Files
swift-mirror/lib/SIL/IR/SILInstruction.cpp
John McCall a7d7970e29 Turn finishAsyncLet into a builtin.
This is necessary because we need to model its stack-allocation
behavior, although I'm not yet doing that in this patch because
StackNesting first needs to be taught to not try to move the
deallocation.

I'm not convinced that `async let` *should* be doing a stack allocation,
but it undoubtedly *is* doing a stack allocation, and until we have an
alternative to that, we will need to model it properly.
2025-11-03 16:33:40 -08:00

2187 lines
75 KiB
C++

//===--- SILInstruction.cpp - Instructions for SIL code -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the high-level SILInstruction classes used for SIL code.
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILInstruction.h"
#include "swift/Basic/AssertImplements.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Unicode.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstWrappers.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/NodeDatastructures.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/Test.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/ErrorHandling.h"
using namespace swift;
using namespace Lowering;
//===----------------------------------------------------------------------===//
// Instruction-specific properties on SILValue
//===----------------------------------------------------------------------===//
void SILInstruction::setDebugScope(const SILDebugScope *DS) {
if (getDebugScope() && getDebugScope()->InlinedCallSite)
assert(DS->InlinedCallSite && "throwing away inlined scope info");
assert(DS->getParentFunction() == getFunction() &&
"scope belongs to different function");
debugScope = DS;
}
//===----------------------------------------------------------------------===//
// ilist_traits<SILInstruction> Implementation
//===----------------------------------------------------------------------===//
// The trait object is embedded into a basic block. Use dirty hacks to
// reconstruct the BB from the 'self' pointer of the trait.
SILBasicBlock *llvm::ilist_traits<SILInstruction>::getContainingBlock() {
size_t Offset(
size_t(&((SILBasicBlock *)nullptr->*SILBasicBlock::getSublistAccess())));
iplist<SILInstruction> *Anchor(static_cast<iplist<SILInstruction> *>(this));
return reinterpret_cast<SILBasicBlock *>(reinterpret_cast<char *>(Anchor) -
Offset);
}
void llvm::ilist_traits<SILInstruction>::addNodeToList(SILInstruction *I) {
I->ParentBB = getContainingBlock();
}
void llvm::ilist_traits<SILInstruction>::
transferNodesFromList(llvm::ilist_traits<SILInstruction> &L2,
instr_iterator first, instr_iterator last) {
// If transferring instructions within the same basic block, no reason to
// update their parent pointers.
SILBasicBlock *ThisParent = getContainingBlock();
SILBasicBlock *l2Block = L2.getContainingBlock();
if (ThisParent == l2Block) return;
bool differentFunctions = (ThisParent->getFunction() != l2Block->getFunction());
// Update the parent fields in the instructions.
for (; first != last; ++first) {
SWIFT_FUNC_STAT_NAMED("sil");
first->ParentBB = ThisParent;
if (differentFunctions) {
for (SILValue result : first->getResults()) {
result->resetBitfields();
}
for (Operand &op : first->getAllOperands()) {
op.resetBitfields();
}
first->asSILNode()->resetBitfields();
}
}
}
//===----------------------------------------------------------------------===//
// SILInstruction Implementation
//===----------------------------------------------------------------------===//
// Assert that all subclasses of ValueBase implement classof.
#define NODE(CLASS, PARENT) \
ASSERT_IMPLEMENTS_STATIC(CLASS, PARENT, classof, bool(SILNodePointer));
#include "swift/SIL/SILNodes.def"
/// eraseFromParent - This method unlinks 'self' from the containing basic
/// block and deletes it.
///
void SILInstruction::eraseFromParent() {
#ifndef NDEBUG
for (auto result : getResults()) {
assert(result->use_empty() && "Uses of SILInstruction remain at deletion.");
}
#endif
getParent()->erase(this);
}
void SILInstruction::moveFront(SILBasicBlock *Block) {
Block->moveInstructionToFront(this);
}
/// Unlink this instruction from its current basic block and insert it into
/// the basic block that Later lives in, right before Later.
void SILInstruction::moveBefore(SILInstruction *Later) {
SILBasicBlock::moveInstruction(this, Later);
}
namespace swift::test {
FunctionTest MoveBeforeTest("instruction_move_before",
[](auto &function, auto &arguments, auto &test) {
auto *inst = arguments.takeInstruction();
auto *other = arguments.takeInstruction();
inst->moveBefore(other);
});
} // end namespace swift::test
/// Unlink this instruction from its current basic block and insert it into
/// the basic block that Earlier lives in, right after Earlier.
void SILInstruction::moveAfter(SILInstruction *Earlier) {
// Since MovePos is an instruction, we know that there is always a valid
// iterator after it.
auto Later = std::next(SILBasicBlock::iterator(Earlier));
moveBefore(&*Later);
}
void SILInstruction::dropAllReferences() {
MutableArrayRef<Operand> PossiblyDeadOps = getAllOperands();
for (auto OpI = PossiblyDeadOps.begin(),
OpE = PossiblyDeadOps.end(); OpI != OpE; ++OpI) {
OpI->drop();
}
dropNonOperandReferences();
}
void SILInstruction::dropNonOperandReferences() {
if (auto *termInst = dyn_cast<TermInst>(this)) {
for (SILSuccessor &succ : termInst->getSuccessors()) {
succ = nullptr;
}
}
// If we have a function ref inst, we need to especially drop its function
// argument so that it gets a proper ref decrement.
if (auto *FRI = dyn_cast<FunctionRefBaseInst>(this)) {
if (!FRI->getInitiallyReferencedFunction())
return;
FRI->dropReferencedFunction();
return;
}
// If we have a KeyPathInst, drop its pattern reference so that we can
// decrement refcounts on referenced functions.
if (auto *KPI = dyn_cast<KeyPathInst>(this)) {
if (!KPI->hasPattern())
return;
KPI->dropReferencedPattern();
return;
}
}
namespace {
class AllResultsAccessor
: public SILInstructionVisitor<AllResultsAccessor,
SILInstructionResultArray> {
public:
// Make sure we hit a linker error if we ever miss an instruction.
#define INST(ID, NAME) SILInstructionResultArray visit##ID(ID *I);
#define NON_VALUE_INST(ID, NAME, PARENT, MEMBEHAVIOR, MAYRELEASE) \
SILInstructionResultArray visit##ID(ID *I) { \
return SILInstructionResultArray(); \
}
#define SINGLE_VALUE_INST(ID, TEXTUALNAME, PARENT, MEMBEHAVIOR, MAYRELEASE) \
SILInstructionResultArray visit##ID(ID *I) { \
return SILInstructionResultArray( \
static_cast<SingleValueInstruction *>(I)); \
}
#define MULTIPLE_VALUE_INST(ID, TEXTUALNAME, PARENT, MEMBEHAVIOR, MAYRELEASE) \
SILInstructionResultArray visit##ID(ID *I) { \
return SILInstructionResultArray(I->getAllResults()); \
}
#include "swift/SIL/SILNodes.def"
};
} // end anonymous namespace
SILInstructionResultArray SILInstruction::getResultsImpl() const {
return AllResultsAccessor().visit(const_cast<SILInstruction *>(this));
}
// Initialize the static members of SILInstruction.
int SILInstruction::NumCreatedInstructions = 0;
int SILInstruction::NumDeletedInstructions = 0;
/// Map a SILInstruction name to its SILInstructionKind.
SILInstructionKind swift::getSILInstructionKind(StringRef name) {
#define FULL_INST(ID, NAME, PARENT, MEMBEHAVIOR, MAYRELEASE) \
if (name == #NAME) \
return SILInstructionKind::ID;
#include "swift/SIL/SILNodes.def"
#ifdef NDEBUG
llvm::errs() << "Unknown SIL instruction name\n";
abort();
#endif
llvm_unreachable("Unknown SIL instruction name");
}
/// Map SILInstructionKind to a corresponding SILInstruction name.
StringRef swift::getSILInstructionName(SILInstructionKind kind) {
switch (kind) {
#define FULL_INST(ID, NAME, PARENT, MEMBEHAVIOR, MAYRELEASE) \
case SILInstructionKind::ID: \
return #NAME;
#include "swift/SIL/SILNodes.def"
}
llvm_unreachable("bad kind");
}
void SILInstruction::replaceAllUsesOfAllResultsWithUndef() {
for (auto result : getResults()) {
result->replaceAllUsesWithUndef();
}
}
void SILInstruction::replaceAllUsesPairwiseWith(SILInstruction *other) {
auto results = getResults();
// If we don't have any results, fast-path out without asking the other
// instruction for its results.
if (results.empty()) {
assert(other->getResults().empty());
return;
}
// Replace values with the corresponding values of the other instruction.
auto otherResults = other->getResults();
assert(results.size() == otherResults.size());
for (auto i : indices(results)) {
results[i]->replaceAllUsesWith(otherResults[i]);
}
}
void SILInstruction::replaceAllUsesPairwiseWith(
const llvm::SmallVectorImpl<SILValue> &NewValues) {
auto Results = getResults();
// If we don't have any results, fast-path out without asking the other
// instruction for its results.
if (Results.empty()) {
assert(NewValues.empty());
return;
}
// Replace values with the corresponding values of the list. Make sure they
// are all the same type.
