Files
swift-mirror/lib/SIL/IR/SIL.cpp
2025-08-28 12:13:21 -07:00

560 lines
20 KiB
C++

//===--- SIL.cpp - Implements random SIL functionality --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILUndef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Assertions.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
using namespace swift;
FormalLinkage swift::getDeclLinkage(const ValueDecl *D) {
const DeclContext *fileContext = D->getDeclContext()->getModuleScopeContext();
// Clang declarations are public and can't be assured of having a
// unique defining location.
if (isa<ClangModuleUnit>(fileContext) &&
!D->getObjCImplementationDecl())
return FormalLinkage::PublicNonUnique;
switch (D->getEffectiveAccess()) {
case AccessLevel::Package:
return FormalLinkage::PackageUnique;
case AccessLevel::Public:
case AccessLevel::Open:
return FormalLinkage::PublicUnique;
case AccessLevel::Internal:
return FormalLinkage::HiddenUnique;
case AccessLevel::FilePrivate:
case AccessLevel::Private:
return FormalLinkage::Private;
}
llvm_unreachable("Unhandled access level in switch.");
}
SILLinkage swift::getSILLinkage(FormalLinkage linkage,
ForDefinition_t forDefinition) {
switch (linkage) {
case FormalLinkage::PublicUnique:
return (forDefinition ? SILLinkage::Public : SILLinkage::PublicExternal);
case FormalLinkage::PublicNonUnique:
// FIXME: any place we have to do this that actually requires
// uniqueness is buggy.
return (forDefinition ? SILLinkage::Shared : SILLinkage::PublicExternal);
case FormalLinkage::PackageUnique:
return (forDefinition ? SILLinkage::Package : SILLinkage::PackageExternal);
case FormalLinkage::HiddenUnique:
return (forDefinition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
case FormalLinkage::Private:
return SILLinkage::Private;
}
llvm_unreachable("bad formal linkage");
}
SILLinkage
swift::getLinkageForProtocolConformance(const ProtocolConformance *C,
ForDefinition_t definition) {
// If the conformance was synthesized, give it shared linkage.
if (C->getRootConformance()->isSynthesized())
return SILLinkage::Shared;
auto typeDecl = C->getDeclContext()->getSelfNominalTypeDecl();
AccessLevel access = std::min(C->getProtocol()->getEffectiveAccess(),
typeDecl->getEffectiveAccess());
switch (access) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return SILLinkage::Private;
case AccessLevel::Internal:
return (definition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
case AccessLevel::Package:
return (definition ? SILLinkage::Package : SILLinkage::PackageExternal);
case AccessLevel::Public:
case AccessLevel::Open:
return (definition ? SILLinkage::Public : SILLinkage::PublicExternal);
}
}
bool SILModule::isTypeMetadataAccessible(CanType type) {
// SILModules built for the debugger have special powers to access metadata
// for types in other files/modules.
if (getASTContext().LangOpts.DebuggerSupport)
return true;
assert(type->isLegalFormalType());
return !type.findIf([&](CanType type) {
// Note that this function returns true if the type is *illegal* to use.
// Ignore non-nominal types -- except for opaque result types which can be
// private and in a different translation unit in which case they can't be
// accessed.
ValueDecl *decl = type.getNominalOrBoundGenericNominal();
if (!decl)
decl = isa<OpaqueTypeArchetypeType>(type)
? cast<OpaqueTypeArchetypeType>(type)->getDecl()
: nullptr;
if (!decl)
return false;
// Check whether the declaration is inaccessible from the current context.
switch (getDeclLinkage(decl)) {
// Public declarations are accessible from everywhere.
case FormalLinkage::PublicUnique:
case FormalLinkage::PublicNonUnique:
case FormalLinkage::PackageUnique:
return false;
// Hidden declarations are inaccessible from different modules.
case FormalLinkage::HiddenUnique:
return (decl->getModuleContext() != getSwiftModule());
// Private declarations are inaccessible from different files unless
// this is WMO and we're in the same module.
case FormalLinkage::Private: {
// The associated DC should be either a SourceFile or, in WMO mode,
// a ModuleDecl. In the WMO modes, IRGen will ensure that private
// declarations are usable throughout the module. Therefore, in
// either case we just need to make sure that the declaration comes
// from within the associated DC.
auto declDC = decl->getDeclContext();
return !(declDC == AssociatedDeclContext ||
declDC->isChildContextOf(AssociatedDeclContext));
}
}
llvm_unreachable("bad linkage");
});
}
/// Return the formal linkage of the component restrictions of this
/// generic signature. This is the appropriate linkage for a lazily-
/// emitted entity derived from the generic signature.
