Files
swift-mirror/lib/SIL/IR/SILFunctionBuilder.cpp
Doug Gregor f267f62f65 [SILGen] Consistently use SIL asmname for foreign function/variable references
Whenever we have a reference to a foreign function/variable in SIL, use
a mangled name at the SIL level with the C name in the asmname
attribute. The expands the use of asmname to three kinds of cases that
it hadn't been used in yet:

* Declarations imported from C headers/modules
* @_cdecl @implementation of C headers/modules
* @_cdecl functions in general

Some code within the SIL pipeline makes assumptions that the C names of
various runtime functions are reflected at the SIL level. For example,
the linking of Embedded Swift runtime functions is done by-name, and
some of those names refer to C functions (like `swift_retain`) and
others refer to Swift functions that use `@_silgen_name` (like
`swift_getDefaultExecutor`). Extend the serialized module format to
include a table that maps from the asmname of functions/variables over
to their mangled names, so we can look up functions by asmname if we
want. These tables could also be used for checking for declarations
that conflict on their asmname in the future. Right now, we leave it
up to LLVM or the linker to do the checking.

`@_silgen_name` is not affected by these changes, nor should it be:
that hidden feature is specifically meant to affect the name at the
SIL level.

The vast majority of test changes are SIL tests where we had expected
to see the C/C++/Objective-C names in the tests for references to
foreign entities, and now we see Swift mangled names (ending in To).
The SIL declarations themselves will have a corresponding asmname.

Notably, the IRGen tests have *not* changed, because we generally the
same IR as before. It's only the modeling at the SIL lever that has
changed.

Another part of rdar://137014448.
2025-10-29 19:35:55 -07:00

467 lines
20 KiB
C++

//===--- SILFunctionBuilder.cpp -------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILFunctionBuilder.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/AttrKind.h"
#include "swift/AST/AvailabilityInference.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsParse.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/Basic/Assertions.h"
#include "clang/AST/Mangle.h"
using namespace swift;
SILFunction *SILFunctionBuilder::getOrCreateFunction(
SILLocation loc, StringRef name, SILLinkage linkage,
CanSILFunctionType type, IsBare_t isBareSILFunction,
IsTransparent_t isTransparent, SerializedKind_t serializedKind,
IsDynamicallyReplaceable_t isDynamic, IsDistributed_t isDistributed,
IsRuntimeAccessible_t isRuntimeAccessible, ProfileCounter entryCount,
IsThunk_t isThunk, SubclassScope subclassScope) {
assert(!type->isNoEscape() && "Function decls always have escaping types.");
if (auto fn = mod.lookUpFunction(name)) {
assert(fn->getLoweredFunctionType() == type);
assert(stripExternalFromLinkage(fn->getLinkage()) ==
stripExternalFromLinkage(linkage) || mod.getOptions().EmbeddedSwift);
return fn;
}
auto fn = SILFunction::create(mod, linkage, name, type, nullptr, loc,
isBareSILFunction, isTransparent, serializedKind,
entryCount, isDynamic, isDistributed,
isRuntimeAccessible, IsNotExactSelfClass,
isThunk, subclassScope);
fn->setDebugScope(new (mod) SILDebugScope(loc, fn));
return fn;
}
void SILFunctionBuilder::addFunctionAttributes(
SILFunction *F, DeclAttributes &Attrs, SILModule &M,
llvm::function_ref<SILFunction *(SILLocation loc, SILDeclRef constant)>
getOrCreateDeclaration,
SILDeclRef constant) {
for (auto *A : Attrs.getAttributes<SemanticsAttr>())
F->addSemanticsAttr(cast<SemanticsAttr>(A)->Value);
// If we are asked to emit assembly vision remarks for this function, mark the
// function as force emitting all optremarks including assembly vision
// remarks. This allows us to emit the assembly vision remarks without needing
// to change any of the underlying optremark mechanisms.
if (Attrs.getAttribute(DeclAttrKind::EmitAssemblyVisionRemarks) ||
M.getOptions().EnableGlobalAssemblyVision)
F->addSemanticsAttr(semantics::FORCE_EMIT_OPT_REMARK_PREFIX);
// Propagate @_specialize.
