Files
swift-mirror/lib/SIL/IR/SILFunction.cpp
2025-10-31 10:32:54 -07:00

1387 lines
47 KiB
C++

//===--- SILFunction.cpp - Defines the SILFunction data structure ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-function"
#include "swift/SIL/SILFunction.h"
#include "swift/AST/AvailabilityRange.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LocalArchetypeRequirementCollector.h"
#include "swift/AST/Module.h"
#include "swift/AST/Stmt.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/OptimizationMode.h"
#include "swift/Basic/Statistic.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBridging.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILProfiler.h"
#include "clang/AST/Decl.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GraphWriter.h"
#include <optional>
using namespace swift;
using namespace Lowering;
GenericSignature SILSpecializeAttr::buildTypeErasedSignature(
GenericSignature sig, ArrayRef<Type> typeErasedParams) {
bool changedSignature = false;
llvm::SmallVector<Requirement, 2> requirementsErased;
auto &C = sig->getASTContext();
for (auto req : sig.getRequirements()) {
bool found = std::any_of(typeErasedParams.begin(),
typeErasedParams.end(),
[&](Type t) {
auto other = req.getFirstType();
return t->isEqual(other);
});
if (found && req.getKind() == RequirementKind::Layout) {
auto layout = req.getLayoutConstraint();
if (layout->isClass()) {
requirementsErased.push_back(Requirement(RequirementKind::SameType,
req.getFirstType(),
C.getAnyObjectType()));
} else if (layout->isBridgeObject()) {
requirementsErased.push_back(Requirement(RequirementKind::SameType,
req.getFirstType(),
C.TheBridgeObjectType));
} else if (layout->isFixedSizeTrivial()) {
unsigned bitWidth = layout->getTrivialSizeInBits();
requirementsErased.push_back(
Requirement(RequirementKind::SameType, req.getFirstType(),
CanType(BuiltinIntegerType::get(bitWidth, C))));
} else if (layout->isTrivialStride()) {
requirementsErased.push_back(
Requirement(RequirementKind::SameType, req.getFirstType(),
CanType(BuiltinVectorType::get(
C,
BuiltinIntegerType::get(8, C),
layout->getTrivialStride()))));
} else {
requirementsErased.push_back(req);
}
} else {
requirementsErased.push_back(req);
}
changedSignature |= found;
}
if (changedSignature) {
return buildGenericSignature(
C, GenericSignature(),
SmallVector<GenericTypeParamType *>(sig.getGenericParams()),
requirementsErased,
/*allowInverses=*/false);
}
return sig;
}
SILSpecializeAttr::SILSpecializeAttr(bool exported, SpecializationKind kind,
GenericSignature specializedSig,
GenericSignature unerasedSpecializedSig,
ArrayRef<Type> typeErasedParams,
SILFunction *target, Identifier spiGroup,
const ModuleDecl *spiModule,
AvailabilityRange availability)
: kind(kind), exported(exported), specializedSignature(specializedSig),
unerasedSpecializedSignature(unerasedSpecializedSig),
typeErasedParams(typeErasedParams.begin(), typeErasedParams.end()),
spiGroup(spiGroup), availability(availability), spiModule(spiModule),
targetFunction(target) {
if (targetFunction)
targetFunction->incrementRefCount();
}
SILSpecializeAttr *
SILSpecializeAttr::create(SILModule &M, GenericSignature specializedSig,
ArrayRef<Type> typeErasedParams,
bool exported, SpecializationKind kind,
SILFunction *target, Identifier spiGroup,
const ModuleDecl *spiModule,
AvailabilityRange availability) {
auto erasedSpecializedSig =
SILSpecializeAttr::buildTypeErasedSignature(specializedSig,
typeErasedParams);
void *buf = M.allocate(sizeof(SILSpecializeAttr), alignof(SILSpecializeAttr));
return ::new (buf) SILSpecializeAttr(exported, kind, erasedSpecializedSig,
specializedSig, typeErasedParams, target,
spiGroup, spiModule, availability);
}
void SILFunction::addSpecializeAttr(SILSpecializeAttr *Attr) {
if (getLoweredFunctionType()->getInvocationGenericSignature()) {
Attr->F = this;
SpecializeAttrSet.push_back(Attr);
}
}
void SILFunction::removeSpecializeAttr(SILSpecializeAttr *attr) {
// Drop the reference to the _specialize(target:) function.
if (auto *targetFun = attr->getTargetFunction()) {
targetFun->decrementRefCount();
}
SpecializeAttrSet.erase(std::remove_if(SpecializeAttrSet.begin(),
SpecializeAttrSet.end(),
[attr](SILSpecializeAttr *member) {
return member == attr;
}),
SpecializeAttrSet.end());
}
SILFunction *SILFunction::create(
SILModule &M, SILLinkage linkage, StringRef name,
CanSILFunctionType loweredType, GenericEnvironment *genericEnv,
std::optional<SILLocation> loc, IsBare_t isBareSILFunction,
IsTransparent_t isTrans, SerializedKind_t serializedKind,
ProfileCounter entryCount, IsDynamicallyReplaceable_t isDynamic,
IsDistributed_t isDistributed, IsRuntimeAccessible_t isRuntimeAccessible,
IsExactSelfClass_t isExactSelfClass, IsThunk_t isThunk,
SubclassScope classSubclassScope, Inline_t inlineStrategy, EffectsKind E,
SILFunction *insertBefore, const SILDebugScope *debugScope) {
// Get a StringMapEntry for the function. As a sop to error cases,
// allow the name to have an empty string.
llvm::StringMapEntry<SILFunction*> *entry = nullptr;
if (!name.empty()) {
entry = &*M.FunctionTable.insert(std::make_pair(name, nullptr)).first;
PrettyStackTraceSILFunction trace("creating", entry->getValue());
assert(!entry->getValue() && "function already exists");
name = entry->getKey();
}
SILFunction *fn = M.removeFromZombieList(name);
if (fn) {
// Resurrect a zombie function.