///
/// This function never returns PublicUnique.
FormalLinkage swift::getGenericSignatureLinkage(CanGenericSignature sig) {
// This can only be PublicNonUnique or HiddenUnique. Signatures can
// never be PublicUnique in the first place, and we short-circuit on
// Private. So we only ever update it when we see HiddenUnique linkage.
FormalLinkage linkage = FormalLinkage::PublicNonUnique;
for (auto &req : sig.getRequirements()) {
// The first type can be ignored because it should always be
// a dependent type.
switch (req.getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Layout:
continue;
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass:
switch (getTypeLinkage(CanType(req.getSecondType()))) {
case FormalLinkage::PublicUnique:
case FormalLinkage::PublicNonUnique:
case FormalLinkage::PackageUnique:
continue;
case FormalLinkage::HiddenUnique:
linkage = FormalLinkage::HiddenUnique;
continue;
case FormalLinkage::Private:
// We can short-circuit with this.
return linkage;
}
}
}
return linkage;
}
/// Return the formal linkage of the given formal type.
/// This in the appropriate linkage for a lazily-emitted entity
/// derived from the type.
///
/// This function never returns PublicUnique, which means that,
/// even if a type is simply a reference to a non-generic
/// uniquely-emitted nominal type, the formal linkage of that
/// type may differ from the formal linkage of the underlying
/// type declaration.
FormalLinkage swift::getTypeLinkage(CanType t) {
assert(t->isLegalFormalType());
class Walker : public TypeWalker {
public:
FormalLinkage Linkage;
Walker() : Linkage(FormalLinkage::PublicNonUnique) {}
Action walkToTypePre(Type ty) override {
// Non-nominal types are always available.
auto decl = ty->getNominalOrBoundGenericNominal();
if (!decl)
return Action::Continue;
Linkage = std::max(Linkage, getDeclLinkage(decl));
return Action::Continue;
}
};
Walker w;
t.walk(w);
return w.Linkage;
}
/// Answer whether IRGen's emitTypeMetadataForLayout can fetch metadata for
/// a type, which is the necessary condition for being able to do value
/// operations on the type using dynamic metadata.
static bool isTypeMetadataForLayoutAccessible(SILModule &M, SILType type) {
// Look through types that aren't necessarily legal formal types:
// - tuples
if (auto tupleType = type.getAs<TupleType>()) {
for (auto index : indices(tupleType.getElementTypes())) {
if (!isTypeMetadataForLayoutAccessible(M, type.getTupleElementType(index)))
return false;
}
return true;
}
// - optionals
if (auto objType = type.getOptionalObjectType()) {
return isTypeMetadataForLayoutAccessible(M, objType);
}
// - function types
if (type.is<SILFunctionType>())
return true;
// - metatypes
if (type.is<AnyMetatypeType>())
return true;
// - pack expansion types
if (auto expansionType = type.getAs<PackExpansionType>()) {
auto patternType = SILType::getPrimitiveType(expansionType.getPatternType(),
type.getCategory());
return isTypeMetadataForLayoutAccessible(M, patternType);
}
// - lowered pack types
if (auto packType = type.getAs<SILPackType>()) {
for (auto eltType : packType.getElementTypes()) {
if (!isTypeMetadataForLayoutAccessible(
M, SILType::getPrimitiveAddressType(eltType)))
return false;
}
return true;
}
// Otherwise, check that we can fetch the type metadata.
return M.isTypeMetadataAccessible(type.getASTType());
}
/// Can we perform value operations on the given type? We have no way
/// of doing value operations on resilient-layout types from other modules
/// that are ABI-private to their defining module. But if the type is not
/// ABI-private, we can always at least fetch its metadata and use the
/// value witness table stored there.
bool SILModule::isTypeABIAccessible(SILType type,
TypeExpansionContext forExpansion) {
// Fixed-ABI types can have value operations done without metadata.
if (Types.getTypeProperties(type, forExpansion).isFixedABI())
return true;
assert(!type.is<ReferenceStorageType>() &&
!type.is<SILFunctionType>() &&
!type.is<AnyMetatypeType>() &&
"unexpected SIL lowered-only type with non-fixed layout");
// Otherwise, we need to be able to fetch layout-metadata for the type.
