Files
swift-mirror/lib/SIL/IR/SILInstructions.cpp
2025-10-23 05:18:59 -07:00

3556 lines
145 KiB
C++

//===--- SILInstructions.cpp - Instructions for SIL code ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the high-level SILInstruction classes used for SIL code.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/AssertImplements.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Unicode.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILSymbolVisitor.h"
#include "swift/SIL/SILVisitor.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/ErrorHandling.h"
using namespace swift;
using namespace Lowering;
/// Allocate an instruction that inherits from llvm::TrailingObjects<>.
template <class Inst, class... TrailingTypes, class... CountTypes>
static void *allocateTrailingInst(SILFunction &F, CountTypes... counts) {
return F.getModule().allocateInst(
Inst::template totalSizeToAlloc<TrailingTypes...>(counts...),
alignof(Inst));
}
namespace {
class TypeDependentOperandCollector {
SmallVector<GenericEnvironment *, 4> genericEnvs;
bool hasDynamicSelf = false;
public:
void collect(CanType type);
void collect(SubstitutionMap subs);
void collect(SILType type) {
collect(type.getASTType());
}
template <class T>
void collect(ArrayRef<T> array) {
for (auto &elt: array)
collect(elt);
}
void collectAll() {}
template <class T, class... Ts>
void collectAll(T &&first, Ts &&...rest) {
collect(first);
collectAll(std::forward<Ts>(rest)...);
}
void addTo(SmallVectorImpl<SILValue> &typeDependentOperands,
SILInstructionContext context);
};
}
/// Collect root open archetypes from a given type into \p RootLocalArchetypes.
/// \p RootLocalArchetypes is being used as a set. We don't use a real set type
/// here for performance reasons.
void TypeDependentOperandCollector::collect(CanType type) {
if (!type)
return;
if (type->hasDynamicSelfType())
hasDynamicSelf = true;
if (!type->hasLocalArchetype())
return;
type.visit([&](CanType t) {
if (const auto local = dyn_cast<LocalArchetypeType>(t)) {
auto *genericEnv = local->getGenericEnvironment();
// Add this local archetype's environment if it was not seen yet.
// We don't use a set here, because the number of open archetypes
// is usually very small and using a real set may introduce too
// much overhead.
if (std::find(genericEnvs.begin(), genericEnvs.end(),
genericEnv) == genericEnvs.end())
genericEnvs.push_back(genericEnv);
}
});
}
/// Collect type dependencies from the replacement types of a
/// substitution map.
void TypeDependentOperandCollector::collect(SubstitutionMap subs) {
for (Type replacement : subs.getReplacementTypes()) {
// Substitutions in SIL should really be canonical.
auto ReplTy = replacement->getCanonicalType();
collect(ReplTy);
}
}
/// Given that we've collected a set of type dependencies, add operands
/// for those dependencies to the given vector.
void TypeDependentOperandCollector::addTo(SmallVectorImpl<SILValue> &operands,
SILInstructionContext context) {
for (GenericEnvironment *genericEnv : genericEnvs) {
SILValue def = context.getModule().getLocalGenericEnvironmentDef(
genericEnv, context.getFunction());
assert(def->getFunction() == context.getFunction() &&
"def of local environment is in wrong function");
operands.push_back(def);
}
if (hasDynamicSelf) {
assert(context.getFunction());
operands.push_back(context.getFunction()->getDynamicSelfMetadata());
}
}
/// Collects all root local archetypes from a type and a substitution list, and
/// forms a corresponding list of operands.
/// We need to know the number of root local archetypes to estimate the number
/// of corresponding operands for the instruction being formed, because we need
/// to reserve enough memory for these operands.
template <class... Sources>
static void
collectTypeDependentOperands(SmallVectorImpl<SILValue> &typeDependentOperands,
SILInstructionContext context,
Sources &&...sources) {
TypeDependentOperandCollector collector;
collector.collectAll(std::forward<Sources>(sources)...);
collector.addTo(typeDependentOperands, context);
}
template <class... Sources>
static void
collectTypeDependentOperands(SmallVectorImpl<SILValue> &typeDependentOperands,
SILFunction &function, Sources &&...sources) {
collectTypeDependentOperands(typeDependentOperands,
SILInstructionContext::forFunction(function),
std::forward<Sources>(sources)...);
}
//===----------------------------------------------------------------------===//
// SILInstruction Subclasses
//===----------------------------------------------------------------------===//
template <typename INST>
static void *allocateDebugVarCarryingInst(SILModule &M,
std::optional<SILDebugVariable> Var,
ArrayRef<SILValue> Operands = {}) {
return M.allocateInst(
sizeof(INST) + (Var ? Var->Name.size() : 0) +
(Var && Var->Type ? sizeof(SILType) : 0) +
(Var && Var->Loc ? sizeof(SILLocation) : 0) +
(Var && Var->Scope ? sizeof(const SILDebugScope *) : 0) +
sizeof(SILDIExprElement) * (Var ? Var->DIExpr.getNumElements() : 0) +
sizeof(Operand) * Operands.size(),
alignof(INST));
}
TailAllocatedDebugVariable::TailAllocatedDebugVariable(
std::optional<SILDebugVariable> Var, char *buf, SILType *AuxVarType,
SILLocation *DeclLoc, const SILDebugScope **DeclScope,
SILDIExprElement *DIExprOps) {
if (!Var) {
Bits.RawValue = 0;
return;
}
Bits.Data.HasValue = true;
Bits.Data.Constant = Var->Constant;
Bits.Data.ArgNo = Var->ArgNo;
Bits.Data.NameLength = Var->Name.size();
assert(Bits.Data.ArgNo == Var->ArgNo && "Truncation");
assert(Bits.Data.NameLength == Var->Name.size() && "Truncation");
memcpy(buf, Var->Name.data(), Bits.Data.NameLength);
if (AuxVarType && Var->Type)
*AuxVarType = *Var->Type;
if (DeclLoc && Var->Loc)
*DeclLoc = *Var->Loc;
if (DeclScope && Var->Scope)
*DeclScope = Var->Scope;
if (DIExprOps) {
llvm::ArrayRef<SILDIExprElement> Ops(Var->DIExpr.Elements);
memcpy(DIExprOps, Ops.data(), sizeof(SILDIExprElement) * Ops.size());
}
}
StringRef TailAllocatedDebugVariable::getName(const char *buf) const {
if (Bits.Data.NameLength)
return StringRef(buf, Bits.Data.NameLength);
return StringRef();
}
std::optional<SILDebugVariable>
SILDebugVariable::createFromAllocation(const AllocationInst *AI) {
if (const auto *ASI = dyn_cast_or_null<AllocStackInst>(AI))
return ASI->getVarInfo();
// TODO: Support AllocBoxInst
return {};
}
AllocStackInst::AllocStackInst(
SILDebugLocation Loc, SILType elementType,
ArrayRef<SILValue> TypeDependentOperands, SILFunction &F,
std::optional<SILDebugVariable> Var,
HasDynamicLifetime_t hasDynamicLifetime, IsLexical_t isLexical,
IsFromVarDecl_t isFromVarDecl,
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo)
: InstructionBase(Loc, elementType.getAddressType()),
SILDebugVariableSupplement(Var ? Var->DIExpr.getNumElements() : 0,
Var ? Var->Type.has_value() : false,
Var ? Var->Loc.has_value() : false,
Var ? Var->Scope != nullptr : false),
// Initialize VarInfo with a temporary raw value of 0. The real
// initialization can only be done after `numOperands` is set (see below).
VarInfo(0) {
sharedUInt8().AllocStackInst.dynamicLifetime = (bool)hasDynamicLifetime;
sharedUInt8().AllocStackInst.lexical = (bool)isLexical;
sharedUInt8().AllocStackInst.fromVarDecl = (bool)isFromVarDecl;
sharedUInt8().AllocStackInst.usesMoveableValueDebugInfo =
(bool)usesMoveableValueDebugInfo || elementType.isMoveOnly();
sharedUInt32().AllocStackInst.numOperands = TypeDependentOperands.size();
// VarInfo must be initialized after
// `sharedUInt32().AllocStackInst.numOperands`! Otherwise the trailing object
// addresses are wrong.
VarInfo = TailAllocatedDebugVariable(
Var, getTrailingObjects<char>(), getTrailingObjects<SILType>(),
getTrailingObjects<SILLocation>(),
getTrailingObjects<const SILDebugScope *>(),
getTrailingObjects<SILDIExprElement>());
assert(sharedUInt32().AllocStackInst.numOperands ==
TypeDependentOperands.size() &&
"Truncation");
TrailingOperandsList::InitOperandsList(getAllOperands().begin(), this,
TypeDependentOperands);
}
AllocStackInst *AllocStackInst::create(SILDebugLocation Loc,
SILType elementType, SILFunction &F,
std::optional<SILDebugVariable> Var,
HasDynamicLifetime_t hasDynamicLifetime,
IsLexical_t isLexical,
IsFromVarDecl_t isFromVarDecl,
UsesMoveableValueDebugInfo_t wasMoved) {
// Don't store the same information twice.
if (Var) {
if (Var->Loc == Loc.getLocation().strippedForDebugVariable())
Var->Loc = {};
if (Var->Scope == Loc.getScope())
Var->Scope = nullptr;
if (Var->Type == elementType)
Var->Type = {};
}
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F,
elementType.getASTType());
void *Buffer = allocateDebugVarCarryingInst<AllocStackInst>(
F.getModule(), Var, TypeDependentOperands);
return ::new (Buffer)
AllocStackInst(Loc, elementType, TypeDependentOperands, F, Var,
hasDynamicLifetime, isLexical, isFromVarDecl, wasMoved);
}
VarDecl *AllocationInst::getDecl() const {
if (auto ASI = dyn_cast<AllocStackInst>(this)) {
return ASI->getVarLoc().getAsASTNode<VarDecl>();
}
return getLoc().getAsASTNode<VarDecl>();
}
DeallocStackInst *AllocStackInst::getSingleDeallocStack() const {
DeallocStackInst *Dealloc = nullptr;
for (auto *U : getUses()) {
if (auto DS = dyn_cast<DeallocStackInst>(U->getUser())) {
if (Dealloc == nullptr) {
Dealloc = DS;
continue;
}
// Already saw a dealloc_stack.
return nullptr;
}
}
return Dealloc;
}
AllocPackInst *AllocPackInst::create(SILDebugLocation loc,
SILType packType,
SILFunction &F) {
assert(packType.isObject());
assert(packType.is<SILPackType>() && "pack type must be lowered");
auto resultType = packType.getAddressType();
SmallVector<SILValue, 8> allOperands;
collectTypeDependentOperands(allOperands, F, packType);
auto size = totalSizeToAlloc<swift::Operand>(allOperands.size());
auto buffer = F.getModule().allocateInst(size, alignof(AllocPackInst));
return ::new (buffer) AllocPackInst(loc, resultType, allOperands);
}
AllocRefInstBase::AllocRefInstBase(SILInstructionKind Kind,
SILDebugLocation Loc,
SILType ObjectType,
bool objc, bool canBeOnStack, bool isBare,
ArrayRef<SILType> ElementTypes)
: AllocationInst(Kind, Loc, ObjectType) {
sharedUInt8().AllocRefInstBase.objC = objc;
sharedUInt8().AllocRefInstBase.onStack = canBeOnStack;
sharedUInt8().AllocRefInstBase.isBare = isBare;
sharedUInt8().AllocRefInstBase.numTailTypes = ElementTypes.size();
assert(sharedUInt8().AllocRefInstBase.numTailTypes ==
ElementTypes.size() && "Truncation");
assert(!objc || ElementTypes.empty());
}
AllocRefInst *AllocRefInst::create(SILDebugLocation Loc, SILFunction &F,
SILType ObjectType,
bool objc, bool canBeOnStack, bool isBare,
ArrayRef<SILType> ElementTypes,
ArrayRef<SILValue> ElementCountOperands) {
assert(ElementTypes.size() == ElementCountOperands.size());
assert(!objc || ElementTypes.empty());
SmallVector<SILValue, 8> AllOperands(ElementCountOperands.begin(),
ElementCountOperands.end());
collectTypeDependentOperands(AllOperands, F, ElementTypes, ObjectType);
auto Size = totalSizeToAlloc<swift::Operand, SILType>(AllOperands.size(),
ElementTypes.size());
auto Buffer = F.getModule().allocateInst(Size, alignof(AllocRefInst));
return ::new (Buffer) AllocRefInst(Loc, F, ObjectType, objc, canBeOnStack, isBare,
ElementTypes, AllOperands);
}
AllocRefDynamicInst *
AllocRefDynamicInst::create(SILDebugLocation DebugLoc, SILFunction &F,
SILValue metatypeOperand, SILType ty, bool objc,
bool canBeOnStack,
ArrayRef<SILType> ElementTypes,
ArrayRef<SILValue> ElementCountOperands) {
SmallVector<SILValue, 8> AllOperands(ElementCountOperands.begin(),
ElementCountOperands.end());
AllOperands.push_back(metatypeOperand);
collectTypeDependentOperands(AllOperands, F, ty, ElementTypes);
auto Size = totalSizeToAlloc<swift::Operand, SILType>(AllOperands.size(),
ElementTypes.size());
auto Buffer = F.getModule().allocateInst(Size, alignof(AllocRefDynamicInst));
return ::new (Buffer)
AllocRefDynamicInst(DebugLoc, ty, objc, canBeOnStack, ElementTypes,
AllOperands);
}
bool AllocRefDynamicInst::isDynamicTypeDeinitAndSizeKnownEquivalentToBaseType() const {
auto baseType = this->getType();
auto classType = baseType.getASTType();
// We know that the dynamic type for _ContiguousArrayStorage is compatible
// with the base type in size and deinit behavior.
if (classType->is_ContiguousArrayStorage())
return true;
return false;
}
AllocBoxInst::AllocBoxInst(
SILDebugLocation Loc, CanSILBoxType BoxType,
ArrayRef<SILValue> TypeDependentOperands, SILFunction &F,
std::optional<SILDebugVariable> Var,
HasDynamicLifetime_t hasDynamicLifetime, bool reflection,
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo,
HasPointerEscape_t hasPointerEscape)
: NullaryInstructionWithTypeDependentOperandsBase(
Loc, TypeDependentOperands, SILType::getPrimitiveObjectType(BoxType)),
VarInfo(Var, getTrailingObjects<char>()) {
sharedUInt8().AllocBoxInst.dynamicLifetime = hasDynamicLifetime;
sharedUInt8().AllocBoxInst.reflection = reflection;
// If we have a noncopyable type, always set uses mvoeable value debug info.
auto fieldTy = getSILBoxFieldType(F.getTypeExpansionContext(), BoxType,
F.getModule().Types, 0);
if (fieldTy.isMoveOnly()) {
usesMoveableValueDebugInfo = UsesMoveableValueDebugInfo;
}
sharedUInt8().AllocBoxInst.usesMoveableValueDebugInfo =
(bool)usesMoveableValueDebugInfo;
sharedUInt8().AllocBoxInst.pointerEscape = (bool)hasPointerEscape;
}
AllocBoxInst *
AllocBoxInst::create(SILDebugLocation Loc, CanSILBoxType BoxType,
SILFunction &F, std::optional<SILDebugVariable> Var,
HasDynamicLifetime_t hasDynamicLifetime, bool reflection,
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo,
HasPointerEscape_t hasPointerEscape) {
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, BoxType);
auto Sz = totalSizeToAlloc<swift::Operand, char>(TypeDependentOperands.size(),
Var ? Var->Name.size() : 0);
auto Buf = F.getModule().allocateInst(Sz, alignof(AllocBoxInst));
return ::new (Buf) AllocBoxInst(Loc, BoxType, TypeDependentOperands, F, Var,
hasDynamicLifetime, reflection,
usesMoveableValueDebugInfo, hasPointerEscape);
}
SILType AllocBoxInst::getAddressType() const {
return getSILBoxFieldType(TypeExpansionContext(*this->getFunction()),
getBoxType(), getModule().Types, 0)
.getAddressType();
}
DebugValueInst::DebugValueInst(
SILDebugLocation DebugLoc, SILValue Operand, SILDebugVariable Var,
PoisonRefs_t poisonRefs,
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo, bool trace)
: UnaryInstructionBase(DebugLoc, Operand),
SILDebugVariableSupplement(Var.DIExpr.getNumElements(),
Var.Type.has_value(), Var.Loc.has_value(),
Var.Scope),
VarInfo(Var, getTrailingObjects<char>(), getTrailingObjects<SILType>(),
getTrailingObjects<SILLocation>(),
getTrailingObjects<const SILDebugScope *>(),
getTrailingObjects<SILDIExprElement>()) {
setPoisonRefs(poisonRefs);
if (usesMoveableValueDebugInfo || Operand->getType().isMoveOnly())
setUsesMoveableValueDebugInfo();
setTrace(trace);
}
DebugValueInst *DebugValueInst::create(SILDebugLocation DebugLoc,
SILValue Operand, SILModule &M,
SILDebugVariable Var,
PoisonRefs_t poisonRefs,
UsesMoveableValueDebugInfo_t wasMoved,
bool trace) {
// Don't store the same information twice.
