mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
560 lines
20 KiB
C++
560 lines
20 KiB
C++
//===--- SIL.cpp - Implements random SIL functionality --------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SIL/FormalLinkage.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILDeclRef.h"
|
|
#include "swift/SIL/SILType.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/AnyFunctionRef.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
|
|
using namespace swift;
|
|
|
|
FormalLinkage swift::getDeclLinkage(const ValueDecl *D) {
|
|
const DeclContext *fileContext = D->getDeclContext()->getModuleScopeContext();
|
|
|
|
// Clang declarations are public and can't be assured of having a
|
|
// unique defining location.
|
|
if (isa<ClangModuleUnit>(fileContext) &&
|
|
!D->getObjCImplementationDecl())
|
|
return FormalLinkage::PublicNonUnique;
|
|
|
|
switch (D->getEffectiveAccess()) {
|
|
case AccessLevel::Package:
|
|
return FormalLinkage::PackageUnique;
|
|
case AccessLevel::Public:
|
|
case AccessLevel::Open:
|
|
return FormalLinkage::PublicUnique;
|
|
case AccessLevel::Internal:
|
|
return FormalLinkage::HiddenUnique;
|
|
case AccessLevel::FilePrivate:
|
|
case AccessLevel::Private:
|
|
return FormalLinkage::Private;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled access level in switch.");
|
|
}
|
|
|
|
SILLinkage swift::getSILLinkage(FormalLinkage linkage,
|
|
ForDefinition_t forDefinition) {
|
|
switch (linkage) {
|
|
case FormalLinkage::PublicUnique:
|
|
return (forDefinition ? SILLinkage::Public : SILLinkage::PublicExternal);
|
|
|
|
case FormalLinkage::PublicNonUnique:
|
|
// FIXME: any place we have to do this that actually requires
|
|
// uniqueness is buggy.
|
|
return (forDefinition ? SILLinkage::Shared : SILLinkage::PublicExternal);
|
|
|
|
case FormalLinkage::PackageUnique:
|
|
return (forDefinition ? SILLinkage::Package : SILLinkage::PackageExternal);
|
|
|
|
case FormalLinkage::HiddenUnique:
|
|
return (forDefinition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
|
|
|
|
case FormalLinkage::Private:
|
|
return SILLinkage::Private;
|
|
}
|
|
llvm_unreachable("bad formal linkage");
|
|
}
|
|
|
|
SILLinkage
|
|
swift::getLinkageForProtocolConformance(const ProtocolConformance *C,
|
|
ForDefinition_t definition) {
|
|
// If the conformance was synthesized, give it shared linkage.
|
|
if (C->getRootConformance()->isSynthesized())
|
|
return SILLinkage::Shared;
|
|
|
|
auto typeDecl = C->getDeclContext()->getSelfNominalTypeDecl();
|
|
AccessLevel access = std::min(C->getProtocol()->getEffectiveAccess(),
|
|
typeDecl->getEffectiveAccess());
|
|
switch (access) {
|
|
case AccessLevel::Private:
|
|
case AccessLevel::FilePrivate:
|
|
return SILLinkage::Private;
|
|
case AccessLevel::Internal:
|
|
return (definition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
|
|
case AccessLevel::Package:
|
|
return (definition ? SILLinkage::Package : SILLinkage::PackageExternal);
|
|
case AccessLevel::Public:
|
|
case AccessLevel::Open:
|
|
return (definition ? SILLinkage::Public : SILLinkage::PublicExternal);
|
|
}
|
|
}
|
|
|
|
bool SILModule::isTypeMetadataAccessible(CanType type) {
|
|
// SILModules built for the debugger have special powers to access metadata
|
|
// for types in other files/modules.
|
|
if (getASTContext().LangOpts.DebuggerSupport)
|
|
return true;
|
|
|
|
assert(type->isLegalFormalType());
|
|
|
|
return !type.findIf([&](CanType type) {
|
|
// Note that this function returns true if the type is *illegal* to use.
|
|
|
|
// Ignore non-nominal types -- except for opaque result types which can be
|
|
// private and in a different translation unit in which case they can't be
|
|
// accessed.
|
|
ValueDecl *decl = type.getNominalOrBoundGenericNominal();
|
|
if (!decl)
|
|
decl = isa<OpaqueTypeArchetypeType>(type)
|
|
? cast<OpaqueTypeArchetypeType>(type)->getDecl()
|
|
: nullptr;
|
|
if (!decl)
|
|
return false;
|
|
|
|
// Check whether the declaration is inaccessible from the current context.