return isTypeMetadataForLayoutAccessible(type);
}
bool SILModule::isTypeMetadataForLayoutAccessible(SILType type) {
if (type.is<ReferenceStorageType>() || type.is<SILFunctionType>() ||
type.is<AnyMetatypeType>() || type.is<SILPackType>())
return false;
return ::isTypeMetadataForLayoutAccessible(*this, type);
}
// Given the type `ty`, which should be in the generic environment of the signature
// `sig`, return a generic signature with all of the requirements of `sig`,
// combined with all of the requirements necessary for `ty` to be both
// `Copyable` and `Escapable`, if possible. Returns `nullopt` if the type
// can never be both Copyable and Escapable.
static std::optional<GenericSignature>
getKeyPathSupportingGenericSignature(Type ty, GenericSignature contextSig) {
auto &C = ty->getASTContext();
// If the type is already unconditionally Copyable and Escapable, we don't
// need any further requirements.
if (ty->isCopyable() && ty->isEscapable()) {
return contextSig;
}
ProtocolConformanceRef copyable, escapable;
auto copyableProtocol = C.getProtocol(KnownProtocolKind::Copyable);
auto escapableProtocol = C.getProtocol(KnownProtocolKind::Escapable);
// If the type is an archetype, then it just needs Copyable and Escapable
// constraints imposed.
if (ty->is<ArchetypeType>()) {
copyable = ProtocolConformanceRef::forAbstract(ty->mapTypeOutOfContext(),
copyableProtocol);
escapable = ProtocolConformanceRef::forAbstract(ty->mapTypeOutOfContext(),
escapableProtocol);
} else {
// Look for any conditional conformances.
copyable = lookupConformance(ty, copyableProtocol);
escapable = lookupConformance(ty, escapableProtocol);
}
// If the type is never copyable or escapable, that's it.
if (copyable.isInvalid() || escapable.isInvalid()) {
return std::nullopt;
}
// Otherwise, let's see if we get a viable generic signature combining the
// requirements for those conformances with the requirements of the
// declaration context.
SmallVector<Requirement, 2> ceRequirements;
auto getRequirementsFromConformance = [&](ProtocolConformanceRef ref) {
if (ref.isAbstract()) {
// The only requirements are that the abstract type itself be copyable
// and escapable.
ceRequirements.push_back(Requirement(RequirementKind::Conformance,
ty->mapTypeOutOfContext(), copyableProtocol->getDeclaredType()));
ceRequirements.push_back(Requirement(RequirementKind::Conformance,
ty->mapTypeOutOfContext(), escapableProtocol->getDeclaredType()));
return;
}
if (!ref.isConcrete()) {
return;
}
auto conformance = ref.getConcrete();
for (auto reqt : conformance->getRootConformance()
->getConditionalRequirements()) {
ceRequirements.push_back(reqt);
}
};
getRequirementsFromConformance(copyable);
getRequirementsFromConformance(escapable);
auto regularSignature = buildGenericSignatureWithError(C,
contextSig,
{},
std::move(ceRequirements),
/*allowInverses*/ false);
// If the resulting signature has conflicting requirements, then it is
// impossible for the type to be copyable and equatable.
if (regularSignature.getInt()) {
return std::nullopt;
}
// Otherwise, we have the signature we're looking for.
return regularSignature.getPointer();
}
static std::optional<GenericSignature>
getKeyPathSupportingGenericSignatureForValueType(Type ty,
GenericSignature sig) {
std::optional<GenericSignature> contextSig = sig;
// Visit lowered positions.
if (auto tupleTy = ty->getAs<TupleType>()) {
for (auto eltTy : tupleTy->getElementTypes()) {
if (eltTy->is<PackExpansionType>())
return std::nullopt;
contextSig = getKeyPathSupportingGenericSignatureForValueType(
eltTy, *contextSig);
if (!contextSig)
return std::nullopt;
}
return contextSig;
}
if (auto objTy = ty->getOptionalObjectType())
ty = objTy;
// FIXME: Remove this once isUnimplementableVariadicFunctionAbstraction()
// goes away in SILGenPoly.cpp.
if (auto funcTy = ty->getAs<FunctionType>()) {
for (auto param : funcTy->getParams()) {
auto paramTy = param.getPlainType();
if (paramTy->is<PackExpansionType>())
return std::nullopt;
contextSig = getKeyPathSupportingGenericSignatureForValueType(paramTy,
*contextSig);
if (!contextSig) {
return std::nullopt;
}
}
contextSig = getKeyPathSupportingGenericSignatureForValueType(funcTy->getResult(),
*contextSig);
if (!contextSig) {
return std::nullopt;
}
}
// Noncopyable types aren't supported by key paths in their current form.