for (auto *A : Attrs.getAttributes<AbstractSpecializeAttr>()) {
auto *SA = cast<AbstractSpecializeAttr>(A);
auto kind =
SA->getSpecializationKind() == SpecializeAttr::SpecializationKind::Full
? SILSpecializeAttr::SpecializationKind::Full
: SILSpecializeAttr::SpecializationKind::Partial;
assert(!constant.isNull());
SILFunction *targetFunction = nullptr;
auto *attributedFuncDecl = constant.getAbstractFunctionDecl();
auto *targetFunctionDecl = SA->getTargetFunctionDecl(attributedFuncDecl);
// Filter out _spi.
auto spiGroups = SA->getSPIGroups();
bool hasSPI = !spiGroups.empty();
if (hasSPI) {
if (attributedFuncDecl->getModuleContext() != M.getSwiftModule() &&
!M.getSwiftModule()->isImportedAsSPI(SA, attributedFuncDecl)) {
continue;
}
}
assert(spiGroups.size() <= 1 && "SIL does not support multiple SPI groups");
Identifier spiGroupIdent;
if (hasSPI) {
spiGroupIdent = spiGroups[0];
}
auto availability = AvailabilityInference::annotatedAvailableRangeForAttr(
attributedFuncDecl, SA, M.getSwiftModule()->getASTContext());
auto specializedSignature = SA->getSpecializedSignature(attributedFuncDecl);
if (targetFunctionDecl) {
SILDeclRef declRef(targetFunctionDecl, constant.kind, false);
targetFunction = getOrCreateDeclaration(targetFunctionDecl, declRef);
F->addSpecializeAttr(SILSpecializeAttr::create(
M, specializedSignature, SA->getTypeErasedParams(),
SA->isExported(), kind, targetFunction, spiGroupIdent,
attributedFuncDecl->getModuleContext(), availability));
} else {
F->addSpecializeAttr(SILSpecializeAttr::create(
M, specializedSignature, SA->getTypeErasedParams(),
SA->isExported(), kind, nullptr, spiGroupIdent,
attributedFuncDecl->getModuleContext(), availability));
}
}
llvm::SmallVector<const EffectsAttr *, 8> customEffects;
if (constant) {
for (auto *attr : Attrs.getAttributes<EffectsAttr>()) {
auto *effectsAttr = cast<EffectsAttr>(attr);
if (effectsAttr->getKind() == EffectsKind::Custom) {
customEffects.push_back(effectsAttr);
continue;
}
if (F->getEffectsKind() != EffectsKind::Unspecified) {
// If multiple known effects are specified, the most restrictive one
// is used.
F->setEffectsKind(
std::min(effectsAttr->getKind(), F->getEffectsKind()));
} else {
F->setEffectsKind(effectsAttr->getKind());
}
}
if (auto asmName = constant.getAsmName()) {
F->setAsmName(M.getASTContext().AllocateCopy(*asmName));
}
}
if (!customEffects.empty()) {
llvm::SmallVector<StringRef, 8> paramNames;
auto *fnDecl = cast<AbstractFunctionDecl>(constant.getDecl());
if (ParameterList *paramList = fnDecl->getParameters()) {
for (ParamDecl *pd : *paramList) {
// Give up on tuples. Their elements are added as individual
// arguments. It destroys the 1-1 relation ship between parameters
// and arguments.
if (pd->getInterfaceType()->is<TupleType>())
break;
// First try the "local" parameter name. If there is none, use the
// API name. E.g. `foo(apiName localName: Type) {}`
StringRef name = pd->getName().str();
if (name.empty())
name = pd->getArgumentName().str();
if (!name.empty())
paramNames.push_back(name);
}
}
for (const EffectsAttr *effectsAttr : llvm::reverse(customEffects)) {
auto error = F->parseArgumentEffectsFromSource(
effectsAttr->getCustomString(), paramNames);
if (error.first) {
SourceLoc loc = effectsAttr->getCustomStringLocation();
if (loc.isValid())
loc = loc.getAdvancedLoc(error.second);
mod.getASTContext().Diags.diagnose(loc,
diag::warning_in_effects_attribute, StringRef(error.first));
}
}
}
if (auto *OA = Attrs.getAttribute<OptimizeAttr>()) {
F->setOptimizationMode(OA->getMode());
}
// @_silgen_name and @_cdecl functions may be called from C code somewhere.
if (Attrs.hasAttribute<SILGenNameAttr>() || Attrs.hasAttribute<CDeclAttr>())
F->setHasCReferences(true);
for (auto *EA : Attrs.getAttributes<ExposeAttr>()) {
bool shouldExportDecl = true;
if (Attrs.hasAttribute<CDeclAttr>()) {
// If the function is marked with @c, expose only C compatible
// thunk function.
shouldExportDecl = constant.isNativeToForeignThunk() || constant.isForeign;
}
if (EA->getExposureKind() == ExposureKind::Wasm && shouldExportDecl) {
// A wasm-level exported function must be retained if it appears in a
// compilation unit.