assert(Results.size() == NewValues.size());
for (unsigned i : indices(Results)) {
assert(Results[i]->getType() == NewValues[i]->getType() &&
"Can only replace results with new values of the same type");
Results[i]->replaceAllUsesWith(NewValues[i]);
}
}
Operand *BeginBorrowInst::getSingleNonEndingUse() const {
Operand *singleUse = nullptr;
for (auto *use : getUses()) {
if (isa<EndBorrowInst>(use->getUser()))
continue;
if (singleUse)
return nullptr;
singleUse = use;
}
return singleUse;
}
bool BorrowedFromInst::isReborrow() const {
// The forwarded operand is either a phi or undef.
if (auto *phi = dyn_cast<SILPhiArgument>(getBorrowedValue())) {
return phi->isReborrow();
}
return false;
}
namespace {
class InstructionDestroyer
: public SILInstructionVisitor<InstructionDestroyer> {
public:
#define INST(CLASS, PARENT) \
void visit##CLASS(CLASS *I) { I->~CLASS(); }
#include "swift/SIL/SILNodes.def"
};
} // end anonymous namespace
void SILInstruction::destroy(SILInstruction *I) {
InstructionDestroyer().visit(I);
}
namespace {
/// Given a pair of instructions that are already known to have the same kind,
/// type, and operands check any special state in the two instructions that
/// could disrupt equality.
class InstructionIdentityComparer :
public SILInstructionVisitor<InstructionIdentityComparer, bool> {
public:
InstructionIdentityComparer(const SILInstruction *L) : LHS(L) { }
/// Make sure we only process instructions we know how to process.
bool visitSILInstruction(const SILInstruction *RHS) {
return false;
}
bool visitInjectEnumAddrInst(const InjectEnumAddrInst *RHS) {
auto *X = cast<InjectEnumAddrInst>(LHS);
return X->getElement() == RHS->getElement();
}
bool visitDestroyAddrInst(const DestroyAddrInst *RHS) {
return true;
}
bool visitReleaseValueInst(const ReleaseValueInst *RHS) {
return true;
}
bool visitReleaseValueAddrInst(const ReleaseValueAddrInst *RHS) {
return true;
}
bool visitRetainValueInst(const RetainValueInst *RHS) {
return true;
}
bool visitRetainValueAddrInst(const RetainValueAddrInst *RHS) {
return true;
}
bool visitDeallocStackInst(const DeallocStackInst *RHS) {
return true;
}
bool visitDeallocStackRefInst(const DeallocStackRefInst *RHS) {
return true;
}
bool visitAllocStackInst(const AllocStackInst *RHS) {
return true;
}
bool visitDeallocBoxInst(const DeallocBoxInst *RHS) {
return true;
}
bool visitAllocBoxInst(const AllocBoxInst *RHS) {
return true;
}
bool visitDeallocRefInst(const DeallocRefInst *RHS) {
return true;
}
bool visitDeallocPartialRefInst(const DeallocPartialRefInst *RHS) {
return true;
}
bool visitDestructureStructInst(const DestructureStructInst *RHS) {
return true;
}
bool visitDestructureTupleInst(const DestructureTupleInst *RHS) {
return true;
}
bool visitAllocRefInst(const AllocRefInst *RHS) {
auto *LHSInst = cast<AllocRefInst>(LHS);
auto LHSTypes = LHSInst->getTailAllocatedTypes();
auto RHSTypes = RHS->getTailAllocatedTypes();
unsigned NumTypes = LHSTypes.size();
assert(NumTypes == RHSTypes.size());
for (unsigned Idx = 0; Idx < NumTypes; ++Idx) {
if (LHSTypes[Idx] != RHSTypes[Idx])
return false;
}
return true;
}
bool visitDestroyValueInst(const DestroyValueInst *RHS) {
auto *left = cast<DestroyValueInst>(LHS);
return left->poisonRefs() == RHS->poisonRefs();
}
bool visitDebugValue(const DebugValueInst *RHS) {
auto *left = cast<DebugValueInst>(LHS);
return left->poisonRefs() == RHS->poisonRefs();
}
bool visitBeginCOWMutationInst(const BeginCOWMutationInst *RHS) {
auto *left = cast<BeginCOWMutationInst>(LHS);
return left->isNative() == RHS->isNative();
}
bool visitEndCOWMutationInst(const EndCOWMutationInst *RHS) {
auto *left = cast<EndCOWMutationInst>(LHS);
return left->doKeepUnique() == RHS->doKeepUnique();
}
bool visitAllocRefDynamicInst(const AllocRefDynamicInst *RHS) {
return true;
}
bool visitProjectBoxInst(const ProjectBoxInst *RHS) {
return true;
}
bool visitProjectExistentialBoxInst(const ProjectExistentialBoxInst *RHS) {
return true;
}
bool visitBeginAccessInst(const BeginAccessInst *right) {
auto left = cast<BeginAccessInst>(LHS);
return left->getAccessKind() == right->getAccessKind()
&& left->getEnforcement() == right->getEnforcement()
&& left->hasNoNestedConflict() == right->hasNoNestedConflict()
&& left->isFromBuiltin() == right->isFromBuiltin();
}
bool visitEndAccessInst(const EndAccessInst *right) {
auto left = cast<EndAccessInst>(LHS);
return left->isAborting() == right->isAborting();
}
bool visitBeginUnpairedAccessInst(const BeginUnpairedAccessInst *right) {
auto left = cast<BeginUnpairedAccessInst>(LHS);
return left->getAccessKind() == right->getAccessKind()
&& left->getEnforcement() == right->getEnforcement()
&& left->hasNoNestedConflict() == right->hasNoNestedConflict()
&& left->isFromBuiltin() == right->isFromBuiltin();
}
bool visitEndUnpairedAccessInst(const EndUnpairedAccessInst *right) {
auto left = cast<EndUnpairedAccessInst>(LHS);
return left->getEnforcement() == right->getEnforcement()
&& left->isAborting() == right->isAborting()
&& left->isFromBuiltin() == right->isFromBuiltin();
}
bool visitStrongReleaseInst(const StrongReleaseInst *RHS) {
return true;
}
bool visitStrongRetainInst(const StrongRetainInst *RHS) {
return true;
}
bool visitLoadInst(const LoadInst *RHS) {
auto LHSQualifier = cast<LoadInst>(LHS)->getOwnershipQualifier();
return LHSQualifier == RHS->getOwnershipQualifier();
}
bool visitLoadBorrowInst(const LoadBorrowInst *RHS) { return true; }
bool visitEndBorrowInst(const EndBorrowInst *RHS) { return true; }
bool visitBeginBorrowInst(const BeginBorrowInst *BBI) { return true; }
bool visitStoreBorrowInst(const StoreBorrowInst *RHS) {
auto *X = cast<StoreBorrowInst>(LHS);
return X->getSrc() == RHS->getSrc() && X->getDest() == RHS->getDest();
}
bool visitStoreInst(const StoreInst *RHS) {
auto *X = cast<StoreInst>(LHS);
return X->getSrc() == RHS->getSrc() && X->getDest() == RHS->getDest() &&
X->getOwnershipQualifier() == RHS->getOwnershipQualifier();
}
bool visitBindMemoryInst(const BindMemoryInst *RHS) {
auto *X = cast<BindMemoryInst>(LHS);
return X->getBoundType() == RHS->getBoundType();
}
bool visitFunctionRefInst(const FunctionRefInst *RHS) {
auto *X = cast<FunctionRefInst>(LHS);
return X->getReferencedFunction() == RHS->getReferencedFunction();
}
bool visitDynamicFunctionRefInst(const DynamicFunctionRefInst *RHS) {
auto *X = cast<DynamicFunctionRefInst>(LHS);
return X->getInitiallyReferencedFunction() ==
RHS->getInitiallyReferencedFunction();
}
bool visitPreviousDynamicFunctionRefInst(
const PreviousDynamicFunctionRefInst *RHS) {
auto *X = cast<PreviousDynamicFunctionRefInst>(LHS);
return X->getInitiallyReferencedFunction() ==
RHS->getInitiallyReferencedFunction();
}
bool visitAllocGlobalInst(const AllocGlobalInst *RHS) {
auto *X = cast<AllocGlobalInst>(LHS);
return X->getReferencedGlobal() == RHS->getReferencedGlobal();
}
bool visitGlobalAddrInst(const GlobalAddrInst *RHS) {
auto *X = cast<GlobalAddrInst>(LHS);
return X->getReferencedGlobal() == RHS->getReferencedGlobal();
}
bool visitIntegerLiteralInst(const IntegerLiteralInst *RHS) {
APInt X = cast<IntegerLiteralInst>(LHS)->getValue();
APInt Y = RHS->getValue();
return X.getBitWidth() == Y.getBitWidth() &&
X == Y;
}
bool visitFloatLiteralInst(const FloatLiteralInst *RHS) {
// Avoid floating point comparison issues by doing a bitwise comparison.
APInt X = cast<FloatLiteralInst>(LHS)->getBits();
APInt Y = RHS->getBits();
return X.getBitWidth() == Y.getBitWidth() &&
X == Y;
}
bool visitStringLiteralInst(const StringLiteralInst *RHS) {
auto LHS_ = cast<StringLiteralInst>(LHS);
return LHS_->getEncoding() == RHS->getEncoding()
&& LHS_->getValue() == RHS->getValue();
}
bool visitStructInst(const StructInst *RHS) {
// We have already checked the operands. Make sure that the StructDecls
// match up.