// This happens for example if a specialized function gets dead and gets
// deleted. And afterwards the same specialization is created again.
fn->init(linkage, name, loweredType, genericEnv, isBareSILFunction, isTrans,
serializedKind, entryCount, isThunk, classSubclassScope,
inlineStrategy, E, debugScope, isDynamic, isExactSelfClass,
isDistributed, isRuntimeAccessible);
assert(fn->empty());
} else {
fn = new (M) SILFunction(
M, linkage, name, loweredType, genericEnv, isBareSILFunction, isTrans,
serializedKind, entryCount, isThunk, classSubclassScope, inlineStrategy,
E, debugScope, isDynamic, isExactSelfClass, isDistributed,
isRuntimeAccessible);
}
if (entry) entry->setValue(fn);
if (insertBefore)
M.functions.insert(SILModule::iterator(insertBefore), fn);
else
M.functions.push_back(fn);
auto iter = M.pendingSpecializeAttrs.find(name);
if (iter != M.pendingSpecializeAttrs.end()) {
for (auto *attr : iter->second) {
fn->addSpecializeAttr(attr);
}
M.pendingSpecializeAttrs.erase(iter);
}
return fn;
}
static SwiftMetatype functionMetatype;
static BridgedFunction::RegisterFn initFunction = nullptr;
static BridgedFunction::RegisterFn destroyFunction = nullptr;
static BridgedFunction::WriteFn writeFunction = nullptr;
static BridgedFunction::ParseFn parseFunction = nullptr;
static BridgedFunction::CopyEffectsFn copyEffectsFunction = nullptr;
static BridgedFunction::GetEffectInfoFn getEffectInfoFunction = nullptr;
static BridgedFunction::GetMemBehaviorFn getMemBehvaiorFunction = nullptr;
static BridgedFunction::ArgumentMayReadFn argumentMayReadFunction = nullptr;
static BridgedFunction::IsDeinitBarrierFn isDeinitBarrierFunction = nullptr;
SILFunction::SILFunction(
SILModule &Module, SILLinkage Linkage, StringRef Name,
CanSILFunctionType LoweredType, GenericEnvironment *genericEnv,
IsBare_t isBareSILFunction, IsTransparent_t isTrans,
SerializedKind_t serializedKind, ProfileCounter entryCount, IsThunk_t isThunk,
SubclassScope classSubclassScope, Inline_t inlineStrategy, EffectsKind E,
const SILDebugScope *DebugScope, IsDynamicallyReplaceable_t isDynamic,
IsExactSelfClass_t isExactSelfClass, IsDistributed_t isDistributed,
IsRuntimeAccessible_t isRuntimeAccessible)
: SwiftObjectHeader(functionMetatype), Module(Module),
index(Module.getNewFunctionIndex()),
Availability(AvailabilityRange::alwaysAvailable()) {
init(Linkage, Name, LoweredType, genericEnv, isBareSILFunction, isTrans,
serializedKind, entryCount, isThunk, classSubclassScope, inlineStrategy, E,
DebugScope, isDynamic, isExactSelfClass, isDistributed,
isRuntimeAccessible);
// Set our BB list to have this function as its parent. This enables us to
// splice efficiently basic blocks in between functions.
BlockList.Parent = this;
if (initFunction)
initFunction({this}, &libswiftSpecificData, sizeof(libswiftSpecificData));
}
void SILFunction::init(
SILLinkage Linkage, StringRef Name, CanSILFunctionType LoweredType,
GenericEnvironment *genericEnv, IsBare_t isBareSILFunction,
IsTransparent_t isTrans, SerializedKind_t serializedKind,
ProfileCounter entryCount, IsThunk_t isThunk,
SubclassScope classSubclassScope, Inline_t inlineStrategy, EffectsKind E,
const SILDebugScope *DebugScope, IsDynamicallyReplaceable_t isDynamic,
IsExactSelfClass_t isExactSelfClass, IsDistributed_t isDistributed,
IsRuntimeAccessible_t isRuntimeAccessible) {
setName(Name);
assert(!LoweredType->hasTypeParameter() &&
"function type has open type parameters");
this->LoweredType = LoweredType;
this->SpecializationInfo = nullptr;
this->EntryCount = entryCount;
this->Availability = AvailabilityRange::alwaysAvailable();
this->Bare = isBareSILFunction;
this->Transparent = isTrans;
this->SerializedKind = serializedKind;
this->Thunk = isThunk;
this->ClassSubclassScope = unsigned(classSubclassScope);
this->GlobalInitFlag = false;
this->InlineStrategy = inlineStrategy;
this->Linkage = unsigned(Linkage);
this->HasCReferences = false;
this->MarkedAsUsed = false;
this->IsAlwaysWeakImported = false;
this->IsDynamicReplaceable = isDynamic;
this->ExactSelfClass = isExactSelfClass;
this->IsDistributed = isDistributed;
this->IsRuntimeAccessible = isRuntimeAccessible;
this->ForceEnableLexicalLifetimes = DoNotForceEnableLexicalLifetimes;
this->UseStackForPackMetadata = DoUseStackForPackMetadata;
this->HasUnsafeNonEscapableResult = false;
this->IsPerformanceConstraint = false;
this->stackProtection = false;
this->Inlined = false;
this->Zombie = false;
this->HasOwnership = true,
this->WasDeserializedCanonical = false;
this->IsWithoutActuallyEscapingThunk = false;
this->OptMode = unsigned(OptimizationMode::NotSet);
this->perfConstraints = PerformanceConstraints::None;
this->EffectsKindAttr = unsigned(E);
assert(!Transparent || !IsDynamicReplaceable);
validateSubclassScope(classSubclassScope, isThunk, nullptr);
setDebugScope(DebugScope);
setGenericEnvironment(genericEnv);
}
SILFunction::~SILFunction() {
// If the function is recursive, a function_ref inst inside of the function
// will give the function a non-zero ref count triggering the assertion. Thus
// we drop all instruction references before we erase.