if (Var.Loc == DebugLoc.getLocation().strippedForDebugVariable())
Var.Loc = {};
if (Var.Scope == DebugLoc.getScope())
Var.Scope = nullptr;
if (Var.Type == Operand->getType().getObjectType())
Var.Type = {};
void *buf = allocateDebugVarCarryingInst<DebugValueInst>(M, Var);
return ::new (buf)
DebugValueInst(DebugLoc, Operand, Var, poisonRefs, wasMoved, trace);
}
DebugValueInst *
DebugValueInst::createAddr(SILDebugLocation DebugLoc, SILValue Operand,
SILModule &M, SILDebugVariable Var,
UsesMoveableValueDebugInfo_t wasMoved, bool trace) {
// For alloc_stack, debug_value is used to annotate the associated
// memory location, so we shouldn't attach op_deref.
if (!isa<AllocStackInst>(Operand))
Var.DIExpr.prependElements(
{SILDIExprElement::createOperator(SILDIExprOperator::Dereference)});
return DebugValueInst::create(DebugLoc, Operand, M, Var, DontPoisonRefs,
wasMoved, trace);
}
bool DebugValueInst::exprStartsWithDeref() const {
if (!NumDIExprOperands)
return false;
llvm::ArrayRef<SILDIExprElement> DIExprElements(
getTrailingObjects<SILDIExprElement>(), NumDIExprOperands);
return DIExprElements.front().getAsOperator()
== SILDIExprOperator::Dereference;
}
VarDecl *DebugValueInst::getDecl() const {
return getVarLoc().getAsASTNode<VarDecl>();
}
VarDecl *SILDebugVariable::getDecl() const {
if (!Loc)
return nullptr;
return Loc->getAsASTNode<VarDecl>();
}
AllocExistentialBoxInst *AllocExistentialBoxInst::create(
SILDebugLocation Loc, SILType ExistentialType, CanType ConcreteType,
ArrayRef<ProtocolConformanceRef> Conformances,
SILFunction *F) {
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, *F, ConcreteType);
SILModule &Mod = F->getModule();
auto Size = totalSizeToAlloc<swift::Operand>(TypeDependentOperands.size());
auto Buffer = Mod.allocateInst(Size, alignof(AllocExistentialBoxInst));
return ::new (Buffer) AllocExistentialBoxInst(Loc,
ExistentialType,
ConcreteType,
Conformances,
TypeDependentOperands,
F);
}
BuiltinInst *BuiltinInst::create(SILDebugLocation Loc, Identifier Name,
SILType ReturnType,
SubstitutionMap Substitutions,
ArrayRef<SILValue> Args,
SILInstructionContext context) {
SmallVector<SILValue, 32> allOperands;
copy(Args, std::back_inserter(allOperands));
collectTypeDependentOperands(allOperands, context, Substitutions);
auto Size = totalSizeToAlloc<swift::Operand>(allOperands.size());
auto Buffer = context.getModule().allocateInst(Size, alignof(BuiltinInst));
return ::new (Buffer) BuiltinInst(Loc, Name, ReturnType, Substitutions,
allOperands, Args.size());
}
BuiltinInst::BuiltinInst(SILDebugLocation Loc, Identifier Name,
SILType ReturnType, SubstitutionMap Subs,
ArrayRef<SILValue> allOperands,
unsigned numNormalOperands)
: InstructionBaseWithTrailingOperands(allOperands, Loc, ReturnType),
Name(Name), Substitutions(Subs.getCanonical()), numNormalOperands(numNormalOperands) {}
IncrementProfilerCounterInst *IncrementProfilerCounterInst::create(
SILDebugLocation Loc, unsigned CounterIdx, StringRef PGOFuncName,
unsigned NumCounters, uint64_t PGOFuncHash, SILModule &M) {
auto PGOFuncNameLength = PGOFuncName.size();
auto Size = totalSizeToAlloc<char>(PGOFuncNameLength);
auto Buffer = M.allocateInst(Size, alignof(IncrementProfilerCounterInst));
auto *Inst = ::new (Buffer) IncrementProfilerCounterInst(
Loc, CounterIdx, PGOFuncNameLength, NumCounters, PGOFuncHash);
std::uninitialized_copy(PGOFuncName.begin(), PGOFuncName.end(),
Inst->getTrailingObjects());
return Inst;
}
SpecifyTestInst *SpecifyTestInst::create(SILDebugLocation Loc,
StringRef ArgumentsSpecification,
SILModule &M) {
auto ArgumentsSpecificationLength = ArgumentsSpecification.size();
auto Size = totalSizeToAlloc<char>(ArgumentsSpecificationLength);
auto Buffer = M.allocateInst(Size, alignof(SpecifyTestInst));
auto *Inst =
::new (Buffer) SpecifyTestInst(Loc, ArgumentsSpecificationLength);
std::uninitialized_copy(ArgumentsSpecification.begin(),
ArgumentsSpecification.end(),
Inst->getTrailingObjects());
return Inst;
}
InitBlockStorageHeaderInst *
InitBlockStorageHeaderInst::create(SILFunction &F,
SILDebugLocation DebugLoc, SILValue BlockStorage,
SILValue InvokeFunction, SILType BlockType,
SubstitutionMap Subs) {
void *Buffer = F.getModule().allocateInst(
sizeof(InitBlockStorageHeaderInst),
alignof(InitBlockStorageHeaderInst));
return ::new (Buffer) InitBlockStorageHeaderInst(DebugLoc, BlockStorage,
InvokeFunction, BlockType,
Subs);
}
ApplyInst::ApplyInst(SILDebugLocation loc, SILValue callee,
SILType substCalleeTy, SILType result,
SubstitutionMap subs, ArrayRef<SILValue> args,
ArrayRef<SILValue> typeDependentOperands,
ApplyOptions options,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing)
: InstructionBase(isolationCrossing, loc, callee, substCalleeTy, subs, args,
typeDependentOperands, specializationInfo, result) {
setApplyOptions(options);
assert(!substCalleeTy.castTo<SILFunctionType>()->isCoroutine());
}
ApplyInst *
ApplyInst::create(SILDebugLocation loc, SILValue callee, SubstitutionMap subs,
ArrayRef<SILValue> args, ApplyOptions options,
std::optional<SILModuleConventions> moduleConventions,
SILFunction &parentFunction,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing) {
SILType substCalleeSILTy = callee->getType().substGenericArgs(
parentFunction.getModule(), subs,
parentFunction.getTypeExpansionContext());
auto substCalleeTy = substCalleeSILTy.getAs<SILFunctionType>();
SILFunctionConventions conv(
substCalleeTy, moduleConventions.has_value()
? moduleConventions.value()
: SILModuleConventions(parentFunction.getModule()));
SILType result =
conv.getSILResultType(parentFunction.getTypeExpansionContext());
SmallVector<SILValue, 32> typeDependentOperands;
collectTypeDependentOperands(typeDependentOperands, parentFunction,
substCalleeSILTy.getASTType(), subs);
void *buffer = allocateTrailingInst<ApplyInst, Operand>(
parentFunction, getNumAllOperands(args, typeDependentOperands));
return ::new (buffer) ApplyInst(loc, callee, substCalleeSILTy, result, subs,
args, typeDependentOperands, options,
specializationInfo, isolationCrossing);
}
BeginApplyInst::BeginApplyInst(
SILDebugLocation loc, SILValue callee, SILType substCalleeTy,
ArrayRef<SILType> allResultTypes,
ArrayRef<ValueOwnershipKind> allResultOwnerships, SubstitutionMap subs,
ArrayRef<SILValue> args, ArrayRef<SILValue> typeDependentOperands,
ApplyOptions options,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing)
: InstructionBase(isolationCrossing, loc, callee, substCalleeTy, subs, args,
typeDependentOperands, specializationInfo),
MultipleValueInstructionTrailingObjects(this, allResultTypes,
allResultOwnerships) {
setApplyOptions(options);
assert(substCalleeTy.castTo<SILFunctionType>()->isCoroutine());
}
BeginApplyInst *BeginApplyInst::create(
SILDebugLocation loc, SILValue callee, SubstitutionMap subs,
ArrayRef<SILValue> args, ApplyOptions options,
std::optional<SILModuleConventions> moduleConventions,
SILFunction &parentFunction,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing) {
SILType substCalleeSILType = callee->getType().substGenericArgs(
parentFunction.getModule(), subs,
parentFunction.getTypeExpansionContext());
auto substCalleeType = substCalleeSILType.castTo<SILFunctionType>();
SILFunctionConventions conv(
substCalleeType, moduleConventions.has_value()
? moduleConventions.value()
: SILModuleConventions(parentFunction.getModule()));
SmallVector<SILType, 8> resultTypes;
SmallVector<ValueOwnershipKind, 8> resultOwnerships;
for (auto &yield : substCalleeType->getYields()) {
auto yieldType =
conv.getSILType(yield, parentFunction.getTypeExpansionContext());
auto argConvention = SILArgumentConvention(yield.getConvention());
resultTypes.push_back(yieldType);
resultOwnerships.push_back(ValueOwnershipKind(
parentFunction, yieldType, argConvention,
moduleConventions.has_value()
? moduleConventions.value()
: SILModuleConventions(parentFunction.getModule())));
}
auto tokenTy = SILType::getSILTokenType(parentFunction.getASTContext());
resultTypes.push_back(tokenTy);
// The begin_apply token represents the borrow scope of all owned and
// guaranteed call arguments. Although SILToken is (currently) trivially
// typed, it must have guaranteed ownership so end_apply and abort_apply will
// be recognized as lifetime-ending uses.
resultOwnerships.push_back(OwnershipKind::Guaranteed);
if (substCalleeType->isCalleeAllocatedCoroutine()) {
resultTypes.push_back(tokenTy.getAddressType());
resultOwnerships.push_back(OwnershipKind::None);
}
SmallVector<SILValue, 32> typeDependentOperands;
collectTypeDependentOperands(typeDependentOperands, parentFunction,
substCalleeType, subs);
void *buffer =
allocateTrailingInst<BeginApplyInst, Operand, MultipleValueInstruction *,
MultipleValueInstructionResult>(
parentFunction, getNumAllOperands(args, typeDependentOperands), 1,
resultTypes.size());
return ::new (buffer)
BeginApplyInst(loc, callee, substCalleeSILType, resultTypes,
resultOwnerships, subs, args, typeDependentOperands,
options, specializationInfo, isolationCrossing);
}
void BeginApplyInst::getCoroutineEndPoints(
SmallVectorImpl<EndApplyInst *> &endApplyInsts,
SmallVectorImpl<AbortApplyInst *> &abortApplyInsts,
SmallVectorImpl<EndBorrowInst *> *endBorrowInsts) const {
for (auto *use : getEndApplyUses()) {
auto *user = use->getUser();
if (auto *end = dyn_cast<EndApplyInst>(user)) {
endApplyInsts.push_back(end);
continue;
}
if (auto *abort = dyn_cast<AbortApplyInst>(user)) {
abortApplyInsts.push_back(abort);
continue;
}
auto *end = cast<EndBorrowInst>(user);
if (endBorrowInsts) {
endBorrowInsts->push_back(end);
}
}
}
void BeginApplyInst::getCoroutineEndPoints(
SmallVectorImpl<Operand *> &endApplyInsts,
SmallVectorImpl<Operand *> &abortApplyInsts,
SmallVectorImpl<Operand *> *endBorrowInsts) const {
for (auto *use : getEndApplyUses()) {
auto *user = use->getUser();
if (isa<EndApplyInst>(user)) {
endApplyInsts.push_back(use);
continue;
}
if (isa<AbortApplyInst>(user)) {
abortApplyInsts.push_back(use);
continue;
}
assert(isa<EndBorrowInst>(user));
abortApplyInsts.push_back(use);
}
}
bool swift::doesApplyCalleeHaveSemantics(SILValue callee, StringRef semantics) {
if (auto *FRI = dyn_cast<FunctionRefBaseInst>(callee))
if (auto *F = FRI->getReferencedFunctionOrNull())
return F->hasSemanticsAttr(semantics);
return false;
}
PartialApplyInst::PartialApplyInst(
SILDebugLocation Loc, SILValue Callee, SILType SubstCalleeTy,
SubstitutionMap Subs, ArrayRef<SILValue> Args,
ArrayRef<SILValue> TypeDependentOperands, SILType ClosureType,
const GenericSpecializationInformation *SpecializationInfo)
// FIXME: the callee should have a lowered SIL function type, and
// PartialApplyInst
// should derive the type of its result by partially applying the callee's
// type.
: InstructionBase(Loc, Callee, SubstCalleeTy, Subs, Args,
TypeDependentOperands, SpecializationInfo, ClosureType) {}
PartialApplyInst *PartialApplyInst::create(
SILDebugLocation Loc, SILValue Callee, ArrayRef<SILValue> Args,
SubstitutionMap Subs, ParameterConvention calleeConvention,
SILFunctionTypeIsolation resultIsolation, SILFunction &F,
const GenericSpecializationInformation *SpecializationInfo,
OnStackKind onStack) {
SILType SubstCalleeTy = Callee->getType().substGenericArgs(
F.getModule(), Subs, F.getTypeExpansionContext());
SILType ClosureType = SILBuilder::getPartialApplyResultType(
F.getTypeExpansionContext(), SubstCalleeTy, Args.size(), F.getModule(), {},
calleeConvention, resultIsolation, onStack);
SmallVector<SILValue, 32> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F,
SubstCalleeTy.getASTType(), Subs);
void *Buffer =
allocateTrailingInst<PartialApplyInst, Operand>(
F, getNumAllOperands(Args, TypeDependentOperands));
return ::new(Buffer) PartialApplyInst(Loc, Callee, SubstCalleeTy,
Subs, Args,
TypeDependentOperands, ClosureType,
SpecializationInfo);
}
TryApplyInstBase::TryApplyInstBase(SILInstructionKind kind,
SILDebugLocation loc,
SILBasicBlock *normalBB,
SILBasicBlock *errorBB,
ProfileCounter normalCount,
ProfileCounter errorCount)
: TermInst(kind, loc), DestBBs{{{this, normalBB, normalCount},
{this, errorBB, errorCount}}} {}
TryApplyInst::TryApplyInst(
SILDebugLocation loc, SILValue callee, SILType substCalleeTy,
SubstitutionMap subs, ArrayRef<SILValue> args,
ArrayRef<SILValue> typeDependentOperands, SILBasicBlock *normalBB,
SILBasicBlock *errorBB, ApplyOptions options,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing,
ProfileCounter normalCount,
ProfileCounter errorCount)
: InstructionBase(isolationCrossing, loc, callee, substCalleeTy, subs, args,
typeDependentOperands, specializationInfo, normalBB,
errorBB, normalCount, errorCount) {
setApplyOptions(options);
}
TryApplyInst *
TryApplyInst::create(SILDebugLocation loc, SILValue callee,
SubstitutionMap subs, ArrayRef<SILValue> args,
SILBasicBlock *normalBB, SILBasicBlock *errorBB,
ApplyOptions options, SILFunction &parentFunction,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing,
ProfileCounter normalCount,
ProfileCounter errorCount) {
SILType substCalleeTy = callee->getType().substGenericArgs(
parentFunction.getModule(), subs,
parentFunction.getTypeExpansionContext());
if (parentFunction.getModule().getOptions().EnableThrowsPrediction &&
!normalCount && !errorCount) {
// Predict that the error branch is not taken.
//
// We cannot use the Expect builtin within SIL because try_apply abstracts
// over the raw conditional test to see if an error was returned.