StructDecl *S1 = cast<StructInst>(LHS)->getStructDecl();
return S1 == RHS->getStructDecl();
}
bool visitStructExtractInst(const StructExtractInst *RHS) {
// We have already checked that the operands of our struct_extracts
// match. Thus we need to check the field/struct decl which are not
// operands.
auto *X = cast<StructExtractInst>(LHS);
if (X->getStructDecl() != RHS->getStructDecl())
return false;
if (X->getField() != RHS->getField())
return false;
return true;
}
bool visitRefElementAddrInst(RefElementAddrInst *RHS) {
auto *X = cast<RefElementAddrInst>(LHS);
if (X->getField() != RHS->getField())
return false;
return true;
}
bool visitRefTailAddrInst(RefTailAddrInst *RHS) {
auto *X = cast<RefTailAddrInst>(LHS);
return X->getTailType() == RHS->getTailType();
}
bool visitStructElementAddrInst(const StructElementAddrInst *RHS) {
// We have already checked that the operands of our struct_element_addrs
// match. Thus we only need to check the field/struct decl which are not
// operands.
auto *X = cast<StructElementAddrInst>(LHS);
if (X->getStructDecl() != RHS->getStructDecl())
return false;
if (X->getField() != RHS->getField())
return false;
return true;
}
bool visitTupleInst(const TupleInst *RHS) {
// We have already checked the operands. Make sure that the tuple types
// match up.
TupleType *TT1 = cast<TupleInst>(LHS)->getTupleType();
return TT1 == RHS->getTupleType();
}
bool visitTupleExtractInst(const TupleExtractInst *RHS) {
// We have already checked that the operands match. Thus we only need to
// check the field no and tuple type which are not represented as operands.
auto *X = cast<TupleExtractInst>(LHS);
if (X->getTupleType() != RHS->getTupleType())
return false;
if (X->getFieldIndex() != RHS->getFieldIndex())
return false;
return true;
}
bool visitTupleElementAddrInst(const TupleElementAddrInst *RHS) {
// We have already checked that the operands match. Thus we only need to
// check the field no and tuple type which are not represented as operands.
auto *X = cast<TupleElementAddrInst>(LHS);
if (X->getTupleType() != RHS->getTupleType())
return false;
if (X->getFieldIndex() != RHS->getFieldIndex())
return false;
return true;
}
bool visitMetatypeInst(const MetatypeInst *RHS) {
// We have already compared the operands/types, so we should have equality
// at this point.
return true;
}
bool visitValueMetatypeInst(const ValueMetatypeInst *RHS) {
// We have already compared the operands/types, so we should have equality
// at this point.
return true;
}
bool visitExistentialMetatypeInst(const ExistentialMetatypeInst *RHS) {
// We have already compared the operands/types, so we should have equality
// at this point.
return true;
}
bool visitIndexRawPointerInst(IndexRawPointerInst *RHS) {
// We have already compared the operands/types, so we should have equality
// at this point.
return true;
}
bool visitIndexAddrInst(IndexAddrInst *RHS) {
auto *lhs = cast<IndexAddrInst>(LHS);
return lhs->needsStackProtection() == RHS->needsStackProtection();
}
bool visitTailAddrInst(TailAddrInst *RHS) {
auto *X = cast<TailAddrInst>(LHS);
return X->getTailType() == RHS->getTailType();
}
bool visitCondFailInst(CondFailInst *RHS) {
// We have already compared the operands/types, so we should have equality
// at this point.
return true;
}
bool visitApplyInst(ApplyInst *RHS) {
auto *X = cast<ApplyInst>(LHS);
return X->getSubstitutionMap() == RHS->getSubstitutionMap();
}
bool visitBuiltinInst(BuiltinInst *RHS) {
auto *X = cast<BuiltinInst>(LHS);
if (X->getName() != RHS->getName())
return false;
return X->getSubstitutions() == RHS->getSubstitutions();
}
bool visitEnumInst(EnumInst *RHS) {
// We already checked operands and types. Only thing we need to check is
// that the element is the same.
auto *X = cast<EnumInst>(LHS);
return X->getElement() == RHS->getElement();
}
bool visitUncheckedEnumDataInst(UncheckedEnumDataInst *RHS) {
// We already checked operands and types. Only thing we need to check is
// that the element is the same.
auto *X = cast<UncheckedEnumDataInst>(LHS);
return X->getElement() == RHS->getElement();
}
bool visitSelectEnumOperation(SelectEnumOperation RHS) {
// Check that the instructions match cases in the same order.
auto X = SelectEnumOperation(LHS);
if (X.getNumCases() != RHS.getNumCases())
return false;
if (X.hasDefault() != RHS.hasDefault())
return false;
for (unsigned i = 0, e = X.getNumCases(); i < e; ++i) {
if (X.getCase(i).first != RHS.getCase(i).first)
return false;
}
return true;
}
bool visitSelectEnumInst(const SelectEnumInst *RHS) {
return visitSelectEnumOperation(RHS);
}
bool visitSelectEnumAddrInst(const SelectEnumAddrInst *RHS) {
return visitSelectEnumOperation(RHS);
}
// Conversion instructions.
// All of these just return true as they have already had their
// operands and types checked
bool visitUncheckedRefCastInst(UncheckedRefCastInst *RHS) {
return true;
}
bool visitUncheckedAddrCastInst(UncheckedAddrCastInst *RHS) {
return true;
}
bool visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *RHS) {
return true;
}
bool visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *RHS) {
return true;
}
bool visitUpcastInst(UpcastInst *RHS) {
return true;
}
bool visitAddressToPointerInst(AddressToPointerInst *RHS) {
auto *lhs = cast<AddressToPointerInst>(LHS);
return lhs->needsStackProtection() == RHS->needsStackProtection();
}
bool visitPointerToAddressInst(PointerToAddressInst *RHS) {
return cast<PointerToAddressInst>(LHS)->isStrict() == RHS->isStrict();
}
bool visitRefToRawPointerInst(RefToRawPointerInst *RHS) {
return true;
}
bool visitRawPointerToRefInst(RawPointerToRefInst *RHS) {
return true;
}
#define LOADABLE_REF_STORAGE_HELPER(Name) \
bool visit##Name##ToRefInst(Name##ToRefInst *RHS) { return true; } \
bool visitRefTo##Name##Inst(RefTo##Name##Inst *RHS) { return true; } \
bool visitStrongCopy##Name##ValueInst(StrongCopy##Name##ValueInst *RHS) { \
return true; \
}
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
LOADABLE_REF_STORAGE_HELPER(Name) \
bool visitStrongRetain##Name##Inst(const StrongRetain##Name##Inst *RHS) { \
return true; \
}
#define UNCHECKED_REF_STORAGE(Name, ...) \
LOADABLE_REF_STORAGE_HELPER(Name)
#include "swift/AST/ReferenceStorage.def"
#undef LOADABLE_REF_STORAGE_HELPER
bool visitThinToThickFunctionInst(ThinToThickFunctionInst *RHS) {
return true;
}
bool visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *RHS) {
return true;
}
bool visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *RHS) {
return true;
}
bool visitConvertFunctionInst(ConvertFunctionInst *RHS) {
return true;
}
bool visitConvertEscapeToNoEscapeInst(ConvertEscapeToNoEscapeInst *RHS) {
return true;
}
bool visitObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *RHS) {
return true;
}
bool visitObjCExistentialMetatypeToObjectInst(ObjCExistentialMetatypeToObjectInst *RHS) {
return true;
}
bool visitProjectBlockStorageInst(ProjectBlockStorageInst *RHS) {
return true;
}
bool visitBridgeObjectToRefInst(BridgeObjectToRefInst *X) {
return true;
}
bool visitValueToBridgeObjectInst(ValueToBridgeObjectInst *i) {
return true;
}
bool visitBridgeObjectToWordInst(BridgeObjectToWordInst *X) {
return true;
}
bool visitRefToBridgeObjectInst(RefToBridgeObjectInst *X) {
return true;
}
bool visitClassifyBridgeObjectInst(ClassifyBridgeObjectInst *X) {
return true;
}
bool visitObjCProtocolInst(ObjCProtocolInst *RHS) {
auto *X = cast<ObjCProtocolInst>(LHS);