// We also need to drop all references if instructions are allocated using
// an allocator that may recycle freed memory.
dropAllReferences();
if (snapshots)
snapshots->~SILFunction();
if (ReplacedFunction) {
ReplacedFunction->decrementRefCount();
ReplacedFunction = nullptr;
}
auto &M = getModule();
for (auto &BB : *this) {
BB.eraseAllInstructions(M);
}
assert(RefCount == 0 &&
"Function cannot be deleted while function_ref's still exist");
assert(!newestAliveBlockBitfield &&
"Not all BasicBlockBitfields deleted at function destruction");
assert(!newestAliveNodeBitfield &&
"Not all NodeBitfields deleted at function destruction");
assert(!newestAliveOperandBitfield &&
"Not all OperandBitfields deleted at function destruction");
if (destroyFunction)
destroyFunction({this}, &libswiftSpecificData, sizeof(libswiftSpecificData));
}
void SILFunction::createSnapshot(int id) {
assert(id != 0 && "invalid snapshot ID");
assert(!getSnapshot(id) && "duplicate snapshot");
SILFunction *newSnapshot = new (Module) SILFunction(
Module, getLinkage(), getName(), getLoweredFunctionType(),
getGenericEnvironment(), isBare(), isTransparent(), getSerializedKind(),
getEntryCount(), isThunk(), getClassSubclassScope(), getInlineStrategy(),
getEffectsKind(), getDebugScope(), isDynamicallyReplaceable(),
isExactSelfClass(), isDistributed(), isRuntimeAccessible());
// Copy all relevant properties.
// TODO: It's really unfortunate that this needs to be done manually. It would
// be nice if all the properties are encapsulated into a single state,
// which can be copied at once.
newSnapshot->SpecializationInfo = SpecializationInfo;
newSnapshot->ClangNodeOwner = ClangNodeOwner;
newSnapshot->DeclCtxt = DeclCtxt;
newSnapshot->Profiler = Profiler;
newSnapshot->ReplacedFunction = ReplacedFunction;
newSnapshot->RefAdHocRequirementFunction = RefAdHocRequirementFunction;
newSnapshot->ObjCReplacementFor = ObjCReplacementFor;
newSnapshot->SemanticsAttrSet = SemanticsAttrSet;
newSnapshot->SpecializeAttrSet = SpecializeAttrSet;
newSnapshot->Section = Section;
newSnapshot->Availability = Availability;
newSnapshot->specialPurpose = specialPurpose;
newSnapshot->perfConstraints = perfConstraints;
newSnapshot->GlobalInitFlag = GlobalInitFlag;
newSnapshot->HasCReferences = HasCReferences;
newSnapshot->MarkedAsUsed = MarkedAsUsed;
newSnapshot->IsAlwaysWeakImported = IsAlwaysWeakImported;
newSnapshot->HasOwnership = HasOwnership;
newSnapshot->IsWithoutActuallyEscapingThunk = IsWithoutActuallyEscapingThunk;
newSnapshot->OptMode = OptMode;
newSnapshot->copyEffects(this);
SILFunctionCloner cloner(newSnapshot);
cloner.cloneFunction(this);
newSnapshot->snapshotID = id;
newSnapshot->snapshots = this->snapshots;
this->snapshots = newSnapshot;
// The cloner sometimes removes temporary instructions.
getModule().flushDeletedInsts();
}
SILFunction *SILFunction::getSnapshot(int ID) {
SILFunction *sn = this;
do {
if (sn->snapshotID == ID)
return sn;
sn = sn->snapshots;
} while (sn);
return nullptr;
}
void SILFunction::restoreFromSnapshot(int ID) {
SILFunction *sn = getSnapshot(ID);
assert(sn && "no snapshot found");
clear();
SILFunctionCloner cloner(this);
cloner.cloneFunction(sn);
// Beside the function body, only restore those properties, which are/can be
// modified by passes.
// TODO: There should be a clear sepratation from initialize-once properties
// (`let`) and properties which can be modified by passes (`var`).
copyEffects(sn);
// The cloner sometimes removes temporary instructions.
getModule().flushDeletedInsts();
}
void SILFunction::deleteSnapshot(int ID) {
SILFunction *f = this;
do {
if (SILFunction *sn = f->snapshots) {
if (sn->snapshotID == ID) {
f->snapshots = sn->snapshots;
sn->snapshots = nullptr;
sn->~SILFunction();
getModule().flushDeletedInsts();
return;
}
}
} while ((f = f->snapshots) != nullptr);
}
void SILFunction::createProfiler(SILDeclRef Ref) {
assert(!Profiler && "Function already has a profiler");
assert(Ref && "Must have non-null SILDeclRef");
Profiler = SILProfiler::create(Module, Ref);
if (!Profiler)
return;
// If we loaded a profile, set the entry counts for functions and closures
// for PGO to use.
if (Ref.isFunc()) {
if (auto *Closure = Ref.getAbstractClosureExpr()) {
setEntryCount(Profiler->getExecutionCount(Closure));
} else {
auto *FD = Ref.getFuncDecl();
assert(FD);
setEntryCount(Profiler->getExecutionCount(FD->getBody()));
}
}
}
bool SILFunction::hasForeignBody() const {
if (!hasClangNode()) return false;
return SILDeclRef::isClangGenerated(getClangNode());
}
void SILFunction::setAsmName(StringRef value) {
ASSERT((AsmName.empty() || value == AsmName) && "Cannot change asmname");
AsmName = value;
if (!value.empty()) {
// Update the function-by-asm-name-table.
getModule().FunctionByAsmNameTable.insert({AsmName, this});
}
}
const SILFunction *SILFunction::getOriginOfSpecialization() const {
if (!isSpecialization())
return nullptr;
const SILFunction *p = getSpecializationInfo()->getParent();
while (p->isSpecialization()) {
p = p->getSpecializationInfo()->getParent();
}
return p;
}
GenericSignature SILFunction::getGenericSignature() const {
return GenericEnv ? GenericEnv->getGenericSignature() : GenericSignature();
}
void SILFunction::numberValues(llvm::DenseMap<const SILNode*, unsigned> &
ValueToNumberMap) const {
unsigned idx = 0;
for (auto &BB : *this) {
for (auto I = BB.args_begin(), E = BB.args_end(); I != E; ++I)
ValueToNumberMap[*I] = idx++;
for (auto &I : BB) {
auto results = I.getResults();
if (results.empty()) {
ValueToNumberMap[I.asSILNode()] = idx++;
} else {
// Assign the instruction node the first result ID.