// So, we synthesize profiling branch weights instead.
normalCount = 1999;
errorCount = 0;
}
SmallVector<SILValue, 32> typeDependentOperands;
collectTypeDependentOperands(typeDependentOperands, parentFunction,
substCalleeTy.getASTType(), subs);
void *buffer = allocateTrailingInst<TryApplyInst, Operand>(
parentFunction, getNumAllOperands(args, typeDependentOperands));
return ::new (buffer) TryApplyInst(
loc, callee, substCalleeTy, subs, args, typeDependentOperands, normalBB,
errorBB, options, specializationInfo, isolationCrossing,
normalCount, errorCount);
}
SILType DifferentiableFunctionInst::getDifferentiableFunctionType(
SILValue OriginalFunction, IndexSubset *ParameterIndices,
IndexSubset *ResultIndices) {
assert(!ResultIndices->isEmpty());
auto fnTy = OriginalFunction->getType().castTo<SILFunctionType>();
auto diffTy = fnTy->getWithDifferentiability(DifferentiabilityKind::Reverse,
ParameterIndices, ResultIndices);
return SILType::getPrimitiveObjectType(diffTy);
}
ValueOwnershipKind DifferentiableFunctionInst::getMergedOwnershipKind(
SILValue OriginalFunction, ArrayRef<SILValue> DerivativeFunctions) {
if (DerivativeFunctions.empty())
return OriginalFunction->getOwnershipKind();
return getSILValueOwnership(
{OriginalFunction, DerivativeFunctions[0], DerivativeFunctions[1]});
}
DifferentiableFunctionInst::DifferentiableFunctionInst(
SILDebugLocation Loc, IndexSubset *ParameterIndices,
IndexSubset *ResultIndices, SILValue OriginalFunction,
ArrayRef<SILValue> DerivativeFunctions,
ValueOwnershipKind forwardingOwnershipKind)
: InstructionBaseWithTrailingOperands(
OriginalFunction, DerivativeFunctions, Loc,
getDifferentiableFunctionType(OriginalFunction, ParameterIndices,
ResultIndices),
forwardingOwnershipKind),
ParameterIndices(ParameterIndices), ResultIndices(ResultIndices),
HasDerivativeFunctions(!DerivativeFunctions.empty()) {
assert(DerivativeFunctions.empty() || DerivativeFunctions.size() == 2);
}
DifferentiableFunctionInst *DifferentiableFunctionInst::create(
SILModule &Module, SILDebugLocation Loc, IndexSubset *ParameterIndices,
IndexSubset *ResultIndices, SILValue OriginalFunction,
std::optional<std::pair<SILValue, SILValue>> VJPAndJVPFunctions,
ValueOwnershipKind forwardingOwnershipKind) {
auto derivativeFunctions =
VJPAndJVPFunctions.has_value()
? ArrayRef<SILValue>(
reinterpret_cast<SILValue *>(&*VJPAndJVPFunctions),
2)
: ArrayRef<SILValue>();
size_t size = totalSizeToAlloc<Operand>(1 + derivativeFunctions.size());
void *buffer = Module.allocateInst(size, alignof(DifferentiableFunctionInst));
return ::new (buffer) DifferentiableFunctionInst(
Loc, ParameterIndices, ResultIndices, OriginalFunction,
derivativeFunctions, forwardingOwnershipKind);
}
SILType LinearFunctionInst::getLinearFunctionType(
SILValue OriginalFunction, IndexSubset *ParameterIndices) {
auto fnTy = OriginalFunction->getType().castTo<SILFunctionType>();
auto *resultIndices =
IndexSubset::get(fnTy->getASTContext(), /*capacity*/ 1, /*indices*/ {0});
auto diffTy = fnTy->getWithDifferentiability(DifferentiabilityKind::Linear,
ParameterIndices, resultIndices);
return SILType::getPrimitiveObjectType(diffTy);
}
LinearFunctionInst::LinearFunctionInst(
SILDebugLocation Loc, IndexSubset *ParameterIndices,
SILValue OriginalFunction, std::optional<SILValue> TransposeFunction,
ValueOwnershipKind forwardingOwnershipKind)
: InstructionBaseWithTrailingOperands(
OriginalFunction,
TransposeFunction.has_value()
? ArrayRef<SILValue>(&*TransposeFunction, 1)
: ArrayRef<SILValue>(),
Loc, getLinearFunctionType(OriginalFunction, ParameterIndices),
forwardingOwnershipKind),
ParameterIndices(ParameterIndices),
HasTransposeFunction(TransposeFunction.has_value()) {}
LinearFunctionInst *LinearFunctionInst::create(
SILModule &Module, SILDebugLocation Loc, IndexSubset *ParameterIndices,
SILValue OriginalFunction, std::optional<SILValue> TransposeFunction,
ValueOwnershipKind forwardingOwnershipKind) {
size_t size = totalSizeToAlloc<Operand>(TransposeFunction.has_value() ? 2 : 1);
void *buffer = Module.allocateInst(size, alignof(DifferentiableFunctionInst));
return ::new (buffer)
LinearFunctionInst(Loc, ParameterIndices, OriginalFunction,
TransposeFunction, forwardingOwnershipKind);
}
SILType DifferentiableFunctionExtractInst::getExtracteeType(
SILValue function, NormalDifferentiableFunctionTypeComponent extractee,
SILModule &module) {
auto fnTy = function->getType().castTo<SILFunctionType>();
// TODO: Ban 'Normal' and 'Forward'.
assert(
fnTy->getDifferentiabilityKind() == DifferentiabilityKind::Reverse ||
fnTy->getDifferentiabilityKind() == DifferentiabilityKind::Normal ||
fnTy->getDifferentiabilityKind() == DifferentiabilityKind::Forward);
auto originalFnTy = fnTy->getWithoutDifferentiability();
auto kindOpt = extractee.getAsDerivativeFunctionKind();
if (!kindOpt) {
assert(extractee == NormalDifferentiableFunctionTypeComponent::Original);
return SILType::getPrimitiveObjectType(originalFnTy);
}
auto resultFnTy = originalFnTy->getAutoDiffDerivativeFunctionType(
fnTy->getDifferentiabilityParameterIndices(),
fnTy->getDifferentiabilityResultIndices(), *kindOpt, module.Types,
LookUpConformanceInModule());
return SILType::getPrimitiveObjectType(resultFnTy);
}
DifferentiableFunctionExtractInst::DifferentiableFunctionExtractInst(
SILModule &module, SILDebugLocation debugLoc,
NormalDifferentiableFunctionTypeComponent extractee, SILValue function,
ValueOwnershipKind forwardingOwnershipKind,
std::optional<SILType> extracteeType)
: UnaryInstructionBase(debugLoc, function,
extracteeType
? *extracteeType
: getExtracteeType(function, extractee, module),
forwardingOwnershipKind),
Extractee(extractee),
HasExplicitExtracteeType(extracteeType.has_value()) {}
SILType LinearFunctionExtractInst::
getExtracteeType(
SILValue function, LinearDifferentiableFunctionTypeComponent extractee,
SILModule &module) {
auto fnTy = function->getType().castTo<SILFunctionType>();
assert(fnTy->getDifferentiabilityKind() == DifferentiabilityKind::Linear);
auto originalFnTy = fnTy->getWithoutDifferentiability();
switch (extractee) {
case LinearDifferentiableFunctionTypeComponent::Original:
return SILType::getPrimitiveObjectType(originalFnTy);
case LinearDifferentiableFunctionTypeComponent::Transpose:
auto transposeFnTy = originalFnTy->getAutoDiffTransposeFunctionType(
fnTy->getDifferentiabilityParameterIndices(), module.Types,
LookUpConformanceInModule());
return SILType::getPrimitiveObjectType(transposeFnTy);
}
llvm_unreachable("invalid extractee");
}
LinearFunctionExtractInst::LinearFunctionExtractInst(
SILModule &module, SILDebugLocation debugLoc,
LinearDifferentiableFunctionTypeComponent extractee, SILValue function,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(debugLoc, function,
getExtracteeType(function, extractee, module),
forwardingOwnershipKind),
extractee(extractee) {}
SILType DifferentiabilityWitnessFunctionInst::getDifferentiabilityWitnessType(
SILModule &module, DifferentiabilityWitnessFunctionKind witnessKind,
SILDifferentiabilityWitness *witness) {
auto fnTy = witness->getOriginalFunction()->getLoweredFunctionType();
auto witnessCanGenSig = witness->getDerivativeGenericSignature().getCanonicalSignature();
auto *parameterIndices = witness->getParameterIndices();
auto *resultIndices = witness->getResultIndices();
if (auto derivativeKind = witnessKind.getAsDerivativeFunctionKind()) {
bool isReabstractionThunk =
witness->getOriginalFunction()->isThunk() == IsReabstractionThunk;
auto diffFnTy = fnTy->getAutoDiffDerivativeFunctionType(
parameterIndices, resultIndices, *derivativeKind, module.Types,
LookUpConformanceInModule(), witnessCanGenSig,
isReabstractionThunk);
return SILType::getPrimitiveObjectType(diffFnTy);
}
assert(witnessKind == DifferentiabilityWitnessFunctionKind::Transpose);
auto transposeFnTy = fnTy->getAutoDiffTransposeFunctionType(
parameterIndices, module.Types,
LookUpConformanceInModule(), witnessCanGenSig);
return SILType::getPrimitiveObjectType(transposeFnTy);
}
DifferentiabilityWitnessFunctionInst::DifferentiabilityWitnessFunctionInst(
SILModule &module, SILDebugLocation debugLoc,
DifferentiabilityWitnessFunctionKind witnessKind,
SILDifferentiabilityWitness *witness, std::optional<SILType> functionType)
: InstructionBase(debugLoc, functionType
? *functionType
: getDifferentiabilityWitnessType(
module, witnessKind, witness)),
witnessKind(witnessKind), witness(witness),
hasExplicitFunctionType(functionType) {
assert(witness && "Differentiability witness must not be null");
#ifndef NDEBUG
if (functionType.has_value()) {
assert(module.getStage() == SILStage::Lowered &&
"Explicit type is valid only in lowered SIL");
}
#endif
}
FunctionRefBaseInst::FunctionRefBaseInst(SILInstructionKind Kind,
SILDebugLocation DebugLoc,
SILFunction *F,
TypeExpansionContext context)
: LiteralInst(Kind, DebugLoc, F->getLoweredTypeInContext(context)), f(F) {
F->incrementRefCount();
}
void FunctionRefBaseInst::dropReferencedFunction() {
if (auto *Function = getInitiallyReferencedFunction())
Function->decrementRefCount();
f = nullptr;
}
FunctionRefBaseInst::~FunctionRefBaseInst() {
if (getInitiallyReferencedFunction())
getInitiallyReferencedFunction()->decrementRefCount();
}
FunctionRefInst::FunctionRefInst(SILDebugLocation Loc, SILFunction *F,
TypeExpansionContext context)
: FunctionRefBaseInst(SILInstructionKind::FunctionRefInst, Loc, F,
context) {
assert(!F->isDynamicallyReplaceable());
}
DynamicFunctionRefInst::DynamicFunctionRefInst(SILDebugLocation Loc,
SILFunction *F,
TypeExpansionContext context)
: FunctionRefBaseInst(SILInstructionKind::DynamicFunctionRefInst, Loc, F,
context) {
assert(F->isDynamicallyReplaceable());
}
PreviousDynamicFunctionRefInst::PreviousDynamicFunctionRefInst(
SILDebugLocation Loc, SILFunction *F, TypeExpansionContext context)
: FunctionRefBaseInst(SILInstructionKind::PreviousDynamicFunctionRefInst,
Loc, F, context) {
assert(!F->isDynamicallyReplaceable());
}
AllocGlobalInst::AllocGlobalInst(SILDebugLocation Loc,
SILGlobalVariable *Global)
: InstructionBase(Loc),
Global(Global) {}
GlobalAddrInst::GlobalAddrInst(SILDebugLocation DebugLoc,
SILGlobalVariable *Global,
SILValue dependencyToken,
TypeExpansionContext context)
: InstructionBase(DebugLoc,
Global->getLoweredTypeInContext(context).getAddressType(),
Global) {
if (dependencyToken) {
this->dependencyToken.emplace(this, dependencyToken);
}
}
GlobalValueInst::GlobalValueInst(SILDebugLocation DebugLoc,
SILGlobalVariable *Global,
TypeExpansionContext context, bool bare)
: InstructionBase(DebugLoc,
Global->getLoweredTypeInContext(context).getObjectType(),
Global) {
sharedUInt8().GlobalValueInst.isBare = bare;
}
const IntrinsicInfo &BuiltinInst::getIntrinsicInfo() const {
return getModule().getIntrinsicInfo(getName());
}
const BuiltinInfo &BuiltinInst::getBuiltinInfo() const {
return getModule().getBuiltinInfo(getName());
}
static unsigned getWordsForBitWidth(unsigned bits) {
return ((bits + llvm::APInt::APINT_BITS_PER_WORD - 1)
/ llvm::APInt::APINT_BITS_PER_WORD);
}
template<typename INST>
static void *allocateLiteralInstWithTextSize(SILModule &M, unsigned length) {
return M.allocateInst(sizeof(INST) + length, alignof(INST));
}
template<typename INST>
static void *allocateLiteralInstWithBitSize(SILModule &M, unsigned bits) {
unsigned words = getWordsForBitWidth(bits);
return M.allocateInst(
sizeof(INST) + sizeof(llvm::APInt::WordType)*words, alignof(INST));
}
IntegerLiteralInst::IntegerLiteralInst(SILDebugLocation Loc, SILType Ty,
const llvm::APInt &Value)
: InstructionBase(Loc, Ty) {
sharedUInt32().IntegerLiteralInst.numBits = Value.getBitWidth();
std::uninitialized_copy_n(Value.getRawData(), Value.getNumWords(),
getTrailingObjects());
}
IntegerLiteralInst *IntegerLiteralInst::create(SILDebugLocation Loc,
SILType Ty, const APInt &Value,
SILModule &M) {
#ifndef NDEBUG
if (auto intTy = Ty.getAs<BuiltinIntegerType>()) {
assert(intTy->getGreatestWidth() == Value.getBitWidth() &&
"IntegerLiteralInst APInt value's bit width doesn't match type");
} else {
assert(Ty.is<BuiltinIntegerLiteralType>());
assert(Value.getBitWidth() == Value.getSignificantBits());
}
#endif
void *buf = allocateLiteralInstWithBitSize<IntegerLiteralInst>(M,
Value.getBitWidth());
return ::new (buf) IntegerLiteralInst(Loc, Ty, Value);
}
static APInt getAPInt(AnyBuiltinIntegerType *anyIntTy, intmax_t value,
bool treatAsSigned) {
// If we're forming a fixed-width type, build using the greatest width.
if (auto intTy = dyn_cast<BuiltinIntegerType>(anyIntTy))
return APInt(intTy->getGreatestWidth(), value, treatAsSigned);
// Otherwise, build using the size of the type and then truncate to the
// minimum width necessary.
APInt result(8 * sizeof(value), value, /*signed*/ true);
result = result.trunc(result.getSignificantBits());
return result;
}
IntegerLiteralInst *IntegerLiteralInst::create(SILDebugLocation Loc, SILType Ty,
intmax_t Value,
bool treatAsSigned,
SILModule &M) {
auto intTy = Ty.castTo<AnyBuiltinIntegerType>();
return create(Loc, Ty, getAPInt(intTy, Value, treatAsSigned), M);
}
static SILType getGreatestIntegerType(Type type, SILModule &M) {
if (auto intTy = type->getAs<BuiltinIntegerType>()) {
return SILType::getBuiltinIntegerType(intTy->getGreatestWidth(),
M.getASTContext());
} else {
assert(type->is<BuiltinIntegerLiteralType>());
return SILType::getBuiltinIntegerLiteralType(M.getASTContext());
}
}
IntegerLiteralInst *IntegerLiteralInst::create(IntegerLiteralExpr *E,
SILDebugLocation Loc,
SILModule &M) {
return create(Loc, getGreatestIntegerType(E->getType(), M), E->getValue(), M);
}
/// getValue - Return the APInt for the underlying integer literal.
APInt IntegerLiteralInst::getValue() const {
auto numBits = sharedUInt32().IntegerLiteralInst.numBits;
return APInt(numBits, getTrailingObjects(getWordsForBitWidth(numBits)));
}
FloatLiteralInst::FloatLiteralInst(SILDebugLocation Loc, SILType Ty,
const APInt &Bits)
: InstructionBase(Loc, Ty) {
sharedUInt32().FloatLiteralInst.numBits = Bits.getBitWidth();
std::uninitialized_copy_n(Bits.getRawData(), Bits.getNumWords(),
getTrailingObjects());
}
FloatLiteralInst *FloatLiteralInst::create(SILDebugLocation Loc, SILType Ty,
const APFloat &Value,
SILModule &M) {
auto floatTy = Ty.castTo<BuiltinFloatType>();
assert(&floatTy->getAPFloatSemantics() == &Value.getSemantics() &&
"FloatLiteralInst value's APFloat semantics do not match type");
(void)floatTy;
APInt Bits = Value.bitcastToAPInt();
void *buf = allocateLiteralInstWithBitSize<FloatLiteralInst>(M,
Bits.getBitWidth());
return ::new (buf) FloatLiteralInst(Loc, Ty, Bits);
}
FloatLiteralInst *FloatLiteralInst::create(FloatLiteralExpr *E,
SILDebugLocation Loc,
SILModule &M) {
return create(Loc,
// Builtin floating-point types are always valid SIL types.