|
|
switch (getDeclLinkage(decl)) {
|
|
|
|
// Public declarations are accessible from everywhere.
|
|
case FormalLinkage::PublicUnique:
|
|
case FormalLinkage::PublicNonUnique:
|
|
case FormalLinkage::PackageUnique:
|
|
return false;
|
|
|
|
// Hidden declarations are inaccessible from different modules.
|
|
case FormalLinkage::HiddenUnique:
|
|
return (decl->getModuleContext() != getSwiftModule());
|
|
|
|
// Private declarations are inaccessible from different files unless
|
|
// this is WMO and we're in the same module.
|
|
case FormalLinkage::Private: {
|
|
// The associated DC should be either a SourceFile or, in WMO mode,
|
|
// a ModuleDecl. In the WMO modes, IRGen will ensure that private
|
|
// declarations are usable throughout the module. Therefore, in
|
|
// either case we just need to make sure that the declaration comes
|
|
// from within the associated DC.
|
|
auto declDC = decl->getDeclContext();
|
|
return !(declDC == AssociatedDeclContext ||
|
|
declDC->isChildContextOf(AssociatedDeclContext));
|
|
}
|
|
}
|
|
llvm_unreachable("bad linkage");
|
|
});
|
|
}
|
|
|
|
/// Return the formal linkage of the component restrictions of this
|
|
/// generic signature. This is the appropriate linkage for a lazily-
|
|
/// emitted entity derived from the generic signature.
|
|
///
|
|
/// This function never returns PublicUnique.
|
|
FormalLinkage swift::getGenericSignatureLinkage(CanGenericSignature sig) {
|
|
// This can only be PublicNonUnique or HiddenUnique. Signatures can
|
|
// never be PublicUnique in the first place, and we short-circuit on
|
|
// Private. So we only ever update it when we see HiddenUnique linkage.
|
|
FormalLinkage linkage = FormalLinkage::PublicNonUnique;
|
|
|
|
for (auto &req : sig.getRequirements()) {
|
|
// The first type can be ignored because it should always be
|
|
// a dependent type.
|
|
|
|
switch (req.getKind()) {
|
|
case RequirementKind::SameShape:
|
|
case RequirementKind::Layout:
|
|
continue;
|
|
|
|
case RequirementKind::Conformance:
|
|
case RequirementKind::SameType:
|
|
case RequirementKind::Superclass:
|
|
switch (getTypeLinkage(CanType(req.getSecondType()))) {
|
|
case FormalLinkage::PublicUnique:
|
|
case FormalLinkage::PublicNonUnique:
|
|
case FormalLinkage::PackageUnique:
|
|
continue;
|
|
case FormalLinkage::HiddenUnique:
|
|
linkage = FormalLinkage::HiddenUnique;
|
|
continue;
|
|
case FormalLinkage::Private:
|
|
// We can short-circuit with this.
|
|
return linkage;
|
|
}
|
|
}
|
|
}
|
|
|
|
return linkage;
|
|
}
|
|
|
|
/// Return the formal linkage of the given formal type.
|
|
/// This in the appropriate linkage for a lazily-emitted entity
|
|
/// derived from the type.
|
|
///
|
|
/// This function never returns PublicUnique, which means that,
|
|
/// even if a type is simply a reference to a non-generic
|
|
/// uniquely-emitted nominal type, the formal linkage of that
|
|
/// type may differ from the formal linkage of the underlying
|
|
/// type declaration.
|
|
FormalLinkage swift::getTypeLinkage(CanType t) {
|
|
assert(t->isLegalFormalType());
|
|
|
|
class Walker : public TypeWalker {
|
|
public:
|
|
FormalLinkage Linkage;
|
|
Walker() : Linkage(FormalLinkage::PublicNonUnique) {}
|
|
|
|
Action walkToTypePre(Type ty) override {
|
|
// Non-nominal types are always available.
|
|
auto decl = ty->getNominalOrBoundGenericNominal();
|
|
if (!decl)
|
|
return Action::Continue;
|
|
|
|
Linkage = std::max(Linkage, getDeclLinkage(decl));
|
|
return Action::Continue;
|
|
}
|
|
};
|
|
|
|
Walker w;
|
|
t.walk(w);
|
|
return w.Linkage;
|
|
}
|
|
|
|
/// Answer whether IRGen's emitTypeMetadataForLayout can fetch metadata for
|
|
/// a type, which is the necessary condition for being able to do value
|
|
/// operations on the type using dynamic metadata.