F->setMarkedAsUsed(true);
if (!EA->Name.empty())
F->setWasmExportName(EA->Name);
else if (!F->asmName().empty())
F->setWasmExportName(F->asmName());
else
F->setWasmExportName(F->getName());
}
}
if (auto *EA = ExternAttr::find(Attrs, ExternKind::Wasm)) {
// @_extern(wasm) always has explicit names
F->setWasmImportModuleAndField(*EA->ModuleName, *EA->Name);
}
if (Attrs.hasAttribute<UsedAttr>())
F->setMarkedAsUsed(true);
if (Attrs.hasAttribute<NoLocksAttr>()) {
F->setPerfConstraints(PerformanceConstraints::NoLocks);
} else if (Attrs.hasAttribute<NoAllocationAttr>()) {
F->setPerfConstraints(PerformanceConstraints::NoAllocation);
} else if (Attrs.hasAttribute<NoRuntimeAttr>()) {
F->setPerfConstraints(PerformanceConstraints::NoRuntime);
} else if (Attrs.hasAttribute<NoExistentialsAttr>()) {
F->setPerfConstraints(PerformanceConstraints::NoExistentials);
} else if (Attrs.hasAttribute<NoObjCBridgingAttr>()) {
F->setPerfConstraints(PerformanceConstraints::NoObjCBridging);
} else if (M.getASTContext().LangOpts.hasFeature(Feature::ManualOwnership) &&
constant && constant.hasDecl() && !constant.isImplicit() &&
!Attrs.hasAttribute<NoManualOwnershipAttr>()) {
F->setPerfConstraints(PerformanceConstraints::ManualOwnership);
}
if (Attrs.hasAttribute<LexicalLifetimesAttr>()) {
F->setForceEnableLexicalLifetimes(DoForceEnableLexicalLifetimes);
}
if (Attrs.hasAttribute<UnsafeNonEscapableResultAttr>()) {
F->setHasUnsafeNonEscapableResult(true);
}
// Validate `@differentiable` attributes by calling `getParameterIndices`.
// This is important for:
// - Skipping invalid `@differentiable` attributes in non-primary files.
// - Preventing duplicate SIL differentiability witness creation for
// `@differentiable` attributes on `AbstractStorageDecl` declarations.
// Such `@differentiable` attributes are deleted and recreated on the getter
// `AccessorDecl` of the `AbstractStorageDecl`.
for (auto *A : Attrs.getAttributes<DifferentiableAttr>())
(void)A->getParameterIndices();
// Propagate `@noDerivative` as `[_semantics "autodiff.nonvarying"]`.
//
// `@noDerivative` implies non-varying semantics for differentiable activity
// analysis. SIL values produced from references to `@noDerivative`
// declarations will not be marked as varying; these values do not need a
// derivative.
if (Attrs.hasAttribute<NoDerivativeAttr>())
F->addSemanticsAttr("autodiff.nonvarying");
// Propagate @_dynamicReplacement(for:).
if (constant.isNull())
return;
auto *decl = constant.getDecl();
// Don't add section for addressor functions (where decl is a global)
if (isa<FuncDecl>(decl)) {
if (auto *SA = Attrs.getAttribute<SectionAttr>())
F->setSection(SA->Name);
}
// Only emit replacements for the objc entry point of objc methods.
// There is one exception: @_dynamicReplacement(for:) of @objc methods in
// generic classes. In this special case we use native replacement instead of
// @objc categories.
if (decl->isObjC() && !decl->isNativeMethodReplacement() &&
F->getLoweredFunctionType()->getExtInfo().getRepresentation() !=
SILFunctionTypeRepresentation::ObjCMethod)
return;
// Only assign replacements when the thing being replaced is function-like and
// explicitly declared.
auto *origDecl = decl->getDynamicallyReplacedDecl();
if (auto *replacedDecl = dyn_cast_or_null<AbstractFunctionDecl>(origDecl)) {
// For @objc method replacement we normally use categories to perform the
// replacement. Except for methods in generic class where we can't. Instead,
// we special case this and use the native swift replacement mechanism.