SILType::getBuiltinFloatType(
E->getType()->castTo<BuiltinFloatType>()->getFPKind(),
M.getASTContext()),
E->getValue(), M);
}
APInt FloatLiteralInst::getBits() const {
auto numBits = sharedUInt32().FloatLiteralInst.numBits;
return APInt(numBits, getTrailingObjects(getWordsForBitWidth(numBits)));
}
APFloat FloatLiteralInst::getValue() const {
return APFloat(getType().castTo<BuiltinFloatType>()->getAPFloatSemantics(),
getBits());
}
StringLiteralInst::StringLiteralInst(SILDebugLocation Loc, StringRef Text,
Encoding encoding, SILType Ty)
: InstructionBase(Loc, Ty) {
sharedUInt8().StringLiteralInst.encoding = uint8_t(encoding);
sharedUInt32().StringLiteralInst.length = Text.size();
memcpy(getTrailingObjects(), Text.data(), Text.size());
// It is undefined behavior to feed ill-formed UTF-8 into `Swift.String`;
// however, the compiler creates string literals in many places, so there's a
// risk of a mistake. StringLiteralInsts can be optimized into
// IntegerLiteralInsts before reaching IRGen, so this constructor is the best
// chokepoint to validate *all* string literals that may eventually end up in
// a binary.
assert((encoding == Encoding::Bytes || unicode::isWellFormedUTF8(Text))
&& "Created StringLiteralInst with ill-formed UTF-8");
}
StringLiteralInst *StringLiteralInst::create(SILDebugLocation Loc,
StringRef text, Encoding encoding,
SILModule &M) {
void *buf
= allocateLiteralInstWithTextSize<StringLiteralInst>(M, text.size());
auto Ty = SILType::getRawPointerType(M.getASTContext());
return ::new (buf) StringLiteralInst(Loc, text, encoding, Ty);
}
CondFailInst::CondFailInst(SILDebugLocation DebugLoc, SILValue Operand,
StringRef Message)
: UnaryInstructionBase(DebugLoc, Operand),
MessageSize(Message.size()) {
memcpy(getTrailingObjects(), Message.data(), Message.size());
}
CondFailInst *CondFailInst::create(SILDebugLocation DebugLoc, SILValue Operand,
StringRef Message, SILModule &M) {
auto Size = totalSizeToAlloc<char>(Message.size());
auto Buffer = M.allocateInst(Size, alignof(CondFailInst));
return ::new (Buffer) CondFailInst(DebugLoc, Operand, Message);
}
uint64_t StringLiteralInst::getCodeUnitCount() {
return sharedUInt32().StringLiteralInst.length;
}
StoreInst::StoreInst(
SILDebugLocation Loc, SILValue Src, SILValue Dest,
StoreOwnershipQualifier Qualifier = StoreOwnershipQualifier::Unqualified)
: InstructionBase(Loc), Operands(this, Src, Dest) {
sharedUInt8().StoreInst.ownershipQualifier = uint8_t(Qualifier);
}
StoreBorrowInst::StoreBorrowInst(SILDebugLocation DebugLoc, SILValue Src,
SILValue Dest)
: InstructionBase(DebugLoc, Dest->getType()),
Operands(this, Src, Dest) {}
StringRef swift::getSILAccessKindName(SILAccessKind kind) {
switch (kind) {
case SILAccessKind::Init: return "init";
case SILAccessKind::Read: return "read";
case SILAccessKind::Modify: return "modify";
case SILAccessKind::Deinit: return "deinit";
}
llvm_unreachable("bad access kind");
}
StringRef swift::getSILAccessEnforcementName(SILAccessEnforcement enforcement) {
switch (enforcement) {
case SILAccessEnforcement::Unknown: return "unknown";
case SILAccessEnforcement::Static: return "static";
case SILAccessEnforcement::Dynamic: return "dynamic";
case SILAccessEnforcement::Unsafe: return "unsafe";
case SILAccessEnforcement::Signed:
return "signed";
}
llvm_unreachable("bad access enforcement");
}
AssignInst::AssignInst(SILDebugLocation Loc, SILValue Src, SILValue Dest,
AssignOwnershipQualifier Qualifier) :
AssignInstBase(Loc, Src, Dest) {
sharedUInt8().AssignInst.ownershipQualifier = uint8_t(Qualifier);
}
AssignOrInitInst::AssignOrInitInst(SILDebugLocation Loc, VarDecl *P,
SILValue SelfOrLocal, SILValue Src,
SILValue Initializer, SILValue Setter,
AssignOrInitInst::Mode Mode)
: InstructionBase<SILInstructionKind::AssignOrInitInst,
NonValueInstruction>(Loc),
Operands(this, SelfOrLocal, Src, Initializer, Setter), Property(P) {
assert(Initializer->getType().is<SILFunctionType>());
sharedUInt8().AssignOrInitInst.mode = uint8_t(Mode);
Assignments.resize(getNumInitializedProperties());
}
void AssignOrInitInst::markAsInitialized(VarDecl *property) {
unsigned idx = 0;
this->forEachInitializedProperty([&](VarDecl *p) {
if (p == property) {
markAsInitialized(idx);
}
idx++;
});
}
void AssignOrInitInst::markAsInitialized(unsigned propertyIdx) {
assert(propertyIdx < getNumInitializedProperties());
Assignments.set(propertyIdx);
}
bool AssignOrInitInst::isPropertyAlreadyInitialized(unsigned propertyIdx) {
assert(propertyIdx < Assignments.size());
return Assignments.test(propertyIdx);
}
StringRef AssignOrInitInst::getPropertyName() const {
return Property->getNameStr();
}
AccessorDecl *AssignOrInitInst::getReferencedInitAccessor() const {
return Property->getOpaqueAccessor(AccessorKind::Init);
}
DeclContext *AssignOrInitInst::getDeclContextOrNull() const {
if (auto accessorDecl = getReferencedInitAccessor())
return accessorDecl->getDeclContext();
return getProperty()->getDeclContext();
}
unsigned AssignOrInitInst::getNumInitializedProperties() const {
unsigned count = 0;
forEachInitializedProperty([&](VarDecl *property) { count++; });
return count;
}
void AssignOrInitInst::forEachInitializedProperty(
llvm::function_ref<void(VarDecl *)> callback) const {
if (auto *accessor = getReferencedInitAccessor()) {
for (auto *property : accessor->getInitializedProperties())
callback(property);
} else {
// Only the backing storage property/local variavle
auto *backingVar = Property->getPropertyWrapperBackingProperty();
callback(backingVar);
}
}
ArrayRef<VarDecl *> AssignOrInitInst::getAccessedProperties() const {
if (auto *accessor = getReferencedInitAccessor())
return accessor->getAccessedProperties();
return {};
}
MarkFunctionEscapeInst *
MarkFunctionEscapeInst::create(SILDebugLocation Loc,
ArrayRef<SILValue> Elements, SILFunction &F) {
auto Size = totalSizeToAlloc<swift::Operand>(Elements.size());
auto Buf = F.getModule().allocateInst(Size, alignof(MarkFunctionEscapeInst));
return ::new(Buf) MarkFunctionEscapeInst(Loc, Elements);
}
CopyAddrInst::CopyAddrInst(SILDebugLocation Loc, SILValue SrcLValue,
SILValue DestLValue, IsTake_t isTakeOfSrc,
IsInitialization_t isInitializationOfDest)
: InstructionBase(Loc), Operands(this, SrcLValue, DestLValue) {
sharedUInt8().CopyAddrInst.isTakeOfSrc = bool(isTakeOfSrc);
sharedUInt8().CopyAddrInst.isInitializationOfDest =
bool(isInitializationOfDest);
}
ExplicitCopyAddrInst::ExplicitCopyAddrInst(
SILDebugLocation Loc, SILValue SrcLValue, SILValue DestLValue,
IsTake_t isTakeOfSrc, IsInitialization_t isInitializationOfDest)
: InstructionBase(Loc), Operands(this, SrcLValue, DestLValue) {
sharedUInt8().ExplicitCopyAddrInst.isTakeOfSrc = bool(isTakeOfSrc);
sharedUInt8().ExplicitCopyAddrInst.isInitializationOfDest =
bool(isInitializationOfDest);
}
BindMemoryInst *
BindMemoryInst::create(SILDebugLocation Loc, SILValue Base, SILValue Index,
SILType BoundType, SILFunction &F) {
auto tokenTy = SILType::getBuiltinWordType(F.getASTContext());
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F,
BoundType.getASTType());
auto Size = totalSizeToAlloc<swift::Operand>(TypeDependentOperands.size() +
NumFixedOpers);
auto Buffer = F.getModule().allocateInst(Size, alignof(BindMemoryInst));
return ::new (Buffer) BindMemoryInst(Loc, Base, Index, BoundType, tokenTy,
TypeDependentOperands);
}
UncheckedRefCastAddrInst::
UncheckedRefCastAddrInst(SILDebugLocation Loc, SILValue src, CanType srcType,
SILValue dest, CanType targetType,
ArrayRef<SILValue> TypeDependentOperands)
: AddrCastInstBase(Loc, src, srcType, dest, targetType,
TypeDependentOperands) {}
UncheckedRefCastAddrInst *
UncheckedRefCastAddrInst::create(SILDebugLocation Loc, SILValue src,
CanType srcType, SILValue dest, CanType targetType, SILFunction &F) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 4> allOperands;
collectTypeDependentOperands(allOperands, F, srcType, targetType);
unsigned size =
totalSizeToAlloc<swift::Operand>(2 + allOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UncheckedRefCastAddrInst));
return ::new (Buffer) UncheckedRefCastAddrInst(Loc, src, srcType,
dest, targetType, allOperands);
}
UnconditionalCheckedCastAddrInst::UnconditionalCheckedCastAddrInst(
SILDebugLocation Loc, CheckedCastInstOptions options,
SILValue src, CanType srcType, SILValue dest,
CanType targetType, ArrayRef<SILValue> TypeDependentOperands)
: AddrCastInstBase(Loc, src, srcType, dest, targetType,
TypeDependentOperands),
Options(options) {}
UnconditionalCheckedCastAddrInst *
UnconditionalCheckedCastAddrInst::create(SILDebugLocation Loc,
CheckedCastInstOptions options, SILValue src,
CanType srcType, SILValue dest, CanType targetType, SILFunction &F) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 4> allOperands;
collectTypeDependentOperands(allOperands, F, srcType, targetType);
unsigned size =
totalSizeToAlloc<swift::Operand>(2 + allOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UnconditionalCheckedCastAddrInst));
return ::new (Buffer) UnconditionalCheckedCastAddrInst(
Loc, options, src, srcType, dest, targetType, allOperands);
}
CheckedCastAddrBranchInst::CheckedCastAddrBranchInst(
SILDebugLocation DebugLoc,
CheckedCastInstOptions options,
CastConsumptionKind consumptionKind,
SILValue src, CanType srcType, SILValue dest, CanType targetType,
ArrayRef<SILValue> TypeDependentOperands,
SILBasicBlock *successBB, SILBasicBlock *failureBB,
ProfileCounter Target1Count, ProfileCounter Target2Count)
: AddrCastInstBase(DebugLoc, src, srcType, dest,
targetType, TypeDependentOperands, consumptionKind,
successBB, failureBB, Target1Count, Target2Count),
Options(options) {
assert(consumptionKind != CastConsumptionKind::BorrowAlways &&
"BorrowAlways is not supported on addresses");
}
CheckedCastAddrBranchInst *
CheckedCastAddrBranchInst::create(SILDebugLocation DebugLoc,
CheckedCastInstOptions options,
CastConsumptionKind consumptionKind,
SILValue src, CanType srcType, SILValue dest, CanType targetType,
SILBasicBlock *successBB, SILBasicBlock *failureBB,
ProfileCounter Target1Count, ProfileCounter Target2Count,
SILFunction &F) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 4> allOperands;
collectTypeDependentOperands(allOperands, F, srcType, targetType);
unsigned size =
totalSizeToAlloc<swift::Operand>(2 + allOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(CheckedCastAddrBranchInst));
return ::new (Buffer) CheckedCastAddrBranchInst(
DebugLoc, options, consumptionKind,
src, srcType, dest, targetType, allOperands,
successBB, failureBB, Target1Count, Target2Count);
}
StructInst *StructInst::create(SILDebugLocation Loc, SILType Ty,
ArrayRef<SILValue> Elements, SILModule &M,
ValueOwnershipKind forwardingOwnershipKind) {
auto Size = totalSizeToAlloc<swift::Operand>(Elements.size());
auto Buffer = M.allocateInst(Size, alignof(StructInst));
return ::new (Buffer) StructInst(Loc, Ty, Elements, forwardingOwnershipKind);
}
StructInst::StructInst(SILDebugLocation Loc, SILType Ty,
ArrayRef<SILValue> Elems,
ValueOwnershipKind forwardingOwnershipKind)
: InstructionBaseWithTrailingOperands(
Elems, Loc, Ty, forwardingOwnershipKind.forwardToInit(Ty))
{
assert(!Ty.getStructOrBoundGenericStruct()->hasUnreferenceableStorage());
}
BorrowedFromInst *BorrowedFromInst::create(SILDebugLocation DebugLoc, SILValue borrowedValue,
ArrayRef<SILValue> enclosingValues, SILModule &M) {
auto Size = totalSizeToAlloc<swift::Operand>(enclosingValues.size() + 1);
auto Buffer = M.allocateInst(Size, alignof(StructInst));
SmallVector<SILValue, 8> operands;
operands.push_back(borrowedValue);
for (SILValue ev : enclosingValues) {
operands.push_back(ev);
}
return ::new (Buffer) BorrowedFromInst(DebugLoc, operands);
}
BorrowedFromInst::BorrowedFromInst(SILDebugLocation DebugLoc, ArrayRef<SILValue> operands)
: InstructionBaseWithTrailingOperands(operands, DebugLoc, operands[0]->getType(),
operands[0]->getOwnershipKind()) {
assert(operands[0]->getOwnershipKind() != OwnershipKind::Owned);
}
ObjectInst *ObjectInst::create(SILDebugLocation Loc, SILType Ty,
ArrayRef<SILValue> Elements,
unsigned NumBaseElements, SILModule &M) {
auto Size = totalSizeToAlloc<swift::Operand>(Elements.size());
auto Buffer = M.allocateInst(Size, alignof(ObjectInst));
return ::new (Buffer)
ObjectInst(Loc, Ty, Elements, NumBaseElements);
}
VectorInst *VectorInst::create(SILDebugLocation Loc,
ArrayRef<SILValue> Elements,
SILModule &M) {
auto Size = totalSizeToAlloc<swift::Operand>(Elements.size());
auto Buffer = M.allocateInst(Size, alignof(VectorInst));
return ::new (Buffer) VectorInst(Loc, Elements);
}
TupleInst *TupleInst::create(SILDebugLocation Loc, SILType Ty,
ArrayRef<SILValue> Elements, SILModule &M,
ValueOwnershipKind forwardingOwnershipKind) {
auto Size = totalSizeToAlloc<swift::Operand>(Elements.size());
auto Buffer = M.allocateInst(Size, alignof(TupleInst));
return ::new (Buffer) TupleInst(Loc, Ty, Elements, forwardingOwnershipKind);
}
TupleAddrConstructorInst *TupleAddrConstructorInst::create(
SILDebugLocation Loc, SILValue DestAddr, ArrayRef<SILValue> Elements,
IsInitialization_t IsInitOfDest, SILModule &M) {
assert(DestAddr->getType().isAddress());
auto Size = totalSizeToAlloc<swift::Operand>(Elements.size() + 1);
auto Buffer = M.allocateInst(Size, alignof(TupleAddrConstructorInst));
llvm::SmallVector<SILValue, 16> Data;
Data.push_back(DestAddr);
copy(Elements, std::back_inserter(Data));
return ::new (Buffer) TupleAddrConstructorInst(Loc, Data, IsInitOfDest);
}
bool TupleExtractInst::isTrivialEltOfOneRCIDTuple() const {
auto *F = getFunction();
// If we are not trivial, bail.
if (!getType().isTrivial(*F))
return false;
// If the elt we are extracting is trivial, we cannot have any non trivial
// fields.
if (getOperand()->getType().isTrivial(*F))
return false;
// Ok, now we know that our tuple has non-trivial fields. Make sure that our
// parent tuple has only one non-trivial field.
bool FoundNonTrivialField = false;
SILType OpTy = getOperand()->getType();
unsigned FieldNo = getFieldIndex();
// For each element index of the tuple...
for (unsigned i = 0, e = getNumTupleElts(); i != e; ++i) {
// If the element index is the one we are extracting, skip it...
if (i == FieldNo)
continue;
// Otherwise check if we have a non-trivial type. If we don't have one,
// continue.
if (OpTy.getTupleElementType(i).isTrivial(*F))
continue;
// Ok, this type is non-trivial. If we have not seen a non-trivial field
// yet, set the FoundNonTrivialField flag.
if (!FoundNonTrivialField) {
FoundNonTrivialField = true;
continue;
}
// If we have seen a field and thus the FoundNonTrivialField flag is set,
// return false.
return false;
}
// We found only one trivial field.
assert(FoundNonTrivialField && "Tuple is non-trivial, but does not have a "
"non-trivial element?!");
return true;
}
bool TupleExtractInst::isEltOnlyNonTrivialElt() const {
auto *F = getFunction();
// If the elt we are extracting is trivial, we cannot be a non-trivial
// field... return false.
if (getType().isTrivial(*F))
return false;
// Ok, we know that the elt we are extracting is non-trivial. Make sure that
// we have no other non-trivial elts.