return X->getProtocol() == RHS->getProtocol();
}
bool visitClassMethodInst(ClassMethodInst *RHS) {
auto *X = cast<ClassMethodInst>(LHS);
return X->getMember() == RHS->getMember() &&
X->getOperand() == RHS->getOperand() &&
X->getType() == RHS->getType();
}
bool visitSuperMethodInst(SuperMethodInst *RHS) {
auto *X = cast<SuperMethodInst>(LHS);
return X->getMember() == RHS->getMember() &&
X->getOperand() == RHS->getOperand() &&
X->getType() == RHS->getType();
}
bool visitObjCMethodInst(ObjCMethodInst *RHS) {
auto *X = cast<ObjCMethodInst>(LHS);
return X->getMember() == RHS->getMember() &&
X->getOperand() == RHS->getOperand() &&
X->getType() == RHS->getType();
}
bool visitObjCSuperMethodInst(ObjCSuperMethodInst *RHS) {
auto *X = cast<ObjCSuperMethodInst>(LHS);
return X->getMember() == RHS->getMember() &&
X->getOperand() == RHS->getOperand() &&
X->getType() == RHS->getType();
}
bool visitWitnessMethodInst(const WitnessMethodInst *RHS) {
auto *X = cast<WitnessMethodInst>(LHS);
if (X->getMember() != RHS->getMember())
return false;
if (X->getLookupType() != RHS->getLookupType())
return false;
if (X->getConformance() != RHS->getConformance())
return false;
return true;
}
bool visitMarkDependenceInst(const MarkDependenceInst *RHS) {
return true;
}
bool visitMarkDependenceAddrInst(const MarkDependenceAddrInst *RHS) {
return true;
}
bool visitOpenExistentialRefInst(const OpenExistentialRefInst *RHS) {
return true;
}
bool
visitInitExistentialMetatypeInst(const InitExistentialMetatypeInst *RHS) {
auto *X = cast<InitExistentialMetatypeInst>(LHS);
ArrayRef<ProtocolConformanceRef> lhsConformances = X->getConformances();
ArrayRef<ProtocolConformanceRef> rhsConformances = RHS->getConformances();
if (lhsConformances.size() != rhsConformances.size())
return false;
for (unsigned i : indices(lhsConformances)) {
if (lhsConformances[i] != rhsConformances[i])
return false;
}
return true;
}
bool visitScalarPackIndexInst(const ScalarPackIndexInst *RHS) {
auto *X = cast<ScalarPackIndexInst>(LHS);
return (X->getIndexedPackType() == RHS->getIndexedPackType() &&
X->getComponentIndex() == RHS->getComponentIndex());
}
bool visitDynamicPackIndexInst(const DynamicPackIndexInst *RHS) {
auto *X = cast<DynamicPackIndexInst>(LHS);
return X->getIndexedPackType() == RHS->getIndexedPackType();
}
bool visitTuplePackElementAddrInst(const TuplePackElementAddrInst *RHS) {
auto *X = cast<TuplePackElementAddrInst>(LHS);
return X->getElementType() == RHS->getElementType();
}
bool visitTypeValueInst(const TypeValueInst *RHS) {
return true;
}
private:
const SILInstruction *LHS;
};
} // end anonymous namespace
bool SILInstruction::hasIdenticalState(const SILInstruction *RHS) const {
SILInstruction *UnconstRHS = const_cast<SILInstruction *>(RHS);
return InstructionIdentityComparer(this).visit(UnconstRHS);
}
namespace {
class AllOperandsAccessor : public SILInstructionVisitor<AllOperandsAccessor,
ArrayRef<Operand> > {
public:
#define INST(CLASS, PARENT) \
ArrayRef<Operand> visit##CLASS(const CLASS *I) { \
ASSERT_IMPLEMENTS(CLASS, SILInstruction, getAllOperands, \
ArrayRef<Operand>() const); \
return I->getAllOperands(); \
}
#include "swift/SIL/SILNodes.def"
};
class AllOperandsMutableAccessor
: public SILInstructionVisitor<AllOperandsMutableAccessor,
MutableArrayRef<Operand> > {
public:
#define INST(CLASS, PARENT) \
MutableArrayRef<Operand> visit##CLASS(CLASS *I) { \
ASSERT_IMPLEMENTS(CLASS, SILInstruction, getAllOperands, \
MutableArrayRef<Operand>()); \
return I->getAllOperands(); \
}
#include "swift/SIL/SILNodes.def"
};
#define IMPLEMENTS_METHOD(DerivedClass, BaseClass, MemberName, ExpectedType) \
(!::std::is_same<BaseClass, GET_IMPLEMENTING_CLASS(DerivedClass, MemberName,\
ExpectedType)>::value)
class TypeDependentOperandsAccessor
: public SILInstructionVisitor<TypeDependentOperandsAccessor,
ArrayRef<Operand>> {
public:
#define INST(CLASS, PARENT) \
ArrayRef<Operand> visit##CLASS(const CLASS *I) { \
if (!IMPLEMENTS_METHOD(CLASS, SILInstruction, getTypeDependentOperands, \
ArrayRef<Operand>() const)) \
return {}; \
return I->getTypeDependentOperands(); \
}
#include "swift/SIL/SILNodes.def"
};
class TypeDependentOperandsMutableAccessor
: public SILInstructionVisitor<TypeDependentOperandsMutableAccessor,
MutableArrayRef<Operand> > {
public:
#define INST(CLASS, PARENT) \
MutableArrayRef<Operand> visit##CLASS(CLASS *I) { \
if (!IMPLEMENTS_METHOD(CLASS, SILInstruction, getTypeDependentOperands, \
MutableArrayRef<Operand>())) \
return {}; \
return I->getTypeDependentOperands(); \
}
#include "swift/SIL/SILNodes.def"
};
} // end anonymous namespace
ArrayRef<Operand> SILInstruction::getAllOperands() const {
return AllOperandsAccessor().visit(const_cast<SILInstruction *>(this));
}
MutableArrayRef<Operand> SILInstruction::getAllOperands() {
return AllOperandsMutableAccessor().visit(this);
}
ArrayRef<Operand> SILInstruction::getTypeDependentOperands() const {
return TypeDependentOperandsAccessor().visit(
const_cast<SILInstruction *>(this));
}
MutableArrayRef<Operand> SILInstruction::getTypeDependentOperands() {
return TypeDependentOperandsMutableAccessor().visit(this);
}
/// getOperandNumber - Return which operand this is in the operand list of the
/// using instruction.
unsigned Operand::getOperandNumber() const {
return this - &cast<SILInstruction>(getUser())->getAllOperands()[0];
}
MemoryBehavior SILInstruction::getMemoryBehavior() const {
if (auto *BI = dyn_cast<BuiltinInst>(this)) {
// Handle Swift builtin functions.
const BuiltinInfo &BInfo = BI->getBuiltinInfo();
if (BInfo.ID == BuiltinValueKind::ZeroInitializer ||
BInfo.ID == BuiltinValueKind::PrepareInitialization) {
// The address form of `zeroInitializer` writes to its argument to
// initialize it. The value form has no side effects.
return BI->getArguments().size() > 0
? MemoryBehavior::MayWrite
: MemoryBehavior::None;
} else if (BInfo.ID == BuiltinValueKind::WillThrow) {
return MemoryBehavior::MayRead;
}
if (BInfo.ID != BuiltinValueKind::None)
return BInfo.isReadNone() ? MemoryBehavior::None
: MemoryBehavior::MayHaveSideEffects;
// Handle LLVM intrinsic functions.
const IntrinsicInfo &IInfo = BI->getIntrinsicInfo();
if (IInfo.ID != llvm::Intrinsic::not_intrinsic) {
auto &IAttrs = IInfo.getOrCreateFnAttributes(getModule().getASTContext());
auto MemEffects = IAttrs.getMemoryEffects();
// Read-only.
if (MemEffects.onlyReadsMemory() &&
IAttrs.hasAttribute(llvm::Attribute::NoUnwind))
return MemoryBehavior::MayRead;
// Read-none?
return MemEffects.doesNotAccessMemory() &&
IAttrs.hasAttribute(llvm::Attribute::NoUnwind)
? MemoryBehavior::None
: MemoryBehavior::MayHaveSideEffects;
}
}
// Handle full apply sites that have a resolvable callee function with an
// effects attribute.
if (isa<FullApplySite>(this)) {
FullApplySite Site(const_cast<SILInstruction *>(this));
if (auto *F = Site.getCalleeFunction()) {
return F->getEffectsKind() == EffectsKind::ReadNone
? MemoryBehavior::None
: MemoryBehavior::MayHaveSideEffects;
}
}
if (auto *ga = dyn_cast<GlobalAddrInst>(this)) {
// Global variables with resilient types might be allocated into a buffer
// and not statically in the data segment.
// In this case, the global_addr depends on alloc_global being executed
// first. We model this by letting global_addr have a side effect.
// It prevents e.g. LICM to move a global_addr out of a loop while keeping
// the alloc_global inside the loop.