// They would also need a new ABI that's yet to be implemented in order to
// be properly supported, so let's suppress the descriptor for now if either
// the container or storage type of the declaration is non-copyable.
return getKeyPathSupportingGenericSignature(ty, *contextSig);
}
std::optional<GenericSignature>
AbstractStorageDecl::getPropertyDescriptorGenericSignature() const {
// The storage needs a descriptor if it sits at a module's ABI boundary,
// meaning it has public linkage, and it is eligible to be part of a key path.
auto contextTy = getDeclContext()->getDeclaredTypeInContext();
auto contextSig = getInnermostDeclContext()->getGenericSignatureOfContext();
// If the root type is never `Copyable` or `Escapable`, then instance
// members can't be used in key paths, at least as they are implemented
// today.
if (!isStatic() && contextTy) {
auto ceContextSig = getKeyPathSupportingGenericSignature(contextTy,
contextSig);
if (!ceContextSig) {
return std::nullopt;
}
contextSig = *ceContextSig;
}
// TODO: Global properties ought to eventually be referenceable
// as key paths from ().
if (!getDeclContext()->isTypeContext())
return std::nullopt;
// Protocol requirements do not need property descriptors.
if (isa<ProtocolDecl>(getDeclContext()))
return std::nullopt;
// Static properties declared directly in protocol do not need
// descriptors as existential Any.Type will not resolve to a value.
if (isStatic() && isa<ProtocolDecl>(getDeclContext()))
return std::nullopt;
// FIXME: We should support properties and subscripts with '_read' accessors;
// 'get' is not part of the opaque accessor set there.
auto *getter = getOpaqueAccessor(AccessorKind::Get);
if (!getter)
return std::nullopt;
// If the getter is mutating, we cannot form a keypath to it at all.
if (isGetterMutating())
return std::nullopt;
// If the storage is an ABI-compatible override of another declaration, we're
// not going to be emitting a property descriptor either.
if (!isValidKeyPathComponent())
return std::nullopt;
// TODO: If previous versions of an ABI-stable binary needed the descriptor,
// then we still do.
// Check the linkage of the declaration.
auto getterLinkage = SILDeclRef(getter).getLinkage(ForDefinition);
switch (getterLinkage) {
case SILLinkage::Public:
case SILLinkage::PublicNonABI:
case SILLinkage::Package:
case SILLinkage::PackageNonABI:
// We may need a descriptor.
break;
case SILLinkage::Shared:
case SILLinkage::Private:
case SILLinkage::Hidden:
// Don't need a public descriptor.
return std::nullopt;
case SILLinkage::HiddenExternal:
case SILLinkage::PublicExternal:
case SILLinkage::PackageExternal:
llvm_unreachable("should be definition linkage?");
}
auto typeInContext = contextSig.getGenericEnvironment()->mapTypeIntoContext(
getValueInterfaceType());
auto valueTypeSig = getKeyPathSupportingGenericSignatureForValueType(typeInContext, contextSig);
if (!valueTypeSig) {
return std::nullopt;
}
contextSig = *valueTypeSig;
// Subscripts with inout arguments (FIXME)and reabstracted arguments(/FIXME)
// don't have descriptors either.
if (auto sub = dyn_cast<SubscriptDecl>(this)) {
for (auto *index : *sub->getIndices()) {
// Keypaths can't capture inout indices.
if (index->isInOut()) {
return std::nullopt;
}
auto indexTy = index->getInterfaceType()
->getReducedType(sub->getGenericSignatureOfContext());
// TODO: Handle reabstraction and tuple explosion in thunk generation.
// This wasn't previously a concern because anything that was Hashable
// had only one abstraction level and no explosion.
if (isa<TupleType>(indexTy))
return std::nullopt;
auto indexObjTy = indexTy;
if (auto objTy = indexObjTy.getOptionalObjectType())
indexObjTy = objTy;
if (isa<AnyFunctionType>(indexObjTy)
|| isa<AnyMetatypeType>(indexObjTy))
return std::nullopt;
}
}
return contextSig;
}