if (decl->isObjC() && !decl->isNativeMethodReplacement()) {
F->setObjCReplacement(replacedDecl);
return;
}
if (constant.canBeDynamicReplacement()) {
SILDeclRef declRef(replacedDecl, constant.kind, false);
auto *replacedFunc = getOrCreateDeclaration(replacedDecl, declRef);
assert(replacedFunc->getLoweredFunctionType() ==
F->getLoweredFunctionType() ||
replacedFunc->getLoweredFunctionType()->hasOpaqueArchetype());
F->setDynamicallyReplacedFunction(replacedFunc);
}
} else if (constant.isDistributedThunk()) {
// It's okay for `decodeFuncDecl` to be null because system could be
// generic.
if (auto decodeFuncDecl =
getAssociatedDistributedInvocationDecoderDecodeNextArgumentFunction(
decl)) {
auto decodeRef = SILDeclRef(decodeFuncDecl);
auto *adHocFunc = getOrCreateDeclaration(decodeFuncDecl, decodeRef);
F->setReferencedAdHocRequirementWitnessFunction(adHocFunc);
}
}
}
SILFunction *SILFunctionBuilder::getOrCreateFunction(
SILLocation loc, SILDeclRef constant, ForDefinition_t forDefinition,
llvm::function_ref<SILFunction *(SILLocation loc, SILDeclRef constant)>
getOrCreateDeclaration,
ProfileCounter entryCount) {
auto nameTmp = constant.mangle();
auto constantType = mod.Types.getConstantFunctionType(
TypeExpansionContext::minimal(), constant);
SILLinkage linkage = constant.getLinkage(forDefinition);
if (auto fn = mod.lookUpFunction(nameTmp)) {
// During SILGen (where the module's SIL stage is Raw), there might be
// mismatches between the type or linkage. This can happen, when two
// functions are mistakenly mapped to the same name (e.g. with @_cdecl).
// We want to issue a regular error in this case and not crash with an
// assert.
assert(mod.getStage() == SILStage::Raw ||
fn->getLoweredFunctionType() == constantType);
auto linkageForDef = constant.getLinkage(ForDefinition_t::ForDefinition);
auto fnLinkage = fn->getLinkage();
assert(mod.getStage() == SILStage::Raw || fn->getLinkage() == linkage ||
(forDefinition == ForDefinition_t::NotForDefinition &&
(fnLinkage == linkageForDef ||
(linkageForDef == SILLinkage::PublicNonABI ||
linkageForDef == SILLinkage::PackageNonABI) &&
fnLinkage == SILLinkage::Shared)));
if (forDefinition) {
// In all the cases where getConstantLinkage returns something
// different for ForDefinition, it returns an available-externally
// linkage.
if (isAvailableExternally(fn->getLinkage())) {
fn->setLinkage(constant.getLinkage(ForDefinition));
}
}
return fn;
}
IsTransparent_t IsTrans =
constant.isTransparent() ? IsTransparent : IsNotTransparent;
SerializedKind_t IsSer = constant.getSerializedKind();
// Don't create a [serialized] function after serialization has happened.
if (IsSer != IsNotSerialized && mod.isSerialized())
IsSer = IsNotSerialized;
Inline_t inlineStrategy = InlineDefault;
if (constant.isNoinline())
inlineStrategy = NoInline;
else if (constant.isUnderscoredAlwaysInline())
inlineStrategy = HeuristicAlwaysInline;
else if (constant.isAlwaysInline())
inlineStrategy = AlwaysInline;
StringRef name = mod.allocateCopy(nameTmp);
IsDynamicallyReplaceable_t IsDyn = IsNotDynamic;
if (constant.isDynamicallyReplaceable()) {
IsDyn = IsDynamic;
IsTrans = IsNotTransparent;
}
IsDistributed_t IsDistributed = IsDistributed_t::IsNotDistributed;
// Mark both distributed thunks and methods as distributed.