SILModule &M = ga->getFunction()->getModule();
auto expansion = TypeExpansionContext::maximal(M.getAssociatedContext(),
M.isWholeModule());
SILTypeProperties props =
M.Types.getTypeProperties(ga->getType().getObjectType(), expansion);
return props.isFixedABI() ? MemoryBehavior::None
: MemoryBehavior::MayHaveSideEffects;
}
if (auto *li = dyn_cast<LoadInst>(this)) {
switch (li->getOwnershipQualifier()) {
case LoadOwnershipQualifier::Unqualified:
case LoadOwnershipQualifier::Trivial:
return MemoryBehavior::MayRead;
case LoadOwnershipQualifier::Take:
// Take deinitializes the underlying memory. Until we separate notions of
// memory writing from deinitialization (since a take doesn't actually
// write to the memory), lets be conservative and treat it as may read
// write.
return MemoryBehavior::MayReadWrite;
case LoadOwnershipQualifier::Copy:
return MemoryBehavior::MayHaveSideEffects;
}
llvm_unreachable("Covered switch isn't covered?!");
}
if (auto *si = dyn_cast<StoreInst>(this)) {
switch (si->getOwnershipQualifier()) {
case StoreOwnershipQualifier::Unqualified:
case StoreOwnershipQualifier::Trivial:
case StoreOwnershipQualifier::Init:
return MemoryBehavior::MayWrite;
case StoreOwnershipQualifier::Assign:
// For the release.
return MemoryBehavior::MayHaveSideEffects;
}
llvm_unreachable("Covered switch isn't covered?!");
}
if (auto *mdi = dyn_cast<MarkDependenceInst>(this)) {
if (mdi->getBase()->getType().isAddress())
return MemoryBehavior::MayRead;
return MemoryBehavior::None;
}
// TODO: An UncheckedTakeEnumDataAddr instruction has no memory behavior if
// it is nondestructive. Setting this currently causes LICM to miscompile
// because access paths do not account for enum projections.
switch (getKind()) {
#define FULL_INST(CLASS, TEXTUALNAME, PARENT, MEMBEHAVIOR, RELEASINGBEHAVIOR) \
case SILInstructionKind::CLASS: \
return MemoryBehavior::MEMBEHAVIOR;
#include "swift/SIL/SILNodes.def"
}
llvm_unreachable("We've just exhausted the switch.");
}
SILInstruction::ReleasingBehavior SILInstruction::getReleasingBehavior() const {
switch (getKind()) {
#define FULL_INST(CLASS, TEXTUALNAME, PARENT, MEMBEHAVIOR, RELEASINGBEHAVIOR) \
case SILInstructionKind::CLASS: \
return ReleasingBehavior::RELEASINGBEHAVIOR;
#include "swift/SIL/SILNodes.def"
}
llvm_unreachable("We've just exhausted the switch.");
}
bool SILInstruction::mayHaveSideEffects() const {
// If this instruction traps then it must have side effects.
if (mayTrap())
return true;
return mayWriteToMemory();
}
bool SILInstruction::mayRelease() const {
// Overrule a "DoesNotRelease" of dynamic casts. If a dynamic cast is not
// RC identity preserving it can release it's source (in some cases - we are
// conservative here).
auto dynCast = SILDynamicCastInst::getAs(const_cast<SILInstruction *>(this));
if (dynCast && !dynCast.isRCIdentityPreserving())
return true;
if (getReleasingBehavior() ==
SILInstruction::ReleasingBehavior::DoesNotRelease)
return false;
switch (getKind()) {
default:
llvm_unreachable("Unhandled releasing instruction!");
case SILInstructionKind::EndLifetimeInst:
case SILInstructionKind::GetAsyncContinuationInst:
case SILInstructionKind::GetAsyncContinuationAddrInst:
case SILInstructionKind::AwaitAsyncContinuationInst:
return false;
case SILInstructionKind::ApplyInst:
case SILInstructionKind::TryApplyInst:
case SILInstructionKind::BeginApplyInst:
case SILInstructionKind::AbortApplyInst:
case SILInstructionKind::EndApplyInst:
case SILInstructionKind::YieldInst:
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::DestroyNotEscapedClosureInst:
case SILInstructionKind::StrongReleaseInst:
#define UNCHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##ReleaseValueInst:
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##ReleaseInst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::ReleaseValueAddrInst:
return true;
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::HopToExecutorInst:
return true;
case SILInstructionKind::UnconditionalCheckedCastAddrInst:
case SILInstructionKind::UncheckedOwnershipConversionInst:
return true;
case SILInstructionKind::CheckedCastAddrBranchInst: {
// Failing casts with take_always can release.
auto *Cast = cast<CheckedCastAddrBranchInst>(this);
return Cast->getConsumptionKind() == CastConsumptionKind::TakeAlways;
}
case SILInstructionKind::ExplicitCopyAddrInst: {
auto *CopyAddr = cast<ExplicitCopyAddrInst>(this);
// copy_addr without initialization can cause a release.
return CopyAddr->isInitializationOfDest() ==
IsInitialization_t::IsNotInitialization;
}
case SILInstructionKind::CopyAddrInst: {
auto *CopyAddr = cast<CopyAddrInst>(this);
// copy_addr without initialization can cause a release.
return CopyAddr->isInitializationOfDest() ==
IsInitialization_t::IsNotInitialization;
}
// mark_unresolved_move_addr is equivalent to a copy_addr [init], so a release
// does not occur.
case SILInstructionKind::MarkUnresolvedMoveAddrInst:
return false;
case SILInstructionKind::BuiltinInst: {
auto *BI = cast<BuiltinInst>(this);
// Builtins without side effects also do not release.
if (!BI->mayHaveSideEffects())
return false;
// If this is a builtin which might have side effect, but its side
// effects do not cause reference counts to be decremented, return false.
if (auto Kind = BI->getBuiltinKind()) {
switch (Kind.value()) {
case BuiltinValueKind::CopyArray:
case BuiltinValueKind::WillThrow:
return false;
default:
break;
}
}
if (auto ID = BI->getIntrinsicID()) {
switch (ID.value()) {
case llvm::Intrinsic::memcpy:
case llvm::Intrinsic::memmove:
case llvm::Intrinsic::memset:
return false;
default:
break;
}
}
return true;
}
case SILInstructionKind::StoreInst:
switch (cast<StoreInst>(this)->getOwnershipQualifier()) {
case StoreOwnershipQualifier::Unqualified:
case StoreOwnershipQualifier::Init:
case StoreOwnershipQualifier::Trivial:
return false;
case StoreOwnershipQualifier::Assign:
// Assign destroys the old value that was in the memory location before we
// write the new value into the location.
return true;
}
llvm_unreachable("Covered switch isn't covered?!");
}
}
bool SILInstruction::mayReleaseOrReadRefCount() const {
switch (getKind()) {
case SILInstructionKind::IsUniqueInst:
case SILInstructionKind::BeginCOWMutationInst:
case SILInstructionKind::DestroyNotEscapedClosureInst:
return true;
default:
return mayRelease();
}
}
namespace {
class TrivialCloner : public SILCloner<TrivialCloner> {
friend class SILCloner<TrivialCloner>;
friend class SILInstructionVisitor<TrivialCloner>;
SILInstruction *Result = nullptr;
TrivialCloner(SILFunction *F, SILInstruction *InsertPt) : SILCloner(*F) {
Builder.setInsertionPoint(InsertPt);
}
public:
static SILInstruction *doIt(SILInstruction *I, SILInstruction *InsertPt) {
TrivialCloner TC(I->getFunction(), InsertPt);
TC.visit(I);
return TC.Result;
}
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
assert(Orig->getFunction() == &getBuilder().getFunction() &&
"cloning between functions is not supported");
Result = Cloned;
SILCloner<TrivialCloner>::postProcess(Orig, Cloned);
}
SILValue getMappedValue(SILValue Value) {
return Value;
}
SILBasicBlock *remapBasicBlock(SILBasicBlock *BB) { return BB; }
};
} // end anonymous namespace
bool SILInstruction::isAllocatingStack() const {
if (isa<AllocStackInst>(this) ||
isa<AllocPackInst>(this) ||
isa<AllocPackMetadataInst>(this))
return true;
if (auto *ARI = dyn_cast<AllocRefInstBase>(this)) {
if (ARI->canAllocOnStack())
return true;
}
// In OSSA, PartialApply is modeled as a value which borrows its operands
// and whose lifetime is ended by a `destroy_value`.
//
// After OSSA, we make the memory allocation and dependencies explicit again,
// with a `dealloc_stack` ending the closure's lifetime.
if (auto *PA = dyn_cast<PartialApplyInst>(this)) {
return PA->isOnStack()
&& !PA->getFunction()->hasOwnership();
}
if (auto *BAI = dyn_cast<BeginApplyInst>(this)) {
return BAI->isCalleeAllocated();
}
if (auto *BI = dyn_cast<BuiltinInst>(this)) {
// FIXME: BuiltinValueKind::StartAsyncLetWithLocalBuffer
if (auto BK = BI->getBuiltinKind();
BK && (*BK == BuiltinValueKind::StackAlloc ||
*BK == BuiltinValueKind::UnprotectedStackAlloc)) {
return true;
}
}
return false;
}
SILValue SILInstruction::getStackAllocation() const {
if (!isAllocatingStack()) {
return {};
}
if (auto *bai = dyn_cast<BeginApplyInst>(this)) {
return bai->getCalleeAllocationResult();
}
return cast<SingleValueInstruction>(this);
}
bool SILInstruction::isDeallocatingStack() const {
// NOTE: If you're adding a new kind of deallocating instruction,
// there are several places scattered around the SIL optimizer which
// assume that the allocating instruction of a deallocating instruction
// is referenced by operand 0. Keep that true if you can.
if (isa<DeallocStackInst>(this) ||
isa<DeallocStackRefInst>(this) ||
isa<DeallocPackInst>(this) ||
isa<DeallocPackMetadataInst>(this))
return true;
if (auto *BI = dyn_cast<BuiltinInst>(this)) {
// FIXME: BuiltinValueKind::FinishAsyncLet
if (auto BK = BI->getBuiltinKind();
BK && (*BK == BuiltinValueKind::StackDealloc)) {
return true;
}
}
return false;
}
static bool typeOrLayoutInvolvesPack(SILType ty, SILFunction const &F) {
return ty.isOrContainsPack(F);
}
bool SILInstruction::mayRequirePackMetadata(SILFunction const &F) const {
switch (getKind()) {
case SILInstructionKind::AllocPackInst:
case SILInstructionKind::TuplePackElementAddrInst:
case SILInstructionKind::OpenPackElementInst:
return true;
case SILInstructionKind::PartialApplyInst:
case SILInstructionKind::ApplyInst:
case SILInstructionKind::BeginApplyInst:
case SILInstructionKind::TryApplyInst: {
// Check the function type for packs.
auto apply = ApplySite::isa(const_cast<SILInstruction *>(this));
if (typeOrLayoutInvolvesPack(apply.getCallee()->getType(), F))
return true;
// Check the substituted types for packs.
for (auto ty : apply.getSubstitutionMap().getReplacementTypes()) {
if (typeOrLayoutInvolvesPack(F.getTypeLowering(ty).getLoweredType(), F))
return true;
}
return false;
}
case SILInstructionKind::ClassMethodInst:
case SILInstructionKind::DebugValueInst:
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::DestroyValueInst:
// Unary instructions.