|
|
static bool isTypeMetadataForLayoutAccessible(SILModule &M, SILType type) {
|
|
// Look through types that aren't necessarily legal formal types:
|
|
|
|
// - tuples
|
|
if (auto tupleType = type.getAs<TupleType>()) {
|
|
for (auto index : indices(tupleType.getElementTypes())) {
|
|
if (!isTypeMetadataForLayoutAccessible(M, type.getTupleElementType(index)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// - optionals
|
|
if (auto objType = type.getOptionalObjectType()) {
|
|
return isTypeMetadataForLayoutAccessible(M, objType);
|
|
}
|
|
|
|
// - function types
|
|
if (type.is<SILFunctionType>())
|
|
return true;
|
|
|
|
// - metatypes
|
|
if (type.is<AnyMetatypeType>())
|
|
return true;
|
|
|
|
// - pack expansion types
|
|
if (auto expansionType = type.getAs<PackExpansionType>()) {
|
|
auto patternType = SILType::getPrimitiveType(expansionType.getPatternType(),
|
|
type.getCategory());
|
|
return isTypeMetadataForLayoutAccessible(M, patternType);
|
|
}
|
|
|
|
// - lowered pack types
|
|
if (auto packType = type.getAs<SILPackType>()) {
|
|
for (auto eltType : packType.getElementTypes()) {
|
|
if (!isTypeMetadataForLayoutAccessible(
|
|
M, SILType::getPrimitiveAddressType(eltType)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, check that we can fetch the type metadata.
|
|
return M.isTypeMetadataAccessible(type.getASTType());
|
|
}
|
|
|
|
/// Can we perform value operations on the given type? We have no way
|
|
/// of doing value operations on resilient-layout types from other modules
|
|
/// that are ABI-private to their defining module. But if the type is not
|
|
/// ABI-private, we can always at least fetch its metadata and use the
|
|
/// value witness table stored there.
|
|
bool SILModule::isTypeABIAccessible(SILType type,
|
|
TypeExpansionContext forExpansion) {
|
|
// Fixed-ABI types can have value operations done without metadata.
|
|
if (Types.getTypeProperties(type, forExpansion).isFixedABI())
|
|
return true;
|
|
|
|
assert(!type.is<ReferenceStorageType>() &&
|
|
!type.is<SILFunctionType>() &&
|
|
!type.is<AnyMetatypeType>() &&
|
|
"unexpected SIL lowered-only type with non-fixed layout");
|
|
|
|
// Otherwise, we need to be able to fetch layout-metadata for the type.
|
|
return isTypeMetadataForLayoutAccessible(type);
|
|
}
|
|
|
|
bool SILModule::isTypeMetadataForLayoutAccessible(SILType type) {
|
|
if (type.is<ReferenceStorageType>() || type.is<SILFunctionType>() ||
|
|
type.is<AnyMetatypeType>() || type.is<SILPackType>())
|
|
return false;
|
|
|
|
return ::isTypeMetadataForLayoutAccessible(*this, type);
|
|
}
|
|
|
|
// Given the type `ty`, which should be in the generic environment of the signature
|
|
// `sig`, return a generic signature with all of the requirements of `sig`,
|
|
// combined with all of the requirements necessary for `ty` to be both
|
|
// `Copyable` and `Escapable`, if possible. Returns `nullopt` if the type
|
|
// can never be both Copyable and Escapable.
|
|
static std::optional<GenericSignature>
|
|
getKeyPathSupportingGenericSignature(Type ty, GenericSignature contextSig) {
|
|
auto &C = ty->getASTContext();
|
|
|
|
// If the type is already unconditionally Copyable and Escapable, we don't
|
|
// need any further requirements.
|
|
if (ty->isCopyable() && ty->isEscapable()) {
|
|
return contextSig;
|
|
}
|
|
|
|
ProtocolConformanceRef copyable, escapable;
|
|
auto copyableProtocol = C.getProtocol(KnownProtocolKind::Copyable);
|
|
auto escapableProtocol = C.getProtocol(KnownProtocolKind::Escapable);
|
|
|
|
// If the type is an archetype, then it just needs Copyable and Escapable
|
|
// constraints imposed.
|
|
if (ty->is<ArchetypeType>()) {
|
|
copyable = ProtocolConformanceRef::forAbstract(ty->mapTypeOutOfContext(),
|
|
copyableProtocol);
|
|
escapable = ProtocolConformanceRef::forAbstract(ty->mapTypeOutOfContext(),
|
|
escapableProtocol);
|
|
} else {
|
|
// Look for any conditional conformances.