ValueToNumberMap[I.asSILNode()] = idx;
for (auto result : results) {
ValueToNumberMap[result] = idx++;
}
}
}
}
}
ASTContext &SILFunction::getASTContext() const {
return getModule().getASTContext();
}
OptimizationMode SILFunction::getEffectiveOptimizationMode() const {
if (OptimizationMode(OptMode) != OptimizationMode::NotSet)
return OptimizationMode(OptMode);
return getModule().getOptions().OptMode;
}
bool SILFunction::preserveDebugInfo() const {
return getEffectiveOptimizationMode() <= OptimizationMode::NoOptimization;
}
bool SILFunction::shouldOptimize() const {
return getEffectiveOptimizationMode() != OptimizationMode::NoOptimization;
}
Type SILFunction::mapTypeIntoContext(Type type) const {
assert(!type->hasPrimaryArchetype());
if (GenericEnv) {
// The complication here is that we sometimes call this with an AST interface
// type, which might contain element archetypes, if it was the interface type
// of a closure or local variable.
if (type->hasElementArchetype())
return GenericEnv->mapTypeIntoContext(type);
// Otherwise, assume we have an interface type for the "combined" captured
// environment.
return type.subst(MapIntoLocalArchetypeContext(GenericEnv, CapturedEnvs),
LookUpConformanceInModule(),
SubstFlags::PreservePackExpansionLevel);
}
assert(!type->hasTypeParameter());
return type;
}
SILType SILFunction::mapTypeIntoContext(SILType type) const {
assert(!type.hasPrimaryArchetype());
if (GenericEnv) {
auto genericSig = GenericEnv->getGenericSignature().getCanonicalSignature();
return type.subst(Module,
MapIntoLocalArchetypeContext(GenericEnv, CapturedEnvs),
LookUpConformanceInModule(),
genericSig,
SubstFlags::PreservePackExpansionLevel);
}
assert(!type.hasTypeParameter());
return type;
}
SILType GenericEnvironment::mapTypeIntoContext(SILModule &M,
SILType type) const {
assert(!type.hasPrimaryArchetype());
auto genericSig = getGenericSignature().getCanonicalSignature();
return type.subst(M,
QueryInterfaceTypeSubstitutions(this),
LookUpConformanceInModule(),
genericSig,
SubstFlags::PreservePackExpansionLevel);
}
bool SILFunction::isNoReturnFunction(TypeExpansionContext context) const {
return SILType::getPrimitiveObjectType(getLoweredFunctionType())
.isNoReturnFunction(getModule(), context);
}
bool SILFunction::hasNonUniqueDefinition() const {
// Non-uniqueness is a property of the Embedded linkage model.
if (!getASTContext().LangOpts.hasFeature(Feature::Embedded))
return false;
// If this function is the entrypoint, it is unique.
if (getName() == getASTContext().getEntryPointFunctionName())
return false;
// If this is for a declaration, ask it.
if (auto declRef = getDeclRef()) {
return declRef.hasNonUniqueDefinition();
}
// If this function is from a different module than the one we are emitting
// code for, then it must have a non-unique definition.
if (getParentModule() != getModule().getSwiftModule())
return true;
return false;
}
ResilienceExpansion SILFunction::getResilienceExpansion() const {
// If a function definition is in another module, and
// it was serialized due to package serialization opt,
// a new attribute [serialized_for_package] is added
// to the definition site. During deserialization, this
// attribute is preserved if the current module is in
// the same package, thus should be in the same resilience
// domain.
return (isSerialized()
? ResilienceExpansion::Minimal
: ResilienceExpansion::Maximal);
}
SILTypeProperties
SILFunction::getTypeProperties(AbstractionPattern orig, Type subst) const {
return getModule().Types.getTypeProperties(orig, subst,
TypeExpansionContext(*this));
}
SILTypeProperties SILFunction::getTypeProperties(Type subst) const {
return getModule().Types.getTypeProperties(subst,
TypeExpansionContext(*this));
}
SILTypeProperties SILFunction::getTypeProperties(SILType type) const {
return getModule().Types.getTypeProperties(type,
TypeExpansionContext(*this));
}
const TypeLowering &
SILFunction::getTypeLowering(AbstractionPattern orig, Type subst) const {
return getModule().Types.getTypeLowering(orig, subst,
TypeExpansionContext(*this));
}
const TypeLowering &SILFunction::getTypeLowering(Type t) const {
return getModule().Types.getTypeLowering(t, TypeExpansionContext(*this));
}
SILType
SILFunction::getLoweredType(AbstractionPattern orig, Type subst) const {
return getModule().Types.getLoweredType(orig, subst,
TypeExpansionContext(*this));
}
SILType SILFunction::getLoweredType(Type t) const {
return getModule().Types.getLoweredType(t, TypeExpansionContext(*this));
}
CanType
SILFunction::getLoweredRValueType(AbstractionPattern orig, Type subst) const {
return getModule().Types.getLoweredRValueType(TypeExpansionContext(*this),
orig, subst);
}
CanType SILFunction::getLoweredRValueType(Type t) const {
return getModule().Types.getLoweredRValueType(TypeExpansionContext(*this), t);
}
SILType SILFunction::getLoweredLoadableType(Type t) const {
auto &M = getModule();
return M.Types.getLoweredLoadableType(t, TypeExpansionContext(*this), M);
}
const TypeLowering &SILFunction::getTypeLowering(SILType type) const {
return getModule().Types.getTypeLowering(type, *this);
}
SILType SILFunction::getLoweredType(SILType t) const {
return getTypeLowering(t).getLoweredType().getCategoryType(t.getCategory());
}
bool SILFunction::isTypeABIAccessible(SILType type) const {
return getModule().isTypeABIAccessible(type, TypeExpansionContext(*this));
}
bool SILFunction::isWeakImported(ModuleDecl *module) const {
if (auto *parent = getParentModule())
if (module->isImportedAsWeakLinked(parent))
return true;
// For imported functions check the Clang declaration.