{
return typeOrLayoutInvolvesPack(getOperand(0)->getType(), F);
}
case SILInstructionKind::AllocStackInst: {
auto *asi = cast<AllocStackInst>(this);
return typeOrLayoutInvolvesPack(asi->getType(), F);
}
case SILInstructionKind::MetatypeInst: {
auto *mi = cast<MetatypeInst>(this);
return typeOrLayoutInvolvesPack(mi->getType(), F);
}
case SILInstructionKind::WitnessMethodInst: {
auto *wmi = cast<WitnessMethodInst>(this);
auto ty = wmi->getLookupType();
return typeOrLayoutInvolvesPack(F.getTypeLowering(ty).getLoweredType(), F);
}
default:
// Instructions that deallocate stack must not result in pack metadata
// materialization. If they did there would be no way to create the pack
// metadata on stack.
if (isDeallocatingStack())
return false;
// Terminators that exit the function must not result in pack metadata
// materialization.
auto *ti = dyn_cast<TermInst>(this);
if (ti && ti->isFunctionExiting())
return false;
// Check results and operands for packs. If a pack appears, lowering the
// instruction might result in pack metadata emission.
for (auto result : getResults()) {
if (typeOrLayoutInvolvesPack(result->getType(), F))
return true;
}
for (auto operandTy : getOperandTypes()) {
if (typeOrLayoutInvolvesPack(operandTy, F))
return true;
}
for (auto &tdo : getTypeDependentOperands()) {
if (typeOrLayoutInvolvesPack(tdo.get()->getType(), F))
return true;
}
return false;
}
}
/// Create a new copy of this instruction, which retains all of the operands
/// and other information of this one. If an insertion point is specified,
/// then the new instruction is inserted before the specified point, otherwise
/// the new instruction is returned without a parent.
SILInstruction *SILInstruction::clone(SILInstruction *InsertPt) {
SILInstruction *NewInst = TrivialCloner::doIt(this, InsertPt);
return NewInst;
}
/// Returns true if the instruction can be duplicated without any special
/// additional handling. It is important to know this information when
/// you perform such optimizations like e.g. jump-threading.
bool SILInstruction::isTriviallyDuplicatable() const {
if (isAllocatingStack())
return false;
// In OSSA, partial_apply is not considered stack allocating (not handled by
// stack nesting fixup or verification). Nonetheless, prevent it from being
// cloned so OSSA lowering can directly convert it to a single allocation.
if (auto *PA = dyn_cast<PartialApplyInst>(this)) {
return !PA->isOnStack();
}
// Like partial_apply [onstack], mark_dependence [nonescaping] on values
// creates a borrow scope. We currently assume that a set of dominated
// scope-ending uses can be found.
if (auto *MD = dyn_cast<MarkDependenceInst>(this)) {
return !MD->isNonEscaping() || MD->getType().isAddress();
}
if (isa<OpenExistentialAddrInst>(this) || isa<OpenExistentialRefInst>(this) ||
isa<OpenExistentialMetatypeInst>(this) ||
isa<OpenExistentialValueInst>(this) ||
isa<OpenExistentialBoxInst>(this) ||
isa<OpenExistentialBoxValueInst>(this) ||
isa<OpenPackElementInst>(this)) {
// Don't know how to duplicate these properly yet. Inst.clone() per
// instruction does not work. Because the follow-up instructions need to
// reuse the same archetype uuid which would only work if we used a
// cloner.
return false;
}
if (auto *MI = dyn_cast<MethodInst>(this)) {
// We can't build SSA for method values that lower to objc methods.
if (MI->getMember().isForeign)
return false;
}
if (isa<ThrowInst>(this) || isa<ThrowAddrInst>(this))
return false;
// BeginAccess defines the access scope entry point. All associated EndAccess
// instructions must directly operate on the BeginAccess.
if (isa<BeginAccessInst>(this))
return false;
// All users of builtin "once" should directly operate on it (no phis etc)
if (auto *bi = dyn_cast<BuiltinInst>(this)) {
if (bi->getBuiltinInfo().ID == BuiltinValueKind::Once)
return false;
}
// begin_apply creates a token that has to be directly used by the
// corresponding end_apply and abort_apply.
if (isa<BeginApplyInst>(this))
return false;
// dynamic_method_br is not duplicatable because IRGen does not support phi
// nodes of objc_method type.
if (isa<DynamicMethodBranchInst>(this))
return false;
// Can't duplicate get/await_async_continuation.
if (isa<AwaitAsyncContinuationInst>(this) ||
isa<GetAsyncContinuationAddrInst>(this) ||
isa<GetAsyncContinuationInst>(this))
return false;
// Bail if there are any begin-borrow instructions which have no corresponding
// end-borrow uses. This is the case if the control flow ends in a dead-end block.
// After duplicating such a block, the re-borrow flags cannot be recomputed
// correctly for inserted phi arguments.
if (auto *svi = dyn_cast<SingleValueInstruction>(this)) {
if (auto bv = BorrowedValue(lookThroughBorrowedFromDef(svi))) {
if (!bv.hasLocalScopeEndingUses())
return false;
}
}
// If you add more cases here, you should also update SILLoop:canDuplicate.
return true;
}
bool SILInstruction::mayTrap() const {
if (isBuiltinInst(this, BuiltinValueKind::WillThrow)) {
// We don't want willThrow instructions to be removed.
return true;
}
switch(getKind()) {
case SILInstructionKind::CondFailInst:
case SILInstructionKind::UnconditionalCheckedCastInst:
case SILInstructionKind::UnconditionalCheckedCastAddrInst:
return true;
default:
return false;
}
}
bool SILInstruction::isMetaInstruction() const {
// Every instruction that doesn't generate code should be in this list.
switch (getKind()) {
case SILInstructionKind::AllocStackInst:
case SILInstructionKind::DebugValueInst:
return true;
default:
return false;
}
llvm_unreachable("Instruction not handled in isMetaInstruction()!");
}
unsigned SILInstruction::getCachedFieldIndex(NominalTypeDecl *decl,
VarDecl *property) {
return getModule().getFieldIndex(decl, property);
}
unsigned SILInstruction::getCachedCaseIndex(EnumElementDecl *enumElement) {
return getModule().getCaseIndex(enumElement);
}
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
MemoryBehavior B) {
switch (B) {
case MemoryBehavior::None:
return OS << "None";
case MemoryBehavior::MayRead:
return OS << "MayRead";
case MemoryBehavior::MayWrite:
return OS << "MayWrite";
case MemoryBehavior::MayReadWrite:
return OS << "MayReadWrite";
case MemoryBehavior::MayHaveSideEffects:
return OS << "MayHaveSideEffects";
}
llvm_unreachable("Unhandled MemoryBehavior in switch.");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
SILInstruction::ReleasingBehavior B) {
switch (B) {
case SILInstruction::ReleasingBehavior::DoesNotRelease:
return OS << "DoesNotRelease";
case SILInstruction::ReleasingBehavior::MayRelease:
return OS << "MayRelease";
}
llvm_unreachable("Unhandled ReleasingBehavior in switch.");
}
//===----------------------------------------------------------------------===//
// SILInstructionResultArray
//===----------------------------------------------------------------------===//
SILInstructionResultArray::SILInstructionResultArray(
const SingleValueInstruction *SVI)
: Pointer(), Size(1) {
// Make sure that even though we are munging things, we are able to get back
// the original value, types, and operands.