|
|
copyable = lookupConformance(ty, copyableProtocol);
|
|
escapable = lookupConformance(ty, escapableProtocol);
|
|
}
|
|
|
|
// If the type is never copyable or escapable, that's it.
|
|
if (copyable.isInvalid() || escapable.isInvalid()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Otherwise, let's see if we get a viable generic signature combining the
|
|
// requirements for those conformances with the requirements of the
|
|
// declaration context.
|
|
SmallVector<Requirement, 2> ceRequirements;
|
|
|
|
auto getRequirementsFromConformance = [&](ProtocolConformanceRef ref) {
|
|
if (ref.isAbstract()) {
|
|
// The only requirements are that the abstract type itself be copyable
|
|
// and escapable.
|
|
ceRequirements.push_back(Requirement(RequirementKind::Conformance,
|
|
ty->mapTypeOutOfContext(), copyableProtocol->getDeclaredType()));
|
|
ceRequirements.push_back(Requirement(RequirementKind::Conformance,
|
|
ty->mapTypeOutOfContext(), escapableProtocol->getDeclaredType()));
|
|
return;
|
|
}
|
|
|
|
if (!ref.isConcrete()) {
|
|
return;
|
|
}
|
|
auto conformance = ref.getConcrete();
|
|
|
|
for (auto reqt : conformance->getRootConformance()
|
|
->getConditionalRequirements()) {
|
|
ceRequirements.push_back(reqt);
|
|
}
|
|
};
|
|
getRequirementsFromConformance(copyable);
|
|
getRequirementsFromConformance(escapable);
|
|
|
|
auto regularSignature = buildGenericSignatureWithError(C,
|
|
contextSig,
|
|
{},
|
|
std::move(ceRequirements),
|
|
/*allowInverses*/ false);
|
|
|
|
// If the resulting signature has conflicting requirements, then it is
|
|
// impossible for the type to be copyable and equatable.
|
|
if (regularSignature.getInt()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Otherwise, we have the signature we're looking for.
|
|
return regularSignature.getPointer();
|
|
}
|
|
|
|
static std::optional<GenericSignature>
|
|
getKeyPathSupportingGenericSignatureForValueType(Type ty,
|
|
GenericSignature sig) {
|
|
std::optional<GenericSignature> contextSig = sig;
|
|
|
|
// Visit lowered positions.
|
|
if (auto tupleTy = ty->getAs<TupleType>()) {
|
|
for (auto eltTy : tupleTy->getElementTypes()) {
|
|
if (eltTy->is<PackExpansionType>())
|
|
return std::nullopt;
|
|
|
|
contextSig = getKeyPathSupportingGenericSignatureForValueType(
|
|
eltTy, *contextSig);
|
|
if (!contextSig)
|
|
return std::nullopt;
|
|
}
|
|
|
|
return contextSig;
|
|
}
|
|
|
|
if (auto objTy = ty->getOptionalObjectType())
|
|
ty = objTy;
|
|
|
|
// FIXME: Remove this once isUnimplementableVariadicFunctionAbstraction()
|
|
// goes away in SILGenPoly.cpp.
|
|
if (auto funcTy = ty->getAs<FunctionType>()) {
|
|
for (auto param : funcTy->getParams()) {
|
|
auto paramTy = param.getPlainType();
|
|
if (paramTy->is<PackExpansionType>())
|
|
return std::nullopt;
|
|
|
|
contextSig = getKeyPathSupportingGenericSignatureForValueType(paramTy,
|
|
*contextSig);
|
|
if (!contextSig) {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
contextSig = getKeyPathSupportingGenericSignatureForValueType(funcTy->getResult(),
|
|
*contextSig);
|
|
|
|
if (!contextSig) {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
// Noncopyable types aren't supported by key paths in their current form.
|
|
// They would also need a new ABI that's yet to be implemented in order to
|
|
// be properly supported, so let's suppress the descriptor for now if either
|
|
// the container or storage type of the declaration is non-copyable.
|
|
return getKeyPathSupportingGenericSignature(ty, *contextSig);
|
|
}
|
|
|
|
std::optional<GenericSignature>
|
|
AbstractStorageDecl::getPropertyDescriptorGenericSignature() const {
|
|
// The storage needs a descriptor if it sits at a module's ABI boundary,
|
|
// meaning it has public linkage, and it is eligible to be part of a key path.
