType->getRValueType()->getOptionalObjectType()) {
Lookup.addPostfixBang(ValueT);
}
}
void PostfixCompletionCallback::collectResults(
SourceLoc DotLoc, bool IsInSelector, bool IncludeOperators,
bool HasLeadingSpace, CodeCompletionContext &CompletionCtx) {
ASTContext &Ctx = DC->getASTContext();
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
&CompletionCtx);
if (DotLoc.isValid()) {
assert(!IncludeOperators && "We shouldn't be suggesting operators if we "
"are completing after a dot");
Lookup.setHaveDot(DotLoc);
}
Lookup.setHaveLeadingSpace(HasLeadingSpace);
Expr *BaseExpr = CompletionExpr->getBase();
Lookup.setIsSuperRefExpr(isa<SuperRefExpr>(BaseExpr));
if (auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
Lookup.setIsSelfRefExpr(DRE->getDecl()->getName() == Ctx.Id_self);
if (isa<BindOptionalExpr>(BaseExpr) || isa<ForceValueExpr>(BaseExpr))
Lookup.setIsUnwrappedOptional(true);
if (IsInSelector) {
Lookup.includeInstanceMembers();
Lookup.setPreferFunctionReferencesToCalls();
}
SmallVector<OperatorDecl *> Operators;
if (IncludeOperators) {
Lookup.collectOperators(Operators);
}
// The type context that is being used for global results.
ExpectedTypeContext UnifiedTypeContext;
UnifiedTypeContext.setPreferNonVoid(true);
bool UnifiedCanHandleAsync = false;
// The base types of the result for which we already returned results.
// Used so we only return keyword and operator completions once for each base
// type.
llvm::SmallPtrSet<Type, 2> ProcessedBaseTypes;
Lookup.shouldCheckForDuplicates(Results.size() > 1);
for (auto &Result : Results) {
Lookup.setCanCurrDeclContextHandleAsync(Result.IsInAsyncContext);
Lookup.setClosureActorIsolations(Result.ClosureActorIsolations);
Lookup.setIsStaticMetatype(Result.BaseIsStaticMetaType);
if (!ProcessedBaseTypes.contains(Result.BaseTy)) {
Lookup.getPostfixKeywordCompletions(Result.BaseTy, BaseExpr);
}
Lookup.setExpectedTypes(Result.ExpectedTypes, Result.IsImpliedResult,
Result.ExpectsNonVoid);
if (isDynamicLookup(Result.BaseTy))
Lookup.setIsDynamicLookup();
Lookup.getValueExprCompletions(Result.BaseTy, Result.BaseDecl,
Result.IsBaseDeclUnapplied);
// `==`, `<=` etc can be used on `Void` because `Void` is just an empty
// tuple. But that doesnt really make sense so we shouldn't be suggesting
// any operators based on `Void`.
if (IncludeOperators && !Result.BaseIsStaticMetaType &&
!Result.BaseTy->isVoid() && !Result.BaseTy->hasError() &&
!ProcessedBaseTypes.contains(Result.BaseTy)) {
addOperatorResults(Result.BaseTy, Operators, DC, Lookup);
}
UnifiedTypeContext.merge(*Lookup.getExpectedTypeContext());
UnifiedCanHandleAsync |= Result.IsInAsyncContext;
ProcessedBaseTypes.insert(Result.BaseTy);
}
collectCompletionResults(CompletionCtx, Lookup, DC, UnifiedTypeContext,
UnifiedCanHandleAsync);
}