SILValue originalValue(SVI);
SILType originalType = SVI->getType();
(void)originalValue;
(void)originalType;
// *PLEASE READ BEFORE CHANGING*
//
// Since SingleValueInstruction is both a ValueBase and a SILInstruction, but
// SILInstruction is the first parent, we need to ensure that our ValueBase *
// pointer is properly offset. by first static casting to ValueBase and then
// going back to a uint8_t *.
auto *Value = static_cast<const ValueBase *>(SVI);
assert(uintptr_t(Value) != uintptr_t(SVI) &&
"Expected value to be offset from SVI since it is not the first "
"multi-inheritance parent");
Pointer = reinterpret_cast<const uint8_t *>(Value);
#ifndef NDEBUG
assert(originalValue == (*this)[0] &&
"Wrong value returned for single result");
assert(originalType == (*this)[0]->getType());
auto ValueRange = getValues();
assert(1 == std::distance(ValueRange.begin(), ValueRange.end()));
assert(originalValue == *ValueRange.begin());
auto TypedRange = getTypes();
assert(1 == std::distance(TypedRange.begin(), TypedRange.end()));
assert(originalType == *TypedRange.begin());
SILInstructionResultArray Copy = *this;
assert(Copy.hasSameTypes(*this));
assert(Copy == *this);
#endif
}
SILInstructionResultArray::SILInstructionResultArray(
ArrayRef<MultipleValueInstructionResult> MVResults)
: Pointer(nullptr), Size(MVResults.size()) {
// We are assuming here that MultipleValueInstructionResult when static_cast
// is not offset.
if (Size)
Pointer = reinterpret_cast<const uint8_t *>(&MVResults[0]);
#ifndef NDEBUG
// Verify our invariants.
assert(size() == MVResults.size());
auto ValueRange = getValues();
auto VRangeBegin = ValueRange.begin();
auto VRangeIter = VRangeBegin;
auto VRangeEnd = ValueRange.end();
assert(MVResults.size() == unsigned(std::distance(VRangeBegin, VRangeEnd)));
auto TypedRange = getTypes();
auto TRangeBegin = TypedRange.begin();
auto TRangeIter = TRangeBegin;
auto TRangeEnd = TypedRange.end();
assert(MVResults.size() == unsigned(std::distance(TRangeBegin, TRangeEnd)));
for (unsigned i : indices(MVResults)) {
assert(SILValue(&MVResults[i]) == (*this)[i]);
assert(SILValue(&MVResults[i])->getType() == (*this)[i]->getType());
assert(SILValue(&MVResults[i]) == (*VRangeIter));
assert(SILValue(&MVResults[i])->getType() == (*VRangeIter)->getType());
assert(SILValue(&MVResults[i])->getType() == *TRangeIter);
++VRangeIter;
++TRangeIter;
}
SILInstructionResultArray Copy = *this;
assert(Copy.hasSameTypes(*this));
assert(Copy == *this);
#endif
}
SILValue SILInstructionResultArray::operator[](size_t Index) const {
assert(Index < Size && "Index out of bounds");
// *NOTE* In the case where we have a single instruction, Index will always
// necessarily be 0 implying that it is safe for us to just multiple Index by
// sizeof(MultipleValueInstructionResult).
size_t Offset = sizeof(MultipleValueInstructionResult) * Index;
return SILValue(reinterpret_cast<const ValueBase *>(&Pointer[Offset]));
}
bool SILInstructionResultArray::hasSameTypes(
const SILInstructionResultArray &rhs) {
auto &lhs = *this;
if (lhs.size() != rhs.size())
return false;
for (unsigned i : indices(lhs)) {
if (lhs[i]->getType() != rhs[i]->getType())
return false;
}
return true;
}
bool SILInstructionResultArray::
operator==(const SILInstructionResultArray &other) const {
if (size() != other.size())
return false;
for (auto i : indices(*this))
if ((*this)[i] != other[i])
return false;
return true;
}
SILInstructionResultArray::type_range
SILInstructionResultArray::getTypes() const {
SILType (*F)(SILValue) = [](SILValue V) -> SILType {
return V->getType();
};
return {llvm::map_iterator(begin(), F), llvm::map_iterator(end(), F)};
}
const ValueBase *SILInstructionResultArray::front() const {
assert(size() && "Can not access front of an empty result array");
return *begin();
}
const ValueBase *SILInstructionResultArray::back() const {
assert(size() && "Can not access back of an empty result array");
if (std::next(begin()) == end()) {
return *begin();
}
return *std::prev(end());
}
//===----------------------------------------------------------------------===//
// Defined opened archetypes
//===----------------------------------------------------------------------===//
bool SILInstruction::definesLocalArchetypes() const {
bool definesAny = false;
forEachDefinedLocalEnvironment([&](GenericEnvironment *genericEnv,
SILValue dependency) {
definesAny = true;
});
return definesAny;
}
void SILInstruction::forEachDefinedLocalEnvironment(
llvm::function_ref<void(GenericEnvironment *, SILValue)> fn) const {
switch (getKind()) {
#define SINGLE_VALUE_SINGLE_OPEN(TYPE) \
case SILInstructionKind::TYPE: { \
auto I = cast<TYPE>(this); \
auto archetype = I->getDefinedOpenedArchetype(); \
return fn(archetype->getGenericEnvironment(), I); \
}
SINGLE_VALUE_SINGLE_OPEN(OpenExistentialAddrInst)
SINGLE_VALUE_SINGLE_OPEN(OpenExistentialRefInst)
SINGLE_VALUE_SINGLE_OPEN(OpenExistentialBoxInst)
SINGLE_VALUE_SINGLE_OPEN(OpenExistentialBoxValueInst)
SINGLE_VALUE_SINGLE_OPEN(OpenExistentialMetatypeInst)
SINGLE_VALUE_SINGLE_OPEN(OpenExistentialValueInst)
#undef SINGLE_VALUE_SINGLE_OPEN
case SILInstructionKind::OpenPackElementInst: {
auto I = cast<OpenPackElementInst>(this);
return fn(I->getOpenedGenericEnvironment(), I);
}
default:
return;
}
}
//===----------------------------------------------------------------------===//
// Multiple Value Instruction
//===----------------------------------------------------------------------===//
std::optional<unsigned>
MultipleValueInstruction::getIndexOfResult(SILValue Target) const {
// First make sure we actually have one of our instruction results.
auto *MVIR = dyn_cast<MultipleValueInstructionResult>(Target);
if (!MVIR || MVIR->getParent() != this)
return std::nullopt;
return MVIR->getIndex();
}
MultipleValueInstructionResult::MultipleValueInstructionResult(
unsigned index, SILType type, ValueOwnershipKind ownershipKind)
: ValueBase(ValueKind::MultipleValueInstructionResult, type) {
setOwnershipKind(ownershipKind);
setIndex(index);
}
void MultipleValueInstructionResult::setOwnershipKind(
ValueOwnershipKind NewKind) {
sharedUInt8().MultipleValueInstructionResult.valueOwnershipKind = uint8_t(NewKind);
}
void MultipleValueInstructionResult::setIndex(unsigned NewIndex) {
// We currently use 32 bits to store the Index. A previous comment wrote
// that "500k fields is probably enough".
sharedUInt32().MultipleValueInstructionResult.index = NewIndex;
}
ValueOwnershipKind MultipleValueInstructionResult::getOwnershipKind() const {
return ValueOwnershipKind(sharedUInt8().MultipleValueInstructionResult.valueOwnershipKind);
}
MultipleValueInstruction *MultipleValueInstructionResult::getParentImpl() const {
char *Ptr = reinterpret_cast<char *>(
const_cast<MultipleValueInstructionResult *>(this));
// We know that we are in a trailing objects array with an extra prefix
// element that contains the pointer to our parent SILNode. So grab the
// address of the beginning of the array.
Ptr -= getIndex() * sizeof(MultipleValueInstructionResult);
// We may have some bytes of padding depending on our platform. Move past
// those bytes if we need to.
static_assert(alignof(MultipleValueInstructionResult) >=
alignof(MultipleValueInstruction *),
"We assume this relationship in between the alignments");
Ptr -= alignof(MultipleValueInstructionResult) -
alignof(MultipleValueInstruction *);
// Then subtract the size of MultipleValueInstruction.
Ptr -= sizeof(MultipleValueInstruction *);
// Now that we have the correct address of our parent instruction, grab it and
// return it avoiding type punning.
uintptr_t value;
memcpy(&value, Ptr, sizeof(value));
return reinterpret_cast<MultipleValueInstruction *>(value);
}
/// Returns true if evaluation of this node may cause suspension of an
/// async task.
///
/// If you change this function, you probably also need to change
/// `isSuspensionPoint` in OptimizeHopToExecutor.cpp, which intentionally
/// excludes several of these cases.
bool SILInstruction::maySuspend() const {
// await_async_continuation always suspends the current task.
if (isa<AwaitAsyncContinuationInst>(this))
return true;
// hop_to_executor also may cause a suspension
if (isa<HopToExecutorInst>(this))
return true;
// Fully applying an async function may suspend the caller.
if (auto applySite = FullApplySite::isa(const_cast<SILInstruction*>(this))) {
return applySite.getOrigCalleeType()->isAsync();
}
if (auto bi = dyn_cast<BuiltinInst>(this)) {
if (auto bk = bi->getBuiltinKind()) {
if (*bk == BuiltinValueKind::FinishAsyncLet)
return true;
}
}
return false;
}
static SILValue lookThroughOwnershipAndForwardingInsts(SILValue value) {
auto current = value;
while (true) {
if (auto *inst = current->getDefiningInstruction()) {
switch (inst->getKind()) {
case SILInstructionKind::MoveValueInst:
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::BeginBorrowInst:
current = inst->getOperand(0);
continue;
default:
break;
}
auto forward = ForwardingOperation(inst);
Operand *op = nullptr;
if (forward && (op = forward.getSingleForwardingOperand())) {
current = op->get();
continue;
}
} else if (auto *result = SILArgument::isTerminatorResult(current)) {
auto *op = result->forwardedTerminatorResultOperand();
if (!op) {
break;
}
current = op->get();
continue;
}
break;
}
return current;
}
bool
PartialApplyInst::visitOnStackLifetimeEnds(
llvm::function_ref<bool (Operand *)> func) const {
assert(getFunction()->hasOwnership()
&& isOnStack()
&& "only meaningful for OSSA stack closures");
bool noUsers = true;
auto *function = getFunction();
SmallVector<SILBasicBlock *, 32> discoveredBlocks;
SSAPrunedLiveness liveness(function, &discoveredBlocks);
liveness.initializeDef(this);
StackList<SILValue> values(function);
values.push_back(this);
while (!values.empty()) {
auto value = values.pop_back_val();
for (auto *use : value->getUses()) {
if (!use->isConsuming()) {
if (auto *cvi = dyn_cast<CopyValueInst>(use->getUser())) {
values.push_back(cvi);
}
continue;
}
noUsers = false;
if (isa<DestroyValueInst>(use->getUser())) {
liveness.updateForUse(use->getUser(), /*lifetimeEnding=*/true);
continue;
}
auto forward = ForwardingOperand(use);
if (!forward) {
// There shouldn't be any non-forwarding consumptions of a nonescaping
// partial_apply that don't forward it along, aside from destroy_value.