if (ClangNodeOwner)
return ClangNodeOwner->getClangDecl()->isWeakImported(
getASTContext().LangOpts.getMinPlatformVersion());
// For native functions check a flag on the SILFunction
// itself.
if (!isAvailableExternally())
return false;
if (isAlwaysWeakImported())
return true;
if (Availability.isAlwaysAvailable())
return false;
auto deploymentTarget =
AvailabilityRange::forDeploymentTarget(getASTContext());
if (getASTContext().LangOpts.WeakLinkAtTarget)
return !Availability.isSupersetOf(deploymentTarget);
return !deploymentTarget.isContainedIn(Availability);
}
SILBasicBlock *SILFunction::createBasicBlock() {
SILBasicBlock *newBlock = new (getModule()) SILBasicBlock(this);
BlockList.push_back(newBlock);
return newBlock;
}
SILBasicBlock *SILFunction::createBasicBlock(llvm::StringRef debugName) {
SILBasicBlock *newBlock = new (getModule()) SILBasicBlock(this);
newBlock->setDebugName(debugName);
BlockList.push_back(newBlock);
return newBlock;
}
SILBasicBlock *SILFunction::createBasicBlockAfter(SILBasicBlock *afterBB) {
SILBasicBlock *newBlock = new (getModule()) SILBasicBlock(this);
BlockList.insertAfter(afterBB->getIterator(), newBlock);
return newBlock;
}
SILBasicBlock *SILFunction::createBasicBlockBefore(SILBasicBlock *beforeBB) {
SILBasicBlock *newBlock = new (getModule()) SILBasicBlock(this);
BlockList.insert(beforeBB->getIterator(), newBlock);
return newBlock;
}
void SILFunction::moveAllBlocksFromOtherFunction(SILFunction *F) {
BlockList.splice(begin(), F->BlockList);
SILModule &mod = getModule();
for (SILBasicBlock &block : *this) {
for (SILInstruction &inst : block) {
mod.notifyMovedInstruction(&inst, F);
}
}
}
void SILFunction::moveBlockFromOtherFunction(SILBasicBlock *blockInOtherFunction,
iterator insertPointInThisFunction) {
SILFunction *otherFunc = blockInOtherFunction->getParent();
assert(otherFunc != this);
BlockList.splice(insertPointInThisFunction, otherFunc->BlockList,
blockInOtherFunction);
SILModule &mod = getModule();
for (SILInstruction &inst : *blockInOtherFunction) {
mod.notifyMovedInstruction(&inst, otherFunc);
}
}
void SILFunction::moveBlockBefore(SILBasicBlock *BB, SILFunction::iterator IP) {
assert(BB->getParent() == this);
if (SILFunction::iterator(BB) == IP)
return;
BlockList.remove(BB);
BlockList.insert(IP, BB);
}
//===----------------------------------------------------------------------===//
// View CFG Implementation
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static llvm::cl::opt<unsigned>
MaxColumns("view-cfg-max-columns", llvm::cl::init(80),
llvm::cl::desc("Maximum width of a printed node"));
namespace {
enum class LongLineBehavior { None, Truncate, Wrap };
} // end anonymous namespace
static llvm::cl::opt<LongLineBehavior>
LLBehavior("view-cfg-long-line-behavior",
llvm::cl::init(LongLineBehavior::Truncate),
llvm::cl::desc("Behavior when line width is greater than the "
"value provided my -view-cfg-max-columns "
"option"),
llvm::cl::values(
clEnumValN(LongLineBehavior::None, "none", "Print everything"),
clEnumValN(LongLineBehavior::Truncate, "truncate",
"Truncate long lines"),
clEnumValN(LongLineBehavior::Wrap, "wrap", "Wrap long lines")));
static llvm::cl::opt<bool>
RemoveUseListComments("view-cfg-remove-use-list-comments",
llvm::cl::init(false),
llvm::cl::desc("Should use list comments be removed"));
template <typename InstTy, typename CaseValueTy>
inline CaseValueTy getCaseValueForBB(const InstTy *Inst,
const SILBasicBlock *BB) {
for (unsigned i = 0, e = Inst->getNumCases(); i != e; ++i) {
auto P = Inst->getCase(i);
if (P.second != BB)
continue;
return P.first;
}
llvm_unreachable("Error! should never pass in BB that is not a successor");
}
namespace llvm {
template <>
struct DOTGraphTraits<SILFunction *> : public DefaultDOTGraphTraits {
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(SILFunction *F) {
return "CFG for '" + F->getName().str() + "' function";
}
static std::string getSimpleNodeLabel(SILBasicBlock *Node, SILFunction *F) {
std::string OutStr;
raw_string_ostream OSS(OutStr);
const_cast<SILBasicBlock *>(Node)->printAsOperand(OSS, false);
return OSS.str();
}
static std::string getCompleteNodeLabel(SILBasicBlock *Node, SILFunction *F) {
std::string Str;
raw_string_ostream OS(Str);
OS << *Node;
std::string OutStr = OS.str();
if (OutStr[0] == '\n')
OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
unsigned ColNum = 0;
unsigned LastSpace = 0;
for (unsigned i = 0; i != OutStr.length(); ++i) {
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin() + i + 1, 'l');
ColNum = 0;
LastSpace = 0;
} else if (RemoveUseListComments && OutStr[i] == '/' &&
i != (OutStr.size() - 1) && OutStr[i + 1] == '/') {
unsigned Idx = OutStr.find('\n', i + 1); // Find end of line
OutStr.erase(OutStr.begin() + i, OutStr.begin() + Idx);
--i;
} else if (ColNum == MaxColumns) { // Handle long lines.
if (LLBehavior == LongLineBehavior::Wrap) {
if (!LastSpace)
LastSpace = i;
OutStr.insert(LastSpace, "\\l...");
ColNum = i - LastSpace;
LastSpace = 0;
i += 3; // The loop will advance 'i' again.