if (constant.hasFuncDecl() && constant.getFuncDecl()->isDistributed()) {
IsDistributed = IsDistributed_t::IsDistributed;
}
IsRuntimeAccessible_t isRuntimeAccessible = IsNotRuntimeAccessible;
auto *F = SILFunction::create(
mod, linkage, name, constantType, nullptr, std::nullopt, IsNotBare,
IsTrans, IsSer, entryCount, IsDyn, IsDistributed, isRuntimeAccessible,
IsNotExactSelfClass, IsNotThunk, constant.getSubclassScope(),
inlineStrategy);
F->setDebugScope(new (mod) SILDebugScope(loc, F));
if (constant.isGlobal())
F->setSpecialPurpose(SILFunction::Purpose::GlobalInit);
if (constant.hasDecl()) {
auto decl = constant.getDecl();
if (constant.isForeign && decl->hasClangNode() &&
!decl->getObjCImplementationDecl())
F->setClangNodeOwner(decl);
if (auto availability = constant.getAvailabilityForLinkage())
F->setAvailabilityForLinkage(*availability);
F->setIsAlwaysWeakImported(decl->isAlwaysWeakImported());
if (auto *accessor = dyn_cast<AccessorDecl>(decl)) {
auto *storage = accessor->getStorage();
// Add attributes for e.g. computed properties.
ASSERT(ABIRoleInfo(storage).providesAPI()
&& "addFunctionAttributes() on ABI-only accessor?");
addFunctionAttributes(F, storage->getAttrs(), mod,
getOrCreateDeclaration);
auto *varDecl = dyn_cast<VarDecl>(storage);
if (varDecl && varDecl->getAttrs().hasAttribute<LazyAttr>() &&
accessor->getAccessorKind() == AccessorKind::Get) {
F->setSpecialPurpose(SILFunction::Purpose::LazyPropertyGetter);
// Lazy property getters should not get inlined because they are usually
// non-trivial functions (otherwise the user would not implement it as
// lazy property). Inlining such getters would most likely not benefit
// other optimizations because the top-level switch_enum cannot be
// constant folded in most cases.
// Also, not inlining lazy property getters enables optimizing them in
// CSE.
F->setInlineStrategy(NoInline);
}
}
ASSERT(ABIRoleInfo(decl).providesAPI()
&& "addFunctionAttributes() on ABI-only decl?");
addFunctionAttributes(F, decl->getAttrs(), mod, getOrCreateDeclaration,
constant);
} else if (auto *ce = constant.getAbstractClosureExpr()) {
if (mod.getOptions().EnableGlobalAssemblyVision) {
F->addSemanticsAttr(semantics::FORCE_EMIT_OPT_REMARK_PREFIX);
} else {
// Add the attribute to a closure if the enclosing method has it.
auto decl = ce->getParent()->getInnermostDeclarationDeclContext();
if (decl &&
decl->getAttrs().getAttribute(DeclAttrKind::EmitAssemblyVisionRemarks)) {
F->addSemanticsAttr(semantics::FORCE_EMIT_OPT_REMARK_PREFIX);
}
}
} else {
if (mod.getOptions().EnableGlobalAssemblyVision) {
F->addSemanticsAttr(semantics::FORCE_EMIT_OPT_REMARK_PREFIX);
}
}
return F;
}
SILFunction *SILFunctionBuilder::getOrCreateSharedFunction(
SILLocation loc, StringRef name, CanSILFunctionType type,
IsBare_t isBareSILFunction, IsTransparent_t isTransparent,
SerializedKind_t serializedKind, ProfileCounter entryCount, IsThunk_t isThunk,
IsDynamicallyReplaceable_t isDynamic, IsDistributed_t isDistributed,
IsRuntimeAccessible_t isRuntimeAccessible) {
return getOrCreateFunction(loc, name, SILLinkage::Shared, type,
isBareSILFunction, isTransparent, serializedKind,
isDynamic, isDistributed, isRuntimeAccessible,
entryCount, isThunk, SubclassScope::NotApplicable);
}
SILFunction *SILFunctionBuilder::createFunction(
SILLinkage linkage, StringRef name, CanSILFunctionType loweredType,
GenericEnvironment *genericEnv, std::optional<SILLocation> loc,
IsBare_t isBareSILFunction, IsTransparent_t isTrans,
SerializedKind_t serializedKind, IsDynamicallyReplaceable_t isDynamic,
IsDistributed_t isDistributed, IsRuntimeAccessible_t isRuntimeAccessible,
ProfileCounter entryCount, IsThunk_t isThunk, SubclassScope subclassScope,
Inline_t inlineStrategy, EffectsKind EK, SILFunction *InsertBefore,
const SILDebugScope *DebugScope) {
return SILFunction::create(mod, linkage, name, loweredType, genericEnv, loc,
isBareSILFunction, isTrans, serializedKind,
entryCount, isDynamic, isDistributed,
isRuntimeAccessible, IsNotExactSelfClass, isThunk,
subclassScope, inlineStrategy, EK, InsertBefore,
DebugScope);
}