SILType OpTy = getOperand()->getType();
unsigned FieldNo = getFieldIndex();
// For each element index of the tuple...
for (unsigned i = 0, e = getNumTupleElts(); i != e; ++i) {
// If the element index is the one we are extracting, skip it...
if (i == FieldNo)
continue;
// Otherwise check if we have a non-trivial type. If we don't have one,
// continue.
if (OpTy.getTupleElementType(i).isTrivial(*F))
continue;
// If we do have a non-trivial type, return false. We have multiple
// non-trivial types violating our condition.
return false;
}
// We checked every other elt of the tuple and did not find any
// non-trivial elt except for ourselves. Return true.
return true;
}
unsigned swift::getNumFieldsInNominal(NominalTypeDecl *decl) {
unsigned count = 0;
if (auto *classDecl = dyn_cast<ClassDecl>(decl)) {
for (auto *superDecl = classDecl->getSuperclassDecl(); superDecl != nullptr;
superDecl = superDecl->getSuperclassDecl()) {
count += superDecl->getStoredProperties().size();
}
}
return count + decl->getStoredProperties().size();
}
/// Get the property for a struct or class by its unique index.
VarDecl *swift::getIndexedField(NominalTypeDecl *decl, unsigned index) {
if (auto *structDecl = dyn_cast<StructDecl>(decl)) {
return structDecl->getStoredProperties()[index];
}
auto *classDecl = cast<ClassDecl>(decl);
SmallVector<ClassDecl *, 3> superclasses;
for (auto *superDecl = classDecl; superDecl != nullptr;
superDecl = superDecl->getSuperclassDecl()) {
superclasses.push_back(superDecl);
}
std::reverse(superclasses.begin(), superclasses.end());
for (auto *superDecl : superclasses) {
if (index < superDecl->getStoredProperties().size()) {
return superDecl->getStoredProperties()[index];
}
index -= superDecl->getStoredProperties().size();
}
return nullptr;
}
// FIXME: this should be cached during cacheFieldIndex().
bool StructExtractInst::isTrivialFieldOfOneRCIDStruct() const {
auto *F = getFunction();
// If we are not trivial, bail.
if (!getType().isTrivial(*F))
return false;
SILType StructTy = getOperand()->getType();
// If the elt we are extracting is trivial, we cannot have any non trivial
// fields.
if (StructTy.isTrivial(*F))
return false;
// Ok, now we know that our tuple has non-trivial fields. Make sure that our
// parent tuple has only one non-trivial field.
bool FoundNonTrivialField = false;
// For each element index of the tuple...
for (VarDecl *D : getStructDecl()->getStoredProperties()) {
// If the field is the one we are extracting, skip it...
if (getField() == D)
continue;
// Otherwise check if we have a non-trivial type. If we don't have one,
// continue.
if (StructTy.getFieldType(D, F->getModule(), TypeExpansionContext(*F))
.isTrivial(*F))
continue;
// Ok, this type is non-trivial. If we have not seen a non-trivial field
// yet, set the FoundNonTrivialField flag.
if (!FoundNonTrivialField) {
FoundNonTrivialField = true;
continue;
}
// If we have seen a field and thus the FoundNonTrivialField flag is set,
// return false.
return false;
}
// We found only one trivial field.
assert(FoundNonTrivialField && "Struct is non-trivial, but does not have a "
"non-trivial field?!");
return true;
}
/// Return true if we are extracting the only non-trivial field of out parent
/// struct. This implies that a ref count operation on the aggregate is
/// equivalent to a ref count operation on this field.
///
/// FIXME: this should be cached during cacheFieldIndex().
bool StructExtractInst::isFieldOnlyNonTrivialField() const {
auto *F = getFunction();
// If the field we are extracting is trivial, we cannot be a non-trivial
// field... return false.
if (getType().isTrivial(*F))
return false;
SILType StructTy = getOperand()->getType();
// Ok, we are visiting a non-trivial field. Then for every stored field...
for (VarDecl *D : getStructDecl()->getStoredProperties()) {
// If we are visiting our own field continue.
if (getField() == D)
continue;
// Ok, we have a field that is not equal to the field we are
// extracting. If that field is trivial, we do not care about
// it... continue.
if (StructTy.getFieldType(D, F->getModule(), TypeExpansionContext(*F))
.isTrivial(*F))
continue;
// We have found a non trivial member that is not the member we are
// extracting, fail.
return false;
}
// We checked every other field of the struct and did not find any
// non-trivial fields except for ourselves. Return true.
return true;
}
//===----------------------------------------------------------------------===//
// Instructions representing terminators
//===----------------------------------------------------------------------===//
TermInst::SuccessorListTy TermInst::getSuccessors() {
switch (getKind()) {
#define TERMINATOR(ID, NAME, PARENT, MEMBEHAVIOR, MAYRELEASE) \
case SILInstructionKind::ID: return cast<ID>(this)->getSuccessors();
#include "swift/SIL/SILNodes.def"
default: llvm_unreachable("not a terminator");
}
llvm_unreachable("bad instruction kind");
}
void TermInst::replaceBranchTarget(SILBasicBlock *oldDest, SILBasicBlock *newDest) {
for (SILSuccessor &succ : getSuccessors()) {
if (succ.getBB() == oldDest) {
succ = newDest;
}
}
}
bool TermInst::isFunctionExiting() const {
switch (getTermKind()) {
case TermKind::AwaitAsyncContinuationInst:
case TermKind::BranchInst:
case TermKind::CondBranchInst:
case TermKind::SwitchValueInst:
case TermKind::SwitchEnumInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::DynamicMethodBranchInst:
case TermKind::CheckedCastBranchInst:
case TermKind::CheckedCastAddrBranchInst:
case TermKind::UnreachableInst:
case TermKind::TryApplyInst:
case TermKind::YieldInst:
return false;
case TermKind::ReturnInst:
case TermKind::ReturnBorrowInst:
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::UnwindInst:
return true;
}
llvm_unreachable("Unhandled TermKind in switch.");
}
bool TermInst::isProgramTerminating() const {
switch (getTermKind()) {
case TermKind::AwaitAsyncContinuationInst:
case TermKind::BranchInst:
case TermKind::CondBranchInst:
case TermKind::SwitchValueInst:
case TermKind::SwitchEnumInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::DynamicMethodBranchInst:
case TermKind::CheckedCastBranchInst:
case TermKind::CheckedCastAddrBranchInst:
case TermKind::ReturnInst:
case TermKind::ReturnBorrowInst:
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::UnwindInst:
case TermKind::TryApplyInst:
case TermKind::YieldInst:
return false;
case TermKind::UnreachableInst:
return true;
}
llvm_unreachable("Unhandled TermKind in switch.");
}
TermInst::SuccessorBlockArgumentListTy
TermInst::getSuccessorBlockArgumentLists() const {
auto op = [](const SILSuccessor &succ) -> ArrayRef<SILArgument *> {
return succ.getBB()->getArguments();
};
return SuccessorBlockArgumentListTy(getSuccessors(), op);
}
const Operand *TermInst::forwardedOperand() const {
switch (getTermKind()) {
case TermKind::UnwindInst:
case TermKind::UnreachableInst:
case TermKind::ReturnInst:
case TermKind::ReturnBorrowInst:
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::YieldInst:
case TermKind::TryApplyInst:
case TermKind::CondBranchInst:
case TermKind::BranchInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::SwitchValueInst:
case TermKind::DynamicMethodBranchInst:
case TermKind::CheckedCastAddrBranchInst:
case TermKind::AwaitAsyncContinuationInst:
return nullptr;
case TermKind::SwitchEnumInst: {
auto *switchEnum = cast<SwitchEnumInst>(this);
if (!switchEnum->preservesOwnership())
return nullptr;
return &switchEnum->getOperandRef();
}
case TermKind::CheckedCastBranchInst: {
auto *checkedCast = cast<CheckedCastBranchInst>(this);
if (!checkedCast->preservesOwnership())
return nullptr;
return &checkedCast->getOperandRef();
}
}
llvm_unreachable("Covered switch isn't covered.");
}
YieldInst *YieldInst::create(SILDebugLocation loc,
ArrayRef<SILValue> yieldedValues,
SILBasicBlock *normalBB, SILBasicBlock *unwindBB,
SILFunction &F) {
auto Size = totalSizeToAlloc<swift::Operand>(yieldedValues.size());
void *Buffer = F.getModule().allocateInst(Size, alignof(YieldInst));
return ::new (Buffer) YieldInst(loc, yieldedValues, normalBB, unwindBB);
}
SILYieldInfo YieldInst::getYieldInfoForOperand(const Operand &op) const {
// We expect op to be our operand.
assert(op.getUser() == this);
auto conv = getFunction()->getConventions();
return conv.getYieldInfoForOperandIndex(op.getOperandNumber());
}
SILArgumentConvention
YieldInst::getArgumentConventionForOperand(const Operand &op) const {
auto conv = getYieldInfoForOperand(op).getConvention();
return SILArgumentConvention(conv);
}
BranchInst *BranchInst::create(SILDebugLocation Loc, SILBasicBlock *DestBB,
SILFunction &F) {
return create(Loc, DestBB, {}, F);
}
BranchInst *BranchInst::create(SILDebugLocation Loc,
SILBasicBlock *DestBB, ArrayRef<SILValue> Args,
SILFunction &F) {
auto Size = totalSizeToAlloc<swift::Operand>(Args.size());
auto Buffer = F.getModule().allocateInst(Size, alignof(BranchInst));
return ::new (Buffer) BranchInst(Loc, DestBB, Args);
}
CondBranchInst::CondBranchInst(SILDebugLocation Loc, SILValue Condition,
SILBasicBlock *TrueBB, SILBasicBlock *FalseBB,
ArrayRef<SILValue> Args, unsigned NumTrue,
unsigned NumFalse, ProfileCounter TrueBBCount,
ProfileCounter FalseBBCount)
: InstructionBaseWithTrailingOperands(Condition, Args, Loc),
DestBBs{{{this, TrueBB, TrueBBCount}, {this, FalseBB, FalseBBCount}}},
numTrueArguments(NumTrue) {
assert(Args.size() == (NumTrue + NumFalse) && "Invalid number of args");
assert(TrueBB != FalseBB && "Identical destinations");
}
CondBranchInst *CondBranchInst::create(SILDebugLocation Loc, SILValue Condition,
SILBasicBlock *TrueBB,
SILBasicBlock *FalseBB,
ProfileCounter TrueBBCount,
ProfileCounter FalseBBCount,
SILFunction &F) {
return create(Loc, Condition, TrueBB, {}, FalseBB, {}, TrueBBCount,
FalseBBCount, F);
}
CondBranchInst *
CondBranchInst::create(SILDebugLocation Loc, SILValue Condition,
SILBasicBlock *TrueBB, ArrayRef<SILValue> TrueArgs,
SILBasicBlock *FalseBB, ArrayRef<SILValue> FalseArgs,
ProfileCounter TrueBBCount, ProfileCounter FalseBBCount,
SILFunction &F) {
SmallVector<SILValue, 4> Args;
Args.append(TrueArgs.begin(), TrueArgs.end());
Args.append(FalseArgs.begin(), FalseArgs.end());
auto Size = totalSizeToAlloc<swift::Operand>(Args.size() + NumFixedOpers);
auto Buffer = F.getModule().allocateInst(Size, alignof(CondBranchInst));
return ::new (Buffer) CondBranchInst(Loc, Condition, TrueBB, FalseBB, Args,
TrueArgs.size(), FalseArgs.size(),
TrueBBCount, FalseBBCount);
}
Operand *CondBranchInst::getOperandForDestBB(const SILBasicBlock *destBlock,
const SILArgument *arg) const {
return getOperandForDestBB(destBlock, arg->getIndex());
}
Operand *CondBranchInst::getOperandForDestBB(const SILBasicBlock *destBlock,
unsigned argIndex) const {
// If TrueBB and FalseBB equal, we cannot find an arg for this DestBB so
// return an empty SILValue.
if (getTrueBB() == getFalseBB()) {
assert(destBlock == getTrueBB() &&
"DestBB is not a target of this cond_br");
return nullptr;
}
auto *self = const_cast<CondBranchInst *>(this);
if (destBlock == getTrueBB()) {
return &self->getAllOperands()[NumFixedOpers + argIndex];
}
assert(destBlock == getFalseBB() &&
"By process of elimination BB must be false BB");
return &self->getAllOperands()[NumFixedOpers + getNumTrueArgs() + argIndex];
}
void CondBranchInst::swapSuccessors() {
// Swap our destinations.
SILBasicBlock *First = DestBBs[0].getBB();
DestBBs[0] = DestBBs[1].getBB();
DestBBs[1] = First;
// If we don't have any arguments return.
if (!getNumTrueArgs() && !getNumFalseArgs())
return;
// Otherwise swap our true and false arguments.
MutableArrayRef<Operand> Ops = getAllOperands();
llvm::SmallVector<SILValue, 4> TrueOps;
for (SILValue V : getTrueArgs())
TrueOps.push_back(V);
auto FalseArgs = getFalseArgs();
for (unsigned i = 0, e = getNumFalseArgs(); i < e; ++i) {
Ops[NumFixedOpers+i].set(FalseArgs[i]);
}
for (unsigned i = 0, e = getNumTrueArgs(); i < e; ++i) {
Ops[NumFixedOpers+i+getNumFalseArgs()].set(TrueOps[i]);
}
// Finally swap the number of arguments that we have. The number of false
// arguments is derived from the number of true arguments, therefore:
numTrueArguments = getNumFalseArgs();
}
SwitchValueInst::SwitchValueInst(SILDebugLocation Loc, SILValue Operand,
SILBasicBlock *DefaultBB,
ArrayRef<SILValue> Cases,
ArrayRef<SILBasicBlock *> BBs)
: InstructionBaseWithTrailingOperands(Operand, Cases, Loc) {
sharedUInt8().SwitchValueInst.hasDefault = bool(DefaultBB);
// Initialize the successor array.
auto *succs = getSuccessorBuf();
unsigned OperandBitWidth = 0;
if (auto OperandTy = Operand->getType().getAs<BuiltinIntegerType>()) {
OperandBitWidth = OperandTy->getGreatestWidth();
}
for (unsigned i = 0, size = Cases.size(); i < size; ++i) {
// If we have undef, just add the case and continue.
if (isa<SILUndef>(Cases[i])) {
::new (succs + i) SILSuccessor(this, BBs[i]);
continue;
}
if (OperandBitWidth) {
auto *IL = dyn_cast<IntegerLiteralInst>(Cases[i]);
assert(IL && "switch_value case value should be of an integer type");
assert(IL->getValue().getBitWidth() == OperandBitWidth &&
"switch_value case value is not same bit width as operand");
(void)IL;
} else {
auto *FR = dyn_cast<FunctionRefInst>(Cases[i]);
if (!FR) {
if (auto *CF = dyn_cast<ConvertFunctionInst>(Cases[i])) {
FR = dyn_cast<FunctionRefInst>(CF->getOperand());
}
}
assert(FR && "switch_value case value should be a function reference");
}
::new (succs + i) SILSuccessor(this, BBs[i]);
}
if (hasDefault())
::new (succs + getNumCases()) SILSuccessor(this, DefaultBB);
}
SwitchValueInst::~SwitchValueInst() {
// Destroy the successor records to keep the CFG up to date.
auto *succs = getSuccessorBuf();
for (unsigned i = 0, end = getNumCases() + hasDefault(); i < end; ++i) {
succs[i].~SILSuccessor();
}
}
SwitchValueInst *SwitchValueInst::create(
SILDebugLocation Loc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<SILValue, SILBasicBlock *>> CaseBBs, SILFunction &F) {
// Allocate enough room for the instruction with tail-allocated data for all
// the case values and the SILSuccessor arrays. There are `CaseBBs.size()`
// SILValues and `CaseBBs.size() + (DefaultBB ? 1 : 0)` successors.
SmallVector<SILValue, 8> Cases;
SmallVector<SILBasicBlock *, 8> BBs;
unsigned numCases = CaseBBs.size();
unsigned numSuccessors = numCases + (DefaultBB ? 1 : 0);
for (auto pair: CaseBBs) {
Cases.push_back(pair.first);
BBs.push_back(pair.second);
}
auto size = totalSizeToAlloc<swift::Operand, SILSuccessor>(numCases + 1,
numSuccessors);
auto buf = F.getModule().allocateInst(size, alignof(SwitchValueInst));
return ::new (buf) SwitchValueInst(Loc, Operand, DefaultBB, Cases, BBs);
}
template <typename SELECT_ENUM_INST, typename BaseTy>
template <typename... RestTys>
SELECT_ENUM_INST *
SelectEnumInstBase<SELECT_ENUM_INST, BaseTy>::createSelectEnum(
SILDebugLocation Loc, SILValue Operand, SILType Ty, SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> DeclsAndValues,
SILModule &Mod, std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount, RestTys &&...restArgs) {
// Allocate enough room for the instruction with tail-allocated
// EnumElementDecl and operand arrays. There are `CaseBBs.size()` decls
// and `CaseBBs.size() + (DefaultBB ? 1 : 0)` values.