|
|
|
|
auto contextTy = getDeclContext()->getDeclaredTypeInContext();
|
|
auto contextSig = getInnermostDeclContext()->getGenericSignatureOfContext();
|
|
|
|
// If the root type is never `Copyable` or `Escapable`, then instance
|
|
// members can't be used in key paths, at least as they are implemented
|
|
// today.
|
|
if (!isStatic() && contextTy) {
|
|
auto ceContextSig = getKeyPathSupportingGenericSignature(contextTy,
|
|
contextSig);
|
|
if (!ceContextSig) {
|
|
return std::nullopt;
|
|
}
|
|
contextSig = *ceContextSig;
|
|
}
|
|
|
|
// TODO: Global properties ought to eventually be referenceable
|
|
// as key paths from ().
|
|
if (!getDeclContext()->isTypeContext())
|
|
return std::nullopt;
|
|
|
|
// Protocol requirements do not need property descriptors.
|
|
if (isa<ProtocolDecl>(getDeclContext()))
|
|
return std::nullopt;
|
|
|
|
// Static properties declared directly in protocol do not need
|
|
// descriptors as existential Any.Type will not resolve to a value.
|
|
if (isStatic() && isa<ProtocolDecl>(getDeclContext()))
|
|
return std::nullopt;
|
|
|
|
// FIXME: We should support properties and subscripts with '_read' accessors;
|
|
// 'get' is not part of the opaque accessor set there.
|
|
auto *getter = getOpaqueAccessor(AccessorKind::Get);
|
|
if (!getter)
|
|
return std::nullopt;
|
|
|
|
// If the getter is mutating, we cannot form a keypath to it at all.
|
|
if (isGetterMutating())
|
|
return std::nullopt;
|
|
|
|
// If the storage is an ABI-compatible override of another declaration, we're
|
|
// not going to be emitting a property descriptor either.
|
|
if (!isValidKeyPathComponent())
|
|
return std::nullopt;
|
|
|
|
// TODO: If previous versions of an ABI-stable binary needed the descriptor,
|
|
// then we still do.
|
|
|
|
// Check the linkage of the declaration.
|
|
auto getterLinkage = SILDeclRef(getter).getLinkage(ForDefinition);
|
|
|
|
switch (getterLinkage) {
|
|
case SILLinkage::Public:
|
|
case SILLinkage::PublicNonABI:
|
|
case SILLinkage::Package:
|
|
case SILLinkage::PackageNonABI:
|
|
// We may need a descriptor.
|
|
break;
|
|
|
|
case SILLinkage::Shared:
|
|
case SILLinkage::Private:
|
|
case SILLinkage::Hidden:
|
|
// Don't need a public descriptor.
|
|
return std::nullopt;
|
|
|
|
case SILLinkage::HiddenExternal:
|
|
case SILLinkage::PublicExternal:
|
|
case SILLinkage::PackageExternal:
|
|
llvm_unreachable("should be definition linkage?");
|
|
}
|
|
|
|
auto typeInContext = contextSig.getGenericEnvironment()->mapTypeIntoContext(
|
|
getValueInterfaceType());
|
|
auto valueTypeSig = getKeyPathSupportingGenericSignatureForValueType(typeInContext, contextSig);
|
|
if (!valueTypeSig) {
|
|
return std::nullopt;
|
|
}
|
|
contextSig = *valueTypeSig;
|
|
|
|
// Subscripts with inout arguments (FIXME)and reabstracted arguments(/FIXME)
|
|
// don't have descriptors either.
|
|
if (auto sub = dyn_cast<SubscriptDecl>(this)) {
|
|
for (auto *index : *sub->getIndices()) {
|
|
// Keypaths can't capture inout indices.
|
|
if (index->isInOut()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
auto indexTy = index->getInterfaceType()
|
|
->getReducedType(sub->getGenericSignatureOfContext());
|
|
|
|
// TODO: Handle reabstraction and tuple explosion in thunk generation.
|
|
// This wasn't previously a concern because anything that was Hashable
|
|
// had only one abstraction level and no explosion.
|
|
|
|
if (isa<TupleType>(indexTy))
|
|
return std::nullopt;
|
|
|
|
auto indexObjTy = indexTy;
|
|
if (auto objTy = indexObjTy.getOptionalObjectType())
|
|
indexObjTy = objTy;
|
|
|
|
if (isa<AnyFunctionType>(indexObjTy)
|
|
|| isa<AnyMetatypeType>(indexObjTy))
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
return contextSig;
|
|
}
|