} else if (LLBehavior == LongLineBehavior::Truncate) {
unsigned Idx = OutStr.find('\n', i + 1); // Find end of line
OutStr.erase(OutStr.begin() + i, OutStr.begin() + Idx);
--i;
}
// Else keep trying to find a space.
} else
++ColNum;
if (OutStr[i] == ' ')
LastSpace = i;
}
return OutStr;
}
std::string getNodeLabel(SILBasicBlock *Node, SILFunction *Graph) {
if (isSimple())
return getSimpleNodeLabel(Node, Graph);
else
return getCompleteNodeLabel(Node, Graph);
}
static std::string getEdgeSourceLabel(SILBasicBlock *Node,
SILBasicBlock::succblock_iterator I) {
const SILBasicBlock *Succ = *I;
const TermInst *Term = Node->getTerminator();
// Label source of conditional branches with "T" or "F"
if (auto *CBI = dyn_cast<CondBranchInst>(Term))
return (Succ == CBI->getTrueBB()) ? "T" : "F";
// Label source of switch edges with the associated value.
if (auto *SI = dyn_cast<SwitchValueInst>(Term)) {
if (SI->hasDefault() && SI->getDefaultBB() == Succ)
return "def";
std::string Str;
raw_string_ostream OS(Str);
SILValue I = getCaseValueForBB<SwitchValueInst, SILValue>(SI, Succ);
OS << I; // TODO: or should we output the literal value of I?
return OS.str();
}
if (auto *SEIB = dyn_cast<SwitchEnumInst>(Term)) {
std::string Str;
raw_string_ostream OS(Str);
EnumElementDecl *E =
getCaseValueForBB<SwitchEnumInst, EnumElementDecl *>(SEIB, Succ);
OS << E->getName();
return OS.str();
}
if (auto *SEIB = dyn_cast<SwitchEnumAddrInst>(Term)) {
std::string Str;
raw_string_ostream OS(Str);
EnumElementDecl *E =
getCaseValueForBB<SwitchEnumAddrInst, EnumElementDecl *>(SEIB, Succ);
OS << E->getName();
return OS.str();
}
if (auto *DMBI = dyn_cast<DynamicMethodBranchInst>(Term))
return (Succ == DMBI->getHasMethodBB()) ? "T" : "F";
if (auto *CCBI = dyn_cast<CheckedCastBranchInst>(Term))
return (Succ == CCBI->getSuccessBB()) ? "T" : "F";
if (auto *CCBI = dyn_cast<CheckedCastAddrBranchInst>(Term))
return (Succ == CCBI->getSuccessBB()) ? "T" : "F";
return "";
}
};
} // namespace llvm
#endif
#ifndef NDEBUG
static llvm::cl::opt<std::string>
TargetFunction("view-cfg-only-for-function", llvm::cl::init(""),
llvm::cl::desc("Only print out the cfg for this function"));
#endif
static void viewCFGHelper(const SILFunction* f, bool skipBBContents) {
/// When asserts are disabled, this should be a NoOp.
#ifndef NDEBUG
// If we have a target function, only print that function out.
if (!TargetFunction.empty() && !(f->getName().str() == TargetFunction))
return;
ViewGraph(const_cast<SILFunction *>(f), "cfg" + f->getName().str(),
/*shortNames=*/skipBBContents);
#endif
}
void SILFunction::viewCFG() const {
viewCFGHelper(this, /*skipBBContents=*/false);
}
void SILFunction::viewCFGOnly() const {
viewCFGHelper(this, /*skipBBContents=*/true);
}
bool SILFunction::hasDynamicSelfMetadata() const {
auto paramTypes =
getConventions().getParameterSILTypes(TypeExpansionContext::minimal());
if (paramTypes.empty())
return false;
auto silTy = *std::prev(paramTypes.end());
if (!silTy.isObject())
return false;
auto selfTy = silTy.getASTType();
if (auto metaTy = dyn_cast<MetatypeType>(selfTy)) {
selfTy = metaTy.getInstanceType();
if (auto dynamicSelfTy = dyn_cast<DynamicSelfType>(selfTy))
selfTy = dynamicSelfTy.getSelfType();
}
if (selfTy.isForeignReferenceType())
return false;
return !!selfTy.getClassOrBoundGenericClass();
}
bool SILFunction::hasName(const char *Name) const {
return getName() == Name;
}
/*
Checks if this (callee) function body can be inlined into the caller
by comparing their SerializedKind_t values.
If both callee and caller are not_serialized, the callee can be inlined
into the caller during SIL inlining passes even if it (and the caller)
might contain private symbols. If this callee is serialized_for_pkg, it
can only be referenced by a serialized caller but not inlined into it.
canInlineInto: Caller
| not_serialized | serialized_for_pkg | serialized
not_serialized | ok | no | no
Callee serialized_for_pkg | ok | ok | no
serialized | ok | ok | ok
*/
bool SILFunction::canBeInlinedIntoCaller(SerializedKind_t callerSerializedKind) const {
switch (getSerializedKind()) {
// If both callee and caller are not_serialized, the callee
// can be inlined into the caller during SIL inlining passes
// even if it (and the caller) might contain private symbols.
case IsNotSerialized:
return callerSerializedKind == IsNotSerialized;
// If Package-CMO is enabled, we serialize package, public,
// and @usableFromInline decls as [serialized_for_package].
// Their bodies must not, however, leak into @inlinable
// functons (that are [serialized]) since they are inlined
// outside of their defining module.