SmallVector<SILValue, 4> CaseValues;
SmallVector<EnumElementDecl*, 4> CaseDecls;
for (auto &pair : DeclsAndValues) {
CaseValues.push_back(pair.second);
CaseDecls.push_back(pair.first);
}
if (DefaultValue)
CaseValues.push_back(DefaultValue);
auto Size = SELECT_ENUM_INST::template
totalSizeToAlloc<swift::Operand, EnumElementDecl*>(CaseValues.size() + 1,
CaseDecls.size());
auto Buf = Mod.allocateInst(Size + sizeof(ProfileCounter),
alignof(SELECT_ENUM_INST));
return ::new (Buf) SELECT_ENUM_INST(
Loc, Operand, Ty, bool(DefaultValue), CaseValues, CaseDecls, CaseCounts,
DefaultCount, std::forward<RestTys>(restArgs)...);
}
SelectEnumInst *SelectEnumInst::create(
SILDebugLocation Loc, SILValue Operand, SILType Type, SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> CaseValues, SILModule &M,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount) {
return createSelectEnum(Loc, Operand, Type, DefaultValue, CaseValues, M,
CaseCounts, DefaultCount);
}
SelectEnumAddrInst *SelectEnumAddrInst::create(
SILDebugLocation Loc, SILValue Operand, SILType Type, SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> CaseValues, SILModule &M,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount) {
// We always pass in false since SelectEnumAddrInst doesn't use ownership. We
// have to pass something in since SelectEnumInst /does/ need to consider
// ownership and both use the same creation function.
return createSelectEnum(Loc, Operand, Type, DefaultValue, CaseValues, M,
CaseCounts, DefaultCount);
}
template <typename BaseTy>
template <typename SWITCH_ENUM_INST, typename... RestTys>
SWITCH_ENUM_INST *SwitchEnumInstBase<BaseTy>::createSwitchEnum(
SILDebugLocation Loc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
SILFunction &F, std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount, RestTys &&...restArgs) {
// Allocate enough room for the instruction with tail-allocated
// EnumElementDecl and SILSuccessor arrays. There are `CaseBBs.size()` decls
// and `CaseBBs.size() + (DefaultBB ? 1 : 0)` successors.
unsigned numCases = CaseBBs.size();
unsigned numSuccessors = numCases + (DefaultBB ? 1 : 0);
void *buf = F.getModule().allocateInst(
sizeof(SWITCH_ENUM_INST) + sizeof(EnumElementDecl *) * numCases +
sizeof(SILSuccessor) * numSuccessors,
alignof(SWITCH_ENUM_INST));
return ::new (buf)
SWITCH_ENUM_INST(Loc, Operand, DefaultBB, CaseBBs, CaseCounts,
DefaultCount, std::forward<RestTys>(restArgs)...);
}
SwitchEnumInst *SwitchEnumInst::create(
SILDebugLocation Loc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
SILFunction &F, std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount, ValueOwnershipKind forwardingOwnershipKind) {
return createSwitchEnum<SwitchEnumInst>(Loc, Operand, DefaultBB, CaseBBs, F,
CaseCounts, DefaultCount,
forwardingOwnershipKind);
}
SwitchEnumAddrInst *SwitchEnumAddrInst::create(
SILDebugLocation Loc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
SILFunction &F, std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount) {
return createSwitchEnum<SwitchEnumAddrInst>(Loc, Operand, DefaultBB, CaseBBs,
F, CaseCounts, DefaultCount);
}
DynamicMethodBranchInst::DynamicMethodBranchInst(SILDebugLocation Loc,
SILValue Operand,
SILDeclRef Member,
SILBasicBlock *HasMethodBB,
SILBasicBlock *NoMethodBB)
: InstructionBase(Loc),
Member(Member),
DestBBs{{{this, HasMethodBB}, {this, NoMethodBB}}},
Operands(this, Operand)
{
}
DynamicMethodBranchInst *
DynamicMethodBranchInst::create(SILDebugLocation Loc, SILValue Operand,
SILDeclRef Member, SILBasicBlock *HasMethodBB,
SILBasicBlock *NoMethodBB, SILFunction &F) {
void *Buffer = F.getModule().allocateInst(sizeof(DynamicMethodBranchInst),
alignof(DynamicMethodBranchInst));
return ::new (Buffer)
DynamicMethodBranchInst(Loc, Operand, Member, HasMethodBB, NoMethodBB);
}
WitnessMethodInst *
WitnessMethodInst::create(SILDebugLocation Loc, CanType LookupType,
ProtocolConformanceRef Conformance, SILDeclRef Member,
SILType Ty, SILFunction *F) {
assert(cast<ProtocolDecl>(Member.getDecl()->getDeclContext())
== Conformance.getProtocol());
SILModule &Mod = F->getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, *F, LookupType);
auto Size = totalSizeToAlloc<swift::Operand>(TypeDependentOperands.size());
auto Buffer = Mod.allocateInst(Size, alignof(WitnessMethodInst));
return ::new (Buffer) WitnessMethodInst(Loc, LookupType, Conformance, Member,
Ty, TypeDependentOperands);
}
ObjCMethodInst *
ObjCMethodInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILDeclRef Member, SILType Ty, SILFunction *F) {
SILModule &Mod = F->getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, *F, Ty.getASTType());
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(ObjCMethodInst));
return ::new (Buffer) ObjCMethodInst(DebugLoc, Operand,
TypeDependentOperands,
Member, Ty);
}
static void checkExistentialPreconditions(SILType ExistentialType,
CanType ConcreteType,
ArrayRef<ProtocolConformanceRef> Conformances) {
#ifndef NDEBUG
auto layout = ExistentialType.getASTType().getExistentialLayout();
assert(layout.getProtocols().size() == Conformances.size());
for (auto conformance : Conformances) {
assert(!conformance.isAbstract() || isa<ArchetypeType>(ConcreteType));
}
#endif
}
InitExistentialAddrInst *InitExistentialAddrInst::create(
SILDebugLocation Loc, SILValue Existential, CanType ConcreteType,
SILType ConcreteLoweredType, ArrayRef<ProtocolConformanceRef> Conformances,
SILFunction *F) {
checkExistentialPreconditions(Existential->getType(), ConcreteType, Conformances);
SILModule &Mod = F->getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, *F, ConcreteType);
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size,
alignof(InitExistentialAddrInst));
return ::new (Buffer) InitExistentialAddrInst(Loc, Existential,
TypeDependentOperands,
ConcreteType,
ConcreteLoweredType,
Conformances);
}
InitExistentialValueInst *InitExistentialValueInst::create(
SILDebugLocation Loc, SILType ExistentialType, CanType ConcreteType,
SILValue Instance, ArrayRef<ProtocolConformanceRef> Conformances,
SILFunction *F) {
checkExistentialPreconditions(ExistentialType, ConcreteType, Conformances);
SILModule &Mod = F->getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, *F, ConcreteType);
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(InitExistentialRefInst));
return ::new (Buffer)
InitExistentialValueInst(Loc, ExistentialType, ConcreteType, Instance,
TypeDependentOperands, Conformances);
}
InitExistentialRefInst *InitExistentialRefInst::create(
SILDebugLocation Loc, SILType ExistentialType, CanType ConcreteType,
SILValue Instance, ArrayRef<ProtocolConformanceRef> Conformances,
SILFunction *F, ValueOwnershipKind forwardingOwnershipKind) {
checkExistentialPreconditions(ExistentialType, ConcreteType, Conformances);
SILModule &Mod = F->getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, *F, ConcreteType);
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(InitExistentialRefInst));
return ::new (Buffer) InitExistentialRefInst(
Loc, ExistentialType, ConcreteType, Instance, TypeDependentOperands,
Conformances, forwardingOwnershipKind);
}
InitExistentialMetatypeInst::InitExistentialMetatypeInst(
SILDebugLocation Loc, SILType existentialMetatypeType, SILValue metatype,
ArrayRef<SILValue> TypeDependentOperands,
ArrayRef<ProtocolConformanceRef> conformances)
: UnaryInstructionWithTypeDependentOperandsBase(Loc, metatype,
TypeDependentOperands,
existentialMetatypeType),
NumConformances(conformances.size()) {
#ifndef NDEBUG
auto layout = existentialMetatypeType.getASTType().getExistentialLayout();
assert(layout.getProtocols().size() == conformances.size());
#endif
std::uninitialized_copy(conformances.begin(), conformances.end(),
getTrailingObjects<ProtocolConformanceRef>());
}
InitExistentialMetatypeInst *InitExistentialMetatypeInst::create(
SILDebugLocation Loc, SILType existentialMetatypeType, SILValue metatype,
ArrayRef<ProtocolConformanceRef> conformances, SILFunction *F) {
SILModule &M = F->getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, *F,
existentialMetatypeType.getASTType());
unsigned size = totalSizeToAlloc<swift::Operand, ProtocolConformanceRef>(
1 + TypeDependentOperands.size(), conformances.size());
void *buffer = M.allocateInst(size, alignof(InitExistentialMetatypeInst));
return ::new (buffer) InitExistentialMetatypeInst(
Loc, existentialMetatypeType, metatype,
TypeDependentOperands, conformances);
}
ArrayRef<ProtocolConformanceRef>
InitExistentialMetatypeInst::getConformances() const {
return {getTrailingObjects<ProtocolConformanceRef>(), NumConformances};
}
OpenedExistentialAccess swift::getOpenedExistentialAccessFor(AccessKind access) {
switch (access) {
case AccessKind::Read:
return OpenedExistentialAccess::Immutable;
case AccessKind::ReadWrite:
case AccessKind::Write:
return OpenedExistentialAccess::Mutable;
}
llvm_unreachable("Uncovered covered switch?");
}
OpenExistentialAddrInst::OpenExistentialAddrInst(
SILDebugLocation DebugLoc, SILValue Operand, SILType SelfTy,
OpenedExistentialAccess AccessKind)
: UnaryInstructionBase(DebugLoc, Operand, SelfTy), ForAccess(AccessKind) {}
OpenExistentialRefInst::OpenExistentialRefInst(
SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(DebugLoc, Operand, Ty, forwardingOwnershipKind) {
assert(Operand->getType().isObject() && "Operand must be an object.");
assert(Ty.isObject() && "Result type must be an object type.");
}
OpenExistentialMetatypeInst::OpenExistentialMetatypeInst(
SILDebugLocation DebugLoc, SILValue operand, SILType ty)
: UnaryInstructionBase(DebugLoc, operand, ty) {
}
OpenExistentialBoxInst::OpenExistentialBoxInst(
SILDebugLocation DebugLoc, SILValue operand, SILType ty)
: UnaryInstructionBase(DebugLoc, operand, ty) {
}
OpenExistentialBoxValueInst::OpenExistentialBoxValueInst(
SILDebugLocation DebugLoc, SILValue operand, SILType ty,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(DebugLoc, operand, ty, forwardingOwnershipKind) {}
OpenExistentialValueInst::OpenExistentialValueInst(
SILDebugLocation debugLoc, SILValue operand, SILType selfTy,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(debugLoc, operand, selfTy, forwardingOwnershipKind) {
}
PackLengthInst *PackLengthInst::create(SILFunction &F,
SILDebugLocation loc,
CanPackType packType) {
auto resultType = SILType::getBuiltinWordType(F.getASTContext());
// Always reduce the pack shape.
packType = packType->getReducedShape();
// Under current limitations, that should reliably eliminate
// any local archetypes from the pack, but there's no real need to
// assume that in the SIL representation.
SmallVector<SILValue, 8> typeDependentOperands;
collectTypeDependentOperands(typeDependentOperands, F, packType);
size_t size =
totalSizeToAlloc<swift::Operand>(typeDependentOperands.size());
void *buffer =
F.getModule().allocateInst(size, alignof(PackLengthInst));
return ::new (buffer)
PackLengthInst(loc, typeDependentOperands, resultType, packType);
}
DynamicPackIndexInst *DynamicPackIndexInst::create(SILFunction &F,
SILDebugLocation loc,
SILValue indexOperand,
CanPackType packType) {
auto packIndexType = SILType::getPackIndexType(F.getASTContext());
SmallVector<SILValue, 8> typeDependentOperands;
collectTypeDependentOperands(typeDependentOperands, F, packType);
size_t size =
totalSizeToAlloc<swift::Operand>(1 + typeDependentOperands.size());
void *buffer =
F.getModule().allocateInst(size, alignof(DynamicPackIndexInst));
return ::new (buffer)
DynamicPackIndexInst(loc, indexOperand, typeDependentOperands,
packIndexType, packType);
}
PackPackIndexInst *PackPackIndexInst::create(SILFunction &F,
SILDebugLocation loc,
unsigned componentStartIndex,
SILValue indexWithinComponent,
CanPackType packType) {
assert(componentStartIndex < packType->getNumElements() &&
"component start index is out of bounds for indexed-into pack type");
// TODO: assert that the shapes are similar?
auto packIndexType = SILType::getPackIndexType(F.getASTContext());
SmallVector<SILValue, 8> typeDependentOperands;
collectTypeDependentOperands(typeDependentOperands, F, packType);
size_t size =
totalSizeToAlloc<swift::Operand>(1 + typeDependentOperands.size());
void *buffer =
F.getModule().allocateInst(size, alignof(PackPackIndexInst));
return ::new (buffer)
PackPackIndexInst(loc, componentStartIndex, indexWithinComponent,
typeDependentOperands, packIndexType, packType);
}
ScalarPackIndexInst *ScalarPackIndexInst::create(SILFunction &F,
SILDebugLocation loc,
unsigned componentIndex,
CanPackType packType) {
assert(componentIndex < packType->getNumElements() &&
"component index is out of bounds for indexed-into pack type");
assert(!isa<PackExpansionType>(packType.getElementType(componentIndex)) &&
"component index for scalar pack index is a pack expansion");
auto packIndexType = SILType::getPackIndexType(F.getASTContext());
SmallVector<SILValue, 8> typeDependentOperands;
collectTypeDependentOperands(typeDependentOperands, F, packType);
size_t size =
totalSizeToAlloc<swift::Operand>(typeDependentOperands.size());
void *buffer =
F.getModule().allocateInst(size, alignof(ScalarPackIndexInst));
return ::new (buffer)
ScalarPackIndexInst(loc, componentIndex, typeDependentOperands,
packIndexType, packType);
}
OpenPackElementInst::OpenPackElementInst(
SILDebugLocation debugLoc, SILValue packIndexOperand,
ArrayRef<SILValue> typeDependentOperands,
SILType type, GenericEnvironment *env)
: UnaryInstructionWithTypeDependentOperandsBase(debugLoc, packIndexOperand,
typeDependentOperands, type),
Env(env) {
}
OpenPackElementInst *OpenPackElementInst::create(
SILFunction &F, SILDebugLocation debugLoc, SILValue indexOperand,
GenericEnvironment *env) {
// We can't assert that this is a pack-indexing instruction here
// because of forward declarations while parsing/deserializing, but
// we can at least assert the type.
assert(indexOperand->getType().is<BuiltinPackIndexType>());
SmallVector<SILValue, 8> typeDependentOperands;
// open_pack_element references the pack substitutions and
// the types used in the shape class.