//
// On-stack partial_apply cannot be cloned, so it should never be used
// by a BranchInst.
//
// This is a fatal error because it performs SIL verification that is
// not separately checked in the verifier. It is the only check that
// verifies the structural requirements of on-stack partial_apply uses.
if (lookThroughOwnershipAndForwardingInsts(use->get()) !=
SILValue(this)) {
// Consumes of values which aren't "essentially" the
// partial_apply [on_stack]
// are okay. For example, a not-on_stack partial_apply that captures
// it.
continue;
}
llvm::errs() << "partial_apply [on_stack] use:\n";
auto *user = use->getUser();
user->printInContext(llvm::errs());
if (isa<BranchInst>(user)) {
llvm::report_fatal_error("partial_apply [on_stack] cannot be cloned");
}
llvm::report_fatal_error("partial_apply [on_stack] must be directly "
"forwarded to a destroy_value");
}
forward.visitForwardedValues([&values](auto value) {
values.push_back(value);
return true;
});
}
}
PrunedLivenessBoundary boundary;
liveness.computeBoundary(boundary);
for (auto *inst : boundary.lastUsers) {
// Only destroy_values were added to liveness, so only destroy_values can be
// the last users.
auto *dvi = cast<DestroyValueInst>(inst);
auto keepGoing = func(&dvi->getOperandRef());
if (!keepGoing) {
return false;
}
}
return !noUsers;
}
namespace swift::test {
FunctionTest PartialApplyPrintOnStackLifetimeEnds(
"partial_apply_print_on_stack_lifetime_ends",
[](auto &function, auto &arguments, auto &test) {
auto *inst = arguments.takeInstruction();
auto *pai = cast<PartialApplyInst>(inst);
function.print(llvm::outs());
auto result = pai->visitOnStackLifetimeEnds([](auto *operand) {
operand->print(llvm::outs());
return true;
});
const char *resultString = result ? "true" : "false";
llvm::outs() << "returned: " << resultString << "\n";
});
} // end namespace swift::test
static bool
visitRecursivelyLifetimeEndingUses(
SILValue i, bool &noUsers,
llvm::function_ref<bool(Operand *)> visitScopeEnd,
llvm::function_ref<bool(Operand *)> visitUnknownUse) {
StackList<SILValue> values(i->getFunction());
values.push_back(i);
while (!values.empty()) {
auto value = values.pop_back_val();
for (Operand *use : value->getConsumingUses()) {
noUsers = false;
if (isa<DestroyValueInst>(use->getUser())) {
if (!visitScopeEnd(use)) {
return false;
}
continue;
}
if (auto *ret = dyn_cast<ReturnInst>(use->getUser())) {
auto fnTy = ret->getFunction()->getLoweredFunctionType();
assert(!fnTy->getLifetimeDependencies().empty());
if (!visitScopeEnd(use)) {
return false;
}
continue;
}
// FIXME: Handle store to indirect result
auto *user = use->getUser();
if (user->getNumResults() == 0) {
return visitUnknownUse(use);
}
for (auto res : use->getUser()->getResults()) {
values.push_back(res);
}
}
}
return true;
}
// FIXME: Rather than recursing through all results, this should only recurse
// through ForwardingInstruction and OwnershipTransitionInstruction and the
// client should prove that any other uses cannot be upstream from a consume of
// the dependent value.
bool MarkDependenceInst::visitNonEscapingLifetimeEnds(
llvm::function_ref<bool (Operand *)> visitScopeEnd,
llvm::function_ref<bool (Operand *)> visitUnknownUse) {
assert(getFunction()->hasOwnership() && isNonEscaping()
&& "only meaningful for nonescaping dependencies");
assert(getType().isObject() && "lifetime ends only exist for values");
assert(getOwnershipKind() == OwnershipKind::Owned
&& getType().isEscapable(*getFunction())
&& "only correct for owned escapable values");
bool noUsers = true;
if (!visitRecursivelyLifetimeEndingUses(this, noUsers, visitScopeEnd,
visitUnknownUse)) {
return false;
}
return !noUsers;
}
bool DestroyValueInst::isFullDeinitialization() {
return !isa<DropDeinitInst>(lookThroughOwnershipInsts(getOperand()));
}
PartialApplyInst *
DestroyValueInst::getNonescapingClosureAllocation() const {
SILValue operand = getOperand();
auto operandFnTy = operand->getType().getAs<SILFunctionType>();
// The query doesn't make sense if we aren't operating on a noescape closure
// to begin with.
if (!operandFnTy || !operandFnTy->isTrivialNoEscape()) {
return nullptr;
}
// Look through marker and conversion instructions that would forward
// ownership of the original partial application.
while (true) {
if (auto mdi = dyn_cast<MarkDependenceInst>(operand)) {
operand = mdi->getValue();
continue;
} else if (isa<ConvertEscapeToNoEscapeInst>(operand)
|| isa<ThinToThickFunctionInst>(operand)) {
// Stop at a conversion from escaping closure, since there's no stack
// allocation in that case.
return nullptr;
} else if (auto convert = ConversionOperation(operand)) {
operand = convert.getConverted();
continue;
} else if (auto pa = dyn_cast<PartialApplyInst>(operand)) {
// If we found the `[on_stack]` partial apply, we're done.
if (pa->isOnStack()) {
return pa;
}
// Any other kind of partial apply fails to pass muster.
return nullptr;
} else {
// The original partial_apply instruction should only be forwarded
// through one of the above instructions. Anything else should lead us
// to a copy or borrow of the closure from somewhere else.
assert((isa<CopyValueInst>(operand)
|| isa<SILArgument>(operand)
|| isa<DifferentiableFunctionInst>(operand)
|| isa<DifferentiableFunctionExtractInst>(operand)
|| isa<LoadInst>(operand)
|| (operand->dump(), false))
&& "unexpected forwarding instruction for noescape closure");
return nullptr;
}
}
}
bool
UncheckedTakeEnumDataAddrInst::isDestructive(EnumDecl *forEnum, SILModule &M) {
// We only potentially use spare bit optimization when an enum is always
// loadable.
auto sig = forEnum->getGenericSignature().getCanonicalSignature();
if (SILType::isAddressOnly(forEnum->getDeclaredInterfaceType()->getReducedType(sig),
M.Types, sig,
TypeExpansionContext::minimal())) {
return false;
}
// We only overlap spare bits with valid payload values when an enum has
// multiple payloads.
bool sawPayloadCase = false;
for (auto element : forEnum->getAllElements()) {
if (element->hasAssociatedValues()) {
if (sawPayloadCase) {
// TODO: If the associated value's type is always visibly empty then it
// would get laid out like a no-payload case.
return true;
} else {
sawPayloadCase = true;
}
}
}
return false;
}
SILInstructionContext SILInstructionContext::forFunctionInModule(SILFunction *F,
SILModule &M) {
if (F) {
assert(&F->getModule() == &M);
return forFunction(*F);
}
return forModule(M);
}
SILFunction *SILInstructionContext::getFunction() {
return *storage.dyn_cast<SILFunction *>();
}
SILModule &SILInstructionContext::getModule() {
if (auto *m = storage.dyn_cast<SILModule *>()) {
return **m;
}
return storage.get<SILFunction *>()->getModule();
}
#ifndef NDEBUG
//---
// Static verification of multiple value properties.
//
// Make sure that all subclasses of MultipleValueInstruction implement
// getAllResults()
#define MULTIPLE_VALUE_INST(ID, TEXTUALNAME, PARENT, MEMBEHAVIOR, MAYRELEASE) \
static_assert(IMPLEMENTS_METHOD(ID, PARENT, getAllResults, \
SILInstructionResultArray() const), \
#ID " does not implement SILInstructionResultArray " \
"getAllResults() const?!");
// Check that all subclasses of MultipleValueInstructionResult are the same size
// as MultipleValueInstructionResult.
//
// If this changes, we just need to expand the size of SILInstructionResultArray
// to contain a stride. But we assume this now so we should enforce it.
#define MULTIPLE_VALUE_INST_RESULT(ID, PARENT) \
static_assert( \
sizeof(ID) == sizeof(PARENT) && alignof(ID) == alignof(PARENT), \
"Expected all multiple value inst result to be the same size?!");
#include "swift/SIL/SILNodes.def"
#endif