//
// If this callee is [serialized_for_package], the caller
// must be either non-serialized or [serialized_for_package]
// for this callee's body to be inlined into the caller.
// It can however be referenced by [serialized] caller.
case IsSerializedForPackage:
return callerSerializedKind != IsSerialized;
case IsSerialized:
return true;
}
llvm_unreachable("Invalid serialized kind");
}
/// Returns true if this function can be referenced from a fragile function
/// body.
bool SILFunction::hasValidLinkageForFragileRef(SerializedKind_t callerSerializedKind) const {
// Fragile functions can reference 'static inline' functions imported
// from C.
if (hasForeignBody())
return true;
// The call site of this function must have checked that
// caller.isAnySerialized() is true, as indicated by the
// function name itself (contains 'ForFragileRef').
assert(callerSerializedKind != IsNotSerialized);
// If we can inline it, we can reference it.
if (canBeInlinedIntoCaller(callerSerializedKind))
return true;
// If the containing module has been serialized already, we no longer
// enforce any invariants.
if (getModule().isSerialized())
return true;
// If the function has a subclass scope that limits its visibility outside
// the module despite its linkage, we cannot reference it.
if (getClassSubclassScope() == SubclassScope::Resilient &&
isAvailableExternally())
return false;
// Otherwise, only public or package functions can be referenced.
// If it has a package linkage at this point, package CMO must
// have been enabled, so opt in for visibility.
return hasPublicOrPackageVisibility(getLinkage(), /*includePackage*/ true);
}
bool SILFunction::isSwiftRuntimeFunction(
StringRef name, const ModuleDecl *module) {
if (!name.starts_with("swift_") && !name.starts_with("_swift_"))
return false;
return !module ||
module->getName().str() == "Swift" ||
module->getName().str() == "_Concurrency";
}
bool SILFunction::isSwiftRuntimeFunction() const {
return isSwiftRuntimeFunction(asmName(), getParentModule()) ||
isSwiftRuntimeFunction(getName(), getParentModule());
}
bool
SILFunction::isPossiblyUsedExternally() const {
auto linkage = getLinkage();
// Hidden functions may be referenced by other C code in the linkage unit.
if (linkage == SILLinkage::Hidden && hasCReferences())
return true;
if (ReplacedFunction)
return true;
if (isDistributed() && isThunk())
return true;
if (isRuntimeAccessible())
return true;
if (markedAsUsed())
return true;
// If this function is exposed to a foreign language, it can be used
// externally (by that language).
if (auto decl = getDeclRef().getDecl()) {
if (SILDeclRef::declExposedToForeignLanguage(decl))
return true;
}
// If this function was explicitly placed in a section or given a WebAssembly
// export, it can be used externally.
if (!Section.empty() || !WasmExportName.empty())
return true;
if (shouldBePreservedForDebugger())
return true;
// Declaration marked as `@_alwaysEmitIntoClient` that
// returns opaque result type with availability conditions
// has to be kept alive to emit opaque type metadata descriptor.
if (markedAsAlwaysEmitIntoClient() &&
hasOpaqueResultTypeWithAvailabilityConditions())
return true;
// All Swift runtime functions can be used externally.
if (getASTContext().LangOpts.hasFeature(Feature::Embedded) &&
isSwiftRuntimeFunction())
return true;
return swift::isPossiblyUsedExternally(linkage, getModule().isWholeModule());
}
bool SILFunction::shouldBePreservedForDebugger() const {
// Only preserve for the debugger at Onone.
if (getEffectiveOptimizationMode() != OptimizationMode::NoOptimization)
return false;
if (!getModule().getOptions().ShouldFunctionsBePreservedToDebugger)
return false;
if (getModule().getASTContext().LangOpts.hasFeature(Feature::Embedded))
return false;
if (isAvailableExternally())
return false;
if (hasSemanticsAttr("no.preserve.debugger"))
return false;
// Only keep functions defined in this module.
if (!isDefinition())
return false;
if (getLinkage() == SILLinkage::Shared)
return false;
// Don't preserve anything markes as always emit into client.
if (markedAsAlwaysEmitIntoClient())
return false;
// Needed by lldb to print global variables which are propagated by the
// mandatory GlobalOpt.
if (isGlobalInit())
return true;
// Preserve any user-written functions.
if (auto declContext = getDeclContext())
if (auto decl = declContext->getAsDecl())
if (!decl->isImplicit())
return true;
// Keep any setters/getters, even compiler generated ones.
if (auto *accessorDecl =
llvm::dyn_cast_or_null<swift::AccessorDecl>(getDeclContext()))
if (accessorDecl->isGetterOrSetter())
return true;
return false;
}
bool SILFunction::isExternallyUsedSymbol() const {
return swift::isPossiblyUsedExternally(getEffectiveSymbolLinkage(),
getModule().isWholeModule());
}
void SILFunction::clear() {
dropAllReferences();
eraseAllBlocks();
}
void SILFunction::eraseAllBlocks() {
BlockList.clear();
}
void SILFunction::setGenericEnvironment(GenericEnvironment *env) {
setGenericEnvironment(env, ArrayRef<GenericEnvironment *>(),
env ? env->getForwardingSubstitutionMap()
: SubstitutionMap());
}
bool SILFunction::shouldVerifyOwnership() const {
return !hasSemanticsAttr("verify.ownership.sil.never");
}
static Identifier getIdentifierForObjCSelector(ObjCSelector selector, ASTContext &Ctxt) {
SmallVector<char, 64> buffer;
auto str = selector.getString(buffer);
return Ctxt.getIdentifier(str);
}
void SILFunction::setObjCReplacement(AbstractFunctionDecl *replacedFunc) {
assert(ReplacedFunction == nullptr && ObjCReplacementFor.empty());
assert(replacedFunc != nullptr);
ObjCReplacementFor = getIdentifierForObjCSelector(
replacedFunc->getObjCSelector(), getASTContext());
}
void SILFunction::setObjCReplacement(Identifier replacedFunc) {
assert(ReplacedFunction == nullptr && ObjCReplacementFor.empty());
ObjCReplacementFor = replacedFunc;
}
// See swift/Basic/Statistic.h for declaration: this enables tracing
// SILFunctions, is defined here to avoid too much layering violation / circular
// linkage dependency.