TypeDependentOperandCollector collector;
env->forEachPackElementBinding([&](ElementArchetypeType *elementType,
PackType *packSubstitution) {
collector.collect(packSubstitution->getCanonicalType());
});
collector.addTo(typeDependentOperands, SILInstructionContext::forFunction(F));
SILType type = SILType::getSILTokenType(F.getASTContext());
auto size = totalSizeToAlloc<swift::Operand>(1 + typeDependentOperands.size());
auto buffer = F.getModule().allocateInst(size, alignof(OpenPackElementInst));
return ::new (buffer) OpenPackElementInst(debugLoc, indexOperand,
typeDependentOperands, type, env);
}
CanPackType OpenPackElementInst::getOpenedShapeClass() const {
PackType *pack = nullptr;
auto env = getOpenedGenericEnvironment();
env->forEachPackElementBinding([&](ElementArchetypeType *elementType,
PackType *packSubstitution) {
// Just pick one of these, they all have to have the same shape class.
pack = packSubstitution;
});
assert(pack);
return cast<PackType>(pack->getCanonicalType());
}
PackElementGetInst *PackElementGetInst::create(SILFunction &F,
SILDebugLocation debugLoc,
SILValue indexOperand,
SILValue packOperand,
SILType elementType) {
assert(indexOperand->getType().is<BuiltinPackIndexType>());
assert(packOperand->getType().is<SILPackType>());
SmallVector<SILValue, 8> allOperands;
allOperands.push_back(indexOperand);
allOperands.push_back(packOperand);
collectTypeDependentOperands(allOperands, F, elementType);
auto size = totalSizeToAlloc<swift::Operand>(allOperands.size());
auto buffer = F.getModule().allocateInst(size, alignof(PackElementGetInst));
return ::new (buffer) PackElementGetInst(debugLoc, allOperands, elementType);
}
TuplePackElementAddrInst *
TuplePackElementAddrInst::create(SILFunction &F,
SILDebugLocation debugLoc,
SILValue indexOperand,
SILValue tupleOperand,
SILType elementType) {
assert(indexOperand->getType().is<BuiltinPackIndexType>());
assert(tupleOperand->getType().isAddress() &&
tupleOperand->getType().is<TupleType>());
SmallVector<SILValue, 8> allOperands;
allOperands.push_back(indexOperand);
allOperands.push_back(tupleOperand);
collectTypeDependentOperands(allOperands, F, elementType);
auto size = totalSizeToAlloc<swift::Operand>(allOperands.size());
auto buffer =
F.getModule().allocateInst(size, alignof(TuplePackElementAddrInst));
return ::new (buffer) TuplePackElementAddrInst(debugLoc, allOperands,
elementType);
}
TuplePackExtractInst *
TuplePackExtractInst::create(SILFunction &F, SILDebugLocation debugLoc,
SILValue indexOperand, SILValue tupleOperand,
SILType elementType,
ValueOwnershipKind forwardingOwnershipKind) {
assert(indexOperand->getType().is<BuiltinPackIndexType>());
assert(tupleOperand->getType().isObject() &&
tupleOperand->getType().is<TupleType>());
SmallVector<SILValue, 8> allOperands;
allOperands.push_back(indexOperand);
allOperands.push_back(tupleOperand);
collectTypeDependentOperands(allOperands, F, elementType);
auto size = totalSizeToAlloc<swift::Operand>(allOperands.size());
auto buffer = F.getModule().allocateInst(size, alignof(TuplePackExtractInst));
return ::new (buffer) TuplePackExtractInst(debugLoc, allOperands, elementType,
forwardingOwnershipKind);
}
BeginCOWMutationInst::BeginCOWMutationInst(SILDebugLocation loc,
SILValue operand,
ArrayRef<SILType> resultTypes,
ArrayRef<ValueOwnershipKind> resultOwnerships,
bool isNative)
: UnaryInstructionBase(loc, operand),
MultipleValueInstructionTrailingObjects(this, resultTypes,
resultOwnerships) {
assert(resultTypes.size() == 2 && resultOwnerships.size() == 2);
assert(operand->getType() == resultTypes[1]);
setNative(isNative);
}
BeginCOWMutationInst *
BeginCOWMutationInst::create(SILDebugLocation loc, SILValue operand,
SILType boolTy, SILFunction &F, bool isNative) {
SILType resultTypes[2] = { boolTy, operand->getType() };
ValueOwnershipKind ownerships[2] = {OwnershipKind::None,
OwnershipKind::Owned};
void *buffer =
allocateTrailingInst<BeginCOWMutationInst, MultipleValueInstruction*,
MultipleValueInstructionResult>(
F, 1, 2);
return ::new(buffer) BeginCOWMutationInst(loc, operand,
ArrayRef<SILType>(resultTypes, 2),
ArrayRef<ValueOwnershipKind>(ownerships, 2),
isNative);
}
UncheckedRefCastInst *
UncheckedRefCastInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILModule &Mod,
ValueOwnershipKind forwardingOwnershipKind) {
assert(Operand->getType().getCategory() == SILValueCategory::Object);
unsigned size = totalSizeToAlloc<swift::Operand>(1);
void *Buffer = Mod.allocateInst(size, alignof(UncheckedRefCastInst));
return ::new (Buffer) UncheckedRefCastInst(
DebugLoc, Operand, {}, Ty, forwardingOwnershipKind);
}
UncheckedRefCastInst *
UncheckedRefCastInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILFunction &F,
ValueOwnershipKind forwardingOwnershipKind) {
assert(Operand->getType().getCategory() == SILValueCategory::Object);
SILModule &Mod = F.getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, Ty.getASTType());
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UncheckedRefCastInst));
return ::new (Buffer) UncheckedRefCastInst(
DebugLoc, Operand, TypeDependentOperands, Ty, forwardingOwnershipKind);
}
UncheckedValueCastInst *
UncheckedValueCastInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILFunction &F,
ValueOwnershipKind forwardingOwnershipKind) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, Ty.getASTType());
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UncheckedValueCastInst));
return ::new (Buffer) UncheckedValueCastInst(
DebugLoc, Operand, TypeDependentOperands, Ty, forwardingOwnershipKind);
}
UncheckedAddrCastInst *
UncheckedAddrCastInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILFunction &F) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, Ty.getASTType());
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UncheckedAddrCastInst));
return ::new (Buffer) UncheckedAddrCastInst(DebugLoc, Operand,
TypeDependentOperands, Ty);
}
UncheckedTrivialBitCastInst *
UncheckedTrivialBitCastInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILFunction &F) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, Ty.getASTType());
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UncheckedTrivialBitCastInst));
return ::new (Buffer) UncheckedTrivialBitCastInst(DebugLoc, Operand,
TypeDependentOperands,
Ty);
}
UncheckedBitwiseCastInst *
UncheckedBitwiseCastInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILFunction &F) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, Ty.getASTType());
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UncheckedBitwiseCastInst));
return ::new (Buffer) UncheckedBitwiseCastInst(DebugLoc, Operand,
TypeDependentOperands, Ty);
}
UnconditionalCheckedCastInst *UnconditionalCheckedCastInst::create(
SILDebugLocation DebugLoc, CheckedCastInstOptions options,
SILValue Operand, SILType DestLoweredTy,
CanType DestFormalTy, SILFunction &F,
ValueOwnershipKind forwardingOwnershipKind) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, DestFormalTy);
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UnconditionalCheckedCastInst));
return ::new (Buffer) UnconditionalCheckedCastInst(
DebugLoc, options, Operand, TypeDependentOperands,
DestLoweredTy, DestFormalTy, forwardingOwnershipKind);
}
CheckedCastBranchInst *CheckedCastBranchInst::create(
SILDebugLocation DebugLoc, bool IsExact,
CheckedCastInstOptions options, SILValue Operand,
CanType SrcFormalTy, SILType DestLoweredTy, CanType DestFormalTy,
SILBasicBlock *SuccessBB, SILBasicBlock *FailureBB, SILFunction &F,
ProfileCounter Target1Count, ProfileCounter Target2Count,
ValueOwnershipKind forwardingOwnershipKind) {
SILModule &module = F.getModule();
bool preservesOwnership = doesCastPreserveOwnershipForTypes(
module, Operand->getType().getASTType(), DestFormalTy);
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, DestFormalTy);
unsigned size =
totalSizeToAlloc<swift::Operand>(3 + TypeDependentOperands.size());
void *Buffer = module.allocateInst(size, alignof(CheckedCastBranchInst));
return ::new (Buffer) CheckedCastBranchInst(
DebugLoc, IsExact, options, Operand, SrcFormalTy,
TypeDependentOperands,
DestLoweredTy, DestFormalTy, SuccessBB, FailureBB, Target1Count,
Target2Count, forwardingOwnershipKind, preservesOwnership);
}
MetatypeInst *MetatypeInst::create(SILDebugLocation Loc, SILType Ty,
SILFunction *F) {
SILModule &Mod = F->getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, *F,
Ty.castTo<MetatypeType>().getInstanceType());
auto Size = totalSizeToAlloc<swift::Operand>(TypeDependentOperands.size());
auto Buffer = Mod.allocateInst(Size, alignof(MetatypeInst));
return ::new (Buffer) MetatypeInst(Loc, Ty, TypeDependentOperands);
}
UpcastInst *UpcastInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILModule &Mod,
ValueOwnershipKind forwardingOwnershipKind) {
unsigned size = totalSizeToAlloc<swift::Operand>(1);
void *Buffer = Mod.allocateInst(size, alignof(UpcastInst));
return ::new (Buffer) UpcastInst(DebugLoc, Operand, {}, Ty,
forwardingOwnershipKind);
}
UpcastInst *UpcastInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILFunction &F,
ValueOwnershipKind forwardingOwnershipKind) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, Ty.getASTType());
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(UpcastInst));
return ::new (Buffer) UpcastInst(DebugLoc, Operand, TypeDependentOperands, Ty,
forwardingOwnershipKind);
}
ThinToThickFunctionInst *
ThinToThickFunctionInst::create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILModule &Mod, SILFunction *F,
ValueOwnershipKind forwardingOwnershipKind) {
SmallVector<SILValue, 8> TypeDependentOperands;
if (F) {
assert(&F->getModule() == &Mod);
collectTypeDependentOperands(TypeDependentOperands, *F, Ty.getASTType());
}
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(ThinToThickFunctionInst));
return ::new (Buffer) ThinToThickFunctionInst(
DebugLoc, Operand, TypeDependentOperands, Ty, forwardingOwnershipKind);
}
ConvertFunctionInst *ConvertFunctionInst::create(
SILDebugLocation DebugLoc, SILValue Operand, SILType Ty, SILModule &Mod,
SILFunction *F,
bool WithoutActuallyEscaping, ValueOwnershipKind forwardingOwnershipKind) {
SmallVector<SILValue, 8> TypeDependentOperands;
if (F) {
assert(&F->getModule() == &Mod);
collectTypeDependentOperands(TypeDependentOperands, *F, Ty.getASTType());
}
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(ConvertFunctionInst));
auto *CFI = ::new (Buffer)
ConvertFunctionInst(DebugLoc, Operand, TypeDependentOperands, Ty,
WithoutActuallyEscaping, forwardingOwnershipKind);
// If we do not have lowered SIL, make sure that are not performing
// ABI-incompatible conversions.
//
// *NOTE* We purposely do not use an early return here to ensure that in
// builds without assertions this whole if statement is optimized out.
if (Mod.getStage() != SILStage::Lowered) {
// Make sure we are not performing ABI-incompatible conversions.
CanSILFunctionType opTI =
CFI->getOperand()->getType().castTo<SILFunctionType>();
(void)opTI;
CanSILFunctionType resTI = CFI->getType().castTo<SILFunctionType>();
(void)resTI;
assert((!F || opTI->isABICompatibleWith(resTI, *F).isCompatible()) &&
"Can not convert in between ABI incompatible function types");
}
return CFI;
}
bool ConvertFunctionInst::onlyConvertsSubstitutions() const {
auto fromType = getOperand()->getType().castTo<SILFunctionType>();
auto toType = getType().castTo<SILFunctionType>();
auto &M = getModule();
return fromType->getUnsubstitutedType(M) == toType->getUnsubstitutedType(M);
}
static SILFunctionType *getNonSendableFuncType(SILType ty) {
auto fnTy = ty.castTo<SILFunctionType>();
return fnTy->getWithExtInfo(fnTy->getExtInfo().withSendable(false));
}
bool ConvertFunctionInst::onlyConvertsSendable() const {
return getNonSendableFuncType(getOperand()->getType()) ==
getNonSendableFuncType(getType());
}
static CanSILFunctionType
getDerivedFunctionTypeForIdentityThunk(SILFunction *fn,
CanSILFunctionType inputFunctionType,
SubstitutionMap subMap) {
inputFunctionType = inputFunctionType->substGenericArgs(
fn->getModule(), subMap, fn->getTypeExpansionContext());
bool needsSubstFunctionType = false;
for (auto param : inputFunctionType->getParameters()) {
needsSubstFunctionType |= param.getInterfaceType()->hasTypeParameter();
}
for (auto result : inputFunctionType->getResults()) {
needsSubstFunctionType |= result.getInterfaceType()->hasTypeParameter();
}
for (auto yield : inputFunctionType->getYields()) {
needsSubstFunctionType |= yield.getInterfaceType()->hasTypeParameter();
}
if (inputFunctionType->hasErrorResult()) {
needsSubstFunctionType |= inputFunctionType->getErrorResult()
.getInterfaceType()
->hasTypeParameter();
}
SubstitutionMap appliedSubs;
if (needsSubstFunctionType) {
appliedSubs = inputFunctionType->getCombinedSubstitutions();
}
auto extInfoBuilder =
inputFunctionType->getExtInfo()
.intoBuilder()
.withRepresentation(SILFunctionType::Representation::Thick)
.withIsPseudogeneric(false);
return SILFunctionType::get(
nullptr, extInfoBuilder.build(), inputFunctionType->getCoroutineKind(),
ParameterConvention::Direct_Guaranteed,
inputFunctionType->getParameters(), inputFunctionType->getYields(),
inputFunctionType->getResults(),
inputFunctionType->getOptionalErrorResult(), appliedSubs,
SubstitutionMap(), inputFunctionType->getASTContext());
}
CanSILFunctionType
ThunkInst::Kind::getDerivedFunctionType(SILFunction *fn,
CanSILFunctionType inputFunctionType,
SubstitutionMap subMap) const {
switch (innerTy) {
case Invalid:
return CanSILFunctionType();
case Identity:
return getDerivedFunctionTypeForIdentityThunk(fn, inputFunctionType,
subMap);
}
llvm_unreachable("Covered switch isn't covered?!");
}
SILType ThunkInst::Kind::getDerivedFunctionType(SILFunction *fn,
SILType inputFunctionType,
SubstitutionMap subMap) const {
auto fType = inputFunctionType.castTo<SILFunctionType>();
return SILType::getPrimitiveType(getDerivedFunctionType(fn, fType, subMap),
inputFunctionType.getCategory());
}
ThunkInst *ThunkInst::create(SILDebugLocation debugLoc, SILValue operand,
SILModule &mod, SILFunction *f,
ThunkInst::Kind kind, SubstitutionMap subs) {
SILType resultType = kind.getDerivedFunctionType(f, operand->getType(), subs);
SmallVector<SILValue, 8> typeDependentOperands;
if (f) {
assert(&f->getModule() == &mod);
collectTypeDependentOperands(typeDependentOperands, *f, resultType);
}
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + typeDependentOperands.size());
void *Buffer = mod.allocateInst(size, alignof(ThunkInst));
return ::new (Buffer) ThunkInst(debugLoc, operand, typeDependentOperands,
resultType, kind, subs);
}
ConvertEscapeToNoEscapeInst *ConvertEscapeToNoEscapeInst::create(
SILDebugLocation DebugLoc, SILValue Operand, SILType Ty, SILFunction &F,
bool isLifetimeGuaranteed) {
SILModule &Mod = F.getModule();
SmallVector<SILValue, 8> TypeDependentOperands;
collectTypeDependentOperands(TypeDependentOperands, F, Ty.getASTType());
unsigned size =
totalSizeToAlloc<swift::Operand>(1 + TypeDependentOperands.size());
void *Buffer = Mod.allocateInst(size, alignof(ConvertEscapeToNoEscapeInst));
auto *CFI = ::new (Buffer) ConvertEscapeToNoEscapeInst(
DebugLoc, Operand, TypeDependentOperands, Ty, isLifetimeGuaranteed);
// If we do not have lowered SIL, make sure that are not performing
// ABI-incompatible conversions.
//
// *NOTE* We purposely do not use an early return here to ensure that in
// builds without assertions this whole if statement is optimized out.
if (F.getModule().getStage() != SILStage::Lowered) {
// Make sure we are not performing ABI-incompatible conversions.
CanSILFunctionType opTI =
CFI->getOperand()->getType().castTo<SILFunctionType>();
(void)opTI;
CanSILFunctionType resTI = CFI->getType().castTo<SILFunctionType>();
(void)resTI;
assert(opTI->isABICompatibleWith(resTI, F)
.isCompatibleUpToNoEscapeConversion() &&
"Can not convert in between ABI incompatible function types");
}
return CFI;
}
bool KeyPathPatternComponent::isComputedSettablePropertyMutating() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::GettableProperty:
case Kind::Method:
case Kind::OptionalChain:
case Kind::OptionalWrap:
case Kind::OptionalForce:
case Kind::TupleElement:
llvm_unreachable("not a settable computed property");
case Kind::SettableProperty: {
auto setter = getComputedPropertyForSettable();
return setter->getLoweredFunctionType()->getParameters()[1].getConvention()
== ParameterConvention::Indirect_Inout;
}
}
llvm_unreachable("unhandled kind");
}
static void
forEachRefcountableReference(const KeyPathPatternComponent &component,
llvm::function_ref<void (SILFunction*)> forFunction) {
switch (component.getKind()) {
case KeyPathPatternComponent::Kind::StoredProperty:
case KeyPathPatternComponent::Kind::OptionalChain:
case KeyPathPatternComponent::Kind::OptionalWrap:
case KeyPathPatternComponent::Kind::OptionalForce:
case KeyPathPatternComponent::Kind::TupleElement:
return;
case KeyPathPatternComponent::Kind::SettableProperty:
forFunction(component.getComputedPropertyForSettable());
LLVM_FALLTHROUGH;
case KeyPathPatternComponent::Kind::Method:
case KeyPathPatternComponent::Kind::GettableProperty:
forFunction(component.getComputedPropertyForGettable());
switch (component.getComputedPropertyId().getKind()) {
case KeyPathPatternComponent::ComputedPropertyId::DeclRef:
// Mark the vtable entry as used somehow?
break;
case KeyPathPatternComponent::ComputedPropertyId::Function:
forFunction(component.getComputedPropertyId().getFunction());
break;
case KeyPathPatternComponent::ComputedPropertyId::Property:
break;
}
if (auto equals = component.getIndexEquals())
forFunction(equals);
if (auto hash = component.getIndexHash())
forFunction(hash);
return;
}
}
void KeyPathPatternComponent::incrementRefCounts() const {
forEachRefcountableReference(*this,
[&](SILFunction *f) { f->incrementRefCount(); });
}
void KeyPathPatternComponent::decrementRefCounts() const {
forEachRefcountableReference(*this,
[&](SILFunction *f) { f->decrementRefCount(); });
}
KeyPathPattern *
KeyPathPattern::get(SILModule &M, CanGenericSignature signature,
CanType rootType, CanType valueType,
ArrayRef<KeyPathPatternComponent> components,
StringRef objcString) {
llvm::FoldingSetNodeID id;
Profile(id, signature, rootType, valueType, components, objcString);
void *insertPos;
auto existing = M.KeyPathPatterns.FindNodeOrInsertPos(id, insertPos);
if (existing)
return existing;
// Determine the number of operands.