struct SILFunctionTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const override {
if (!Entity)
return;
const SILFunction *F = static_cast<const SILFunction *>(Entity);
F->printName(OS);
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const override {
if (!Entity)
return;
const SILFunction *F = static_cast<const SILFunction *>(Entity);
if (!F->hasLocation())
return;
F->getLocation().getSourceRange().print(OS, *SM, false);
}
};
static SILFunctionTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const SILFunction *>() {
return &TF;
}
bool SILFunction::hasPrespecialization() const {
for (auto *attr : getSpecializeAttrs()) {
if (attr->isExported())
return true;
}
return false;
}
void SILFunction::forEachSpecializeAttrTargetFunction(
llvm::function_ref<void(SILFunction *)> action) {
for (auto *attr : getSpecializeAttrs()) {
if (auto *f = attr->getTargetFunction()) {
action(f);
}
}
}
void BridgedFunction::registerBridging(SwiftMetatype metatype,
RegisterFn initFn, RegisterFn destroyFn,
WriteFn writeFn, ParseFn parseFn,
CopyEffectsFn copyEffectsFn,
GetEffectInfoFn effectInfoFn,
GetMemBehaviorFn memBehaviorFn,
ArgumentMayReadFn argumentMayReadFn,
IsDeinitBarrierFn isDeinitBarrierFn) {
functionMetatype = metatype;
initFunction = initFn;
destroyFunction = destroyFn;
writeFunction = writeFn;
parseFunction = parseFn;
copyEffectsFunction = copyEffectsFn;
getEffectInfoFunction = effectInfoFn;
getMemBehvaiorFunction = memBehaviorFn;
argumentMayReadFunction = argumentMayReadFn;
isDeinitBarrierFunction = isDeinitBarrierFn;
}
std::pair<const char *, int> SILFunction::
parseArgumentEffectsFromSource(StringRef effectStr, ArrayRef<StringRef> paramNames) {
if (parseFunction) {
llvm::SmallVector<BridgedStringRef, 8> bridgedParamNames;
for (StringRef paramName : paramNames) {
bridgedParamNames.push_back(paramName);
}
ArrayRef<BridgedStringRef> bridgedParamNameArray = bridgedParamNames;
auto error = parseFunction(
{this}, effectStr, BridgedFunction::ParseEffectsMode::argumentEffectsFromSource, -1,
{(const unsigned char *)bridgedParamNameArray.data(), bridgedParamNameArray.size()});
return {(const char *)error.message, (int)error.position};
}
return {nullptr, 0};
}
std::pair<const char *, int> SILFunction::
parseArgumentEffectsFromSIL(StringRef effectStr, int argumentIndex) {
if (parseFunction) {
auto error = parseFunction(
{this}, effectStr, BridgedFunction::ParseEffectsMode::argumentEffectsFromSIL, argumentIndex, {nullptr, 0});
return {(const char *)error.message, (int)error.position};
}
return {nullptr, 0};
}
std::pair<const char *, int> SILFunction::parseGlobalEffectsFromSIL(StringRef effectStr) {
if (parseFunction) {
auto error = parseFunction(
{this}, effectStr, BridgedFunction::ParseEffectsMode::globalEffectsFromSIL, -1, {nullptr, 0});
return {(const char *)error.message, (int)error.position};
}
return {nullptr, 0};
}
std::pair<const char *, int> SILFunction::
parseMultipleEffectsFromSIL(StringRef effectStr) {
if (parseFunction) {
auto error = parseFunction(
{this}, effectStr, BridgedFunction::ParseEffectsMode::multipleEffectsFromSIL, -1, {nullptr, 0});
return {(const char *)error.message, (int)error.position};
}
return {nullptr, 0};
}
void SILFunction::writeEffect(llvm::raw_ostream &OS, int effectIdx) const {
if (writeFunction) {
writeFunction({const_cast<SILFunction *>(this)}, {&OS}, effectIdx);
}
}
void SILFunction::copyEffects(SILFunction *from) {
if (copyEffectsFunction) {
copyEffectsFunction({this}, {from});
}
}
bool SILFunction::hasArgumentEffects() const {
if (getEffectInfoFunction) {
BridgedFunction f = {const_cast<SILFunction *>(this)};
return getEffectInfoFunction(f, 0).isValid;
}
return false;
}
void SILFunction::
visitArgEffects(std::function<void(int, int, bool)> c) const {
if (!getEffectInfoFunction)
return;
int idx = 0;
BridgedFunction bridgedFn = {const_cast<SILFunction *>(this)};
while (true) {
BridgedFunction::EffectInfo ei = getEffectInfoFunction(bridgedFn, idx);
if (!ei.isValid)
return;
if (!ei.isEmpty) {
c(idx, ei.argumentIndex, ei.isDerived);
}
idx++;
}
}
MemoryBehavior SILFunction::getMemoryBehavior(bool observeRetains) {
if (!getMemBehvaiorFunction)
return MemoryBehavior::MayHaveSideEffects;
auto b = getMemBehvaiorFunction({this}, observeRetains);
return (MemoryBehavior)b;
}
// Used by the MemoryLifetimeVerifier
bool SILFunction::argumentMayRead(Operand *argOp, SILValue addr) {
if (!argumentMayReadFunction)
return true;
return argumentMayReadFunction({this}, {argOp}, {addr});
}
bool SILFunction::isDeinitBarrier() {
if (!isDeinitBarrierFunction)
return true;
return isDeinitBarrierFunction({this});
}
SourceFile *SILFunction::getSourceFile() const {
auto declRef = getDeclRef();
if (!declRef)
return nullptr;
return declRef.getInnermostDeclContext()->getParentSourceFile();
}