int maxOperandNo = -1;
for (auto component : components) {
switch (component.getKind()) {
case KeyPathPatternComponent::Kind::StoredProperty:
case KeyPathPatternComponent::Kind::OptionalChain:
case KeyPathPatternComponent::Kind::OptionalWrap:
case KeyPathPatternComponent::Kind::OptionalForce:
case KeyPathPatternComponent::Kind::TupleElement:
break;
case KeyPathPatternComponent::Kind::Method:
case KeyPathPatternComponent::Kind::GettableProperty:
case KeyPathPatternComponent::Kind::SettableProperty:
for (auto &index : component.getArguments()) {
maxOperandNo = std::max(maxOperandNo, (int)index.Operand);
}
}
}
auto newPattern = KeyPathPattern::create(M, signature, rootType, valueType,
components, objcString,
maxOperandNo + 1);
M.KeyPathPatterns.InsertNode(newPattern, insertPos);
return newPattern;
}
KeyPathPattern *
KeyPathPattern::create(SILModule &M, CanGenericSignature signature,
CanType rootType, CanType valueType,
ArrayRef<KeyPathPatternComponent> components,
StringRef objcString,
unsigned numOperands) {
auto totalSize = totalSizeToAlloc<KeyPathPatternComponent>(components.size());
void *mem = M.allocate(totalSize, alignof(KeyPathPatternComponent));
return ::new (mem) KeyPathPattern(signature, rootType, valueType,
components, objcString, numOperands);
}
KeyPathPattern::KeyPathPattern(CanGenericSignature signature,
CanType rootType, CanType valueType,
ArrayRef<KeyPathPatternComponent> components,
StringRef objcString,
unsigned numOperands)
: NumOperands(numOperands), NumComponents(components.size()),
Signature(signature), RootType(rootType), ValueType(valueType),
ObjCString(objcString)
{
auto *componentsBuf = getTrailingObjects();
std::uninitialized_copy(components.begin(), components.end(),
componentsBuf);
}
ArrayRef<KeyPathPatternComponent>
KeyPathPattern::getComponents() const {
return getTrailingObjects(NumComponents);
}
void KeyPathPattern::Profile(llvm::FoldingSetNodeID &ID,
CanGenericSignature signature,
CanType rootType,
CanType valueType,
ArrayRef<KeyPathPatternComponent> components,
StringRef objcString) {
ID.AddPointer(signature.getPointer());
ID.AddPointer(rootType.getPointer());
ID.AddPointer(valueType.getPointer());
ID.AddString(objcString);
auto profileIndices = [&](ArrayRef<KeyPathPatternComponent::Index> indices) {
for (auto &index : indices) {
ID.AddInteger(index.Operand);
ID.AddPointer(index.FormalType.getPointer());
ID.AddPointer(index.LoweredType.getOpaqueValue());
ID.AddPointer(index.Hashable.getOpaqueValue());
}
};
for (auto &component : components) {
ID.AddInteger((unsigned)component.getKind());
switch (component.getKind()) {
case KeyPathPatternComponent::Kind::OptionalForce:
case KeyPathPatternComponent::Kind::OptionalWrap:
case KeyPathPatternComponent::Kind::OptionalChain:
break;
case KeyPathPatternComponent::Kind::StoredProperty:
ID.AddPointer(component.getStoredPropertyDecl());
break;
case KeyPathPatternComponent::Kind::TupleElement:
ID.AddInteger(component.getTupleIndex());
break;
case KeyPathPatternComponent::Kind::Method:
case KeyPathPatternComponent::Kind::SettableProperty:
ID.AddPointer(component.getComputedPropertyForSettable());
LLVM_FALLTHROUGH;
case KeyPathPatternComponent::Kind::GettableProperty:
ID.AddPointer(component.getComputedPropertyForGettable());
auto id = component.getComputedPropertyId();
ID.AddInteger(id.getKind());
switch (id.getKind()) {
case KeyPathPatternComponent::ComputedPropertyId::DeclRef: {
auto declRef = id.getDeclRef();
ID.AddPointer(declRef.loc.getOpaqueValue());
ID.AddInteger((unsigned)declRef.kind);
ID.AddBoolean(declRef.isForeign);
ID.AddBoolean(declRef.defaultArgIndex);
break;
}
case KeyPathPatternComponent::ComputedPropertyId::Function: {
ID.AddPointer(id.getFunction());
break;
}
case KeyPathPatternComponent::ComputedPropertyId::Property: {
ID.AddPointer(id.getProperty());
break;
}
}
profileIndices(component.getArguments());
ID.AddPointer(component.getExternalDecl());
component.getExternalSubstitutions().profile(ID);
break;
}
}
}
KeyPathInst *
KeyPathInst::create(SILDebugLocation Loc,
KeyPathPattern *Pattern,
SubstitutionMap Subs,
ArrayRef<SILValue> Args,
SILType Ty,
SILFunction &F) {
ASSERT(Args.size() == Pattern->getNumOperands()
&& "number of key path args doesn't match pattern");
SmallVector<SILValue, 8> allOperands(Args.begin(), Args.end());
collectTypeDependentOperands(allOperands, F, Ty);
auto totalSize = totalSizeToAlloc<Operand>(allOperands.size());
void *mem = F.getModule().allocateInst(totalSize, alignof(KeyPathInst));
return ::new (mem) KeyPathInst(Loc, Pattern, Subs, allOperands, Args.size(), Ty);
}
KeyPathInst::KeyPathInst(SILDebugLocation Loc,
KeyPathPattern *Pattern,
SubstitutionMap Subs,
ArrayRef<SILValue> allOperands,
unsigned numPatternOperands,
SILType Ty)
: InstructionBase(Loc, Ty),
Pattern(Pattern),
numPatternOperands(numPatternOperands),
numTypeDependentOperands(allOperands.size() - numPatternOperands),
Substitutions(Subs.getCanonical())
{
assert(allOperands.size() >= numPatternOperands);
auto *operandsBuf = getTrailingObjects();
for (unsigned i = 0; i < allOperands.size(); ++i) {
::new ((void*)&operandsBuf[i]) Operand(this, allOperands[i]);
}
// Increment the use of any functions referenced from the keypath pattern.
for (auto component : Pattern->getComponents()) {
component.incrementRefCounts();
}
}
MutableArrayRef<Operand>
KeyPathInst::getAllOperands() {
return getTrailingObjects(numPatternOperands + numTypeDependentOperands);
}
KeyPathInst::~KeyPathInst() {
if (!Pattern)
return;
// Decrement the use of any functions referenced from the keypath pattern.
for (auto component : Pattern->getComponents()) {
component.decrementRefCounts();
}
// Destroy operands.
for (auto &operand : getAllOperands())
operand.~Operand();
}
BoundGenericType *KeyPathInst::getKeyPathType() const {
auto kpTy = getType();
if (auto existential = kpTy.getAs<ExistentialType>()) {
return existential->getExistentialLayout()
.explicitSuperclass->castTo<BoundGenericType>();
}
return kpTy.getAs<BoundGenericType>();
}
KeyPathPattern *KeyPathInst::getPattern() const {
assert(Pattern && "pattern was reset!");
return Pattern;
}
void KeyPathInst::dropReferencedPattern() {
for (auto component : Pattern->getComponents()) {
component.decrementRefCounts();
}
Pattern = nullptr;
}
void KeyPathPatternComponent::
visitReferencedFunctionsAndMethods(
std::function<void (SILFunction *)> functionCallBack,
std::function<void (SILDeclRef)> methodCallBack) const {
switch (getKind()) {
case KeyPathPatternComponent::Kind::SettableProperty:
functionCallBack(getComputedPropertyForSettable());
LLVM_FALLTHROUGH;
case KeyPathPatternComponent::Kind::GettableProperty:
case KeyPathPatternComponent::Kind::Method: {
functionCallBack(getComputedPropertyForGettable());
auto id = getComputedPropertyId();
switch (id.getKind()) {
case KeyPathPatternComponent::ComputedPropertyId::DeclRef: {
methodCallBack(id.getDeclRef());
break;
}
case KeyPathPatternComponent::ComputedPropertyId::Function:
functionCallBack(id.getFunction());
break;
case KeyPathPatternComponent::ComputedPropertyId::Property:
break;
}
if (auto equals = getIndexEquals())
functionCallBack(equals);
if (auto hash = getIndexHash())
functionCallBack(hash);
break;
}
case KeyPathPatternComponent::Kind::StoredProperty:
case KeyPathPatternComponent::Kind::OptionalChain:
case KeyPathPatternComponent::Kind::OptionalForce:
case KeyPathPatternComponent::Kind::OptionalWrap:
case KeyPathPatternComponent::Kind::TupleElement:
break;
}
}
GenericSpecializationInformation::GenericSpecializationInformation(
SILFunction *Caller, SILFunction *Parent, SubstitutionMap Subs)
: Caller(Caller), Parent(Parent), Subs(Subs) {}
const GenericSpecializationInformation *
GenericSpecializationInformation::create(SILFunction *Caller,
SILFunction *Parent,
SubstitutionMap Subs) {
auto &M = Parent->getModule();
void *Buf = M.allocate(sizeof(GenericSpecializationInformation),
alignof(GenericSpecializationInformation));
return new (Buf) GenericSpecializationInformation(Caller, Parent, Subs);
}
const GenericSpecializationInformation *
GenericSpecializationInformation::create(SILInstruction *Inst, SILBuilder &B) {
auto Apply = ApplySite::isa(Inst);
// Preserve history only for apply instructions for now.
// NOTE: We may want to preserve history for all instructions in the future,
// because it may allow us to track their origins.
assert(Apply);
auto *F = Inst->getFunction();
auto &BuilderF = B.getFunction();
// If cloning inside the same function, don't change the specialization info.
if (F == &BuilderF) {
return Apply.getSpecializationInfo();
}
// The following lines are used in case of inlining.
// If a call-site has a history already, simply preserve it.
if (Apply.getSpecializationInfo())
return Apply.getSpecializationInfo();
// If a call-site has no history, use the history of a containing function.
if (F->isSpecialization())
return F->getSpecializationInfo();
return nullptr;
}
static void computeAggregateFirstLevelSubtypeInfo(
const SILFunction &F, SILValue Operand,
llvm::SmallVectorImpl<SILType> &Types,
llvm::SmallVectorImpl<ValueOwnershipKind> &OwnershipKinds) {
auto &M = F.getModule();
SILType OpType = Operand->getType();
// TODO: Create an iterator for accessing first level projections to eliminate
// this SmallVector.
llvm::SmallVector<Projection, 8> Projections;
Projection::getFirstLevelProjections(OpType, M, F.getTypeExpansionContext(),
Projections);
auto OpOwnershipKind = Operand->getOwnershipKind();
for (auto &P : Projections) {
SILType ProjType = P.getType(OpType, M, F.getTypeExpansionContext());
Types.emplace_back(ProjType);
OwnershipKinds.emplace_back(
OpOwnershipKind.getProjectedOwnershipKind(F, ProjType));
}
}
DestructureStructInst *
DestructureStructInst::create(const SILFunction &F, SILDebugLocation Loc,
SILValue Operand,
ValueOwnershipKind forwardingOwnershipKind) {
auto &M = F.getModule();
assert(Operand->getType().getStructOrBoundGenericStruct() &&
"Expected a struct typed operand?!");
llvm::SmallVector<SILType, 8> Types;
llvm::SmallVector<ValueOwnershipKind, 8> OwnershipKinds;
computeAggregateFirstLevelSubtypeInfo(F, Operand, Types, OwnershipKinds);
assert(Types.size() == OwnershipKinds.size() &&
"Expected same number of Types and OwnerKinds");
unsigned NumElts = Types.size();
unsigned Size =
totalSizeToAlloc<MultipleValueInstruction *, MultipleValueInstructionResult>(
1, NumElts);
void *Buffer = M.allocateInst(Size, alignof(DestructureStructInst));
return ::new (Buffer) DestructureStructInst(
M, Loc, Operand, Types, OwnershipKinds, forwardingOwnershipKind);
}
DestructureTupleInst *
DestructureTupleInst::create(const SILFunction &F, SILDebugLocation Loc,
SILValue Operand,
ValueOwnershipKind forwardingOwnershipKind) {
auto &M = F.getModule();
assert(Operand->getType().is<TupleType>() &&
"Expected a tuple typed operand?!");
llvm::SmallVector<SILType, 8> Types;
llvm::SmallVector<ValueOwnershipKind, 8> OwnershipKinds;
computeAggregateFirstLevelSubtypeInfo(F, Operand, Types, OwnershipKinds);
assert(Types.size() == OwnershipKinds.size() &&
"Expected same number of Types and OwnerKinds");
// We add 1 since we store an offset to our
unsigned NumElts = Types.size();
unsigned Size =
totalSizeToAlloc<MultipleValueInstruction *, MultipleValueInstructionResult>(
1, NumElts);
void *Buffer = M.allocateInst(Size, alignof(DestructureTupleInst));
return ::new (Buffer) DestructureTupleInst(
M, Loc, Operand, Types, OwnershipKinds, forwardingOwnershipKind);
}
SILType GetAsyncContinuationInstBase::getLoweredResumeType() const {
// The lowered resume type is the maximally-abstracted lowering of the
// formal resume type.
auto formalType = getFormalResumeType();
auto &M = getFunction()->getModule();
auto c = getFunction()->getTypeExpansionContext();
return M.Types.getLoweredType(AbstractionPattern::getOpaque(), formalType, c);
}
ReturnInst::ReturnInst(SILFunction &func, SILDebugLocation debugLoc,
SILValue returnValue)
: UnaryInstructionBase(debugLoc, returnValue),
ownershipKind(OwnershipKind::None) {
// If we have a trivial value, leave our ownership kind as none.
if (returnValue->getType().isTrivial(func))
return;
SILFunctionConventions fnConv = func.getConventions();
// If we do not have any direct SIL results, we should accept a tuple
// argument, meaning that we should have a none ownership kind.
auto results = fnConv.getDirectSILResults();
if (results.empty())
return;
auto ownershipKindRange =
makeTransformRange(results, [&](const SILResultInfo &info) {
return info.getOwnershipKind(func, func.getLoweredFunctionType());
});
// Then merge all of our ownership kinds. Assert if we fail to merge.
ownershipKind = ValueOwnershipKind::merge(ownershipKindRange);
assert(ownershipKind &&
"Conflicting ownership kinds when creating term inst from function "
"result info?!");
}
ReturnBorrowInst *ReturnBorrowInst::create(SILDebugLocation DebugLoc,
SILValue returnValue,
ArrayRef<SILValue> enclosingValues,
SILModule &M) {
auto Size = totalSizeToAlloc<swift::Operand>(enclosingValues.size() + 1);
auto Buffer = M.allocateInst(Size, alignof(ReturnBorrowInst));
SmallVector<SILValue, 8> operands;
operands.push_back(returnValue);
for (SILValue ev : enclosingValues) {
operands.push_back(ev);
}
return ::new (Buffer) ReturnBorrowInst(DebugLoc, operands);
}
ReturnBorrowInst::ReturnBorrowInst(SILDebugLocation DebugLoc,
ArrayRef<SILValue> operands)
: InstructionBaseWithTrailingOperands(operands, DebugLoc) {
assert(operands[0]->getOwnershipKind() == OwnershipKind::Guaranteed);
}
// This may be called in an invalid SIL state. SILCombine creates new
// terminators in non-terminator position and defers deleting the original
// terminator until after all modification.
SILPhiArgument *OwnershipForwardingTermInst::createResult(SILBasicBlock *succ,
SILType resultTy) {
// The forwarding instruction declares a forwarding ownership kind that
// determines the ownership of its results.
auto resultOwnership = getForwardingOwnershipKind();
// Trivial results have no ownership. Although it is valid for a trivially
// typed value to have ownership, it is never necessary and less efficient.
if (resultTy.isTrivial(*getFunction())) {
resultOwnership = OwnershipKind::None;
} else if (resultOwnership == OwnershipKind::None) {
// switch_enum strangely allows results to acquire ownership out of thin
// air whenever the operand has no ownership and result is nontrivial:
// %e = enum $Optional<AnyObject>, #Optional.none!enumelt
// switch_enum %e : $Optional<AnyObject>,
// case #Optional.some!enumelt: bb2...
// bb2(%arg : @guaranteed T):
//
// We can either use None or Guaranteed. None would correctly propagate
// ownership and would maintain the invariant that guaranteed values are
// always within a borrow scope. However it would result in a nontrivial
// type without ownership. The lifetime verifier does not like that.
resultOwnership = OwnershipKind::Guaranteed;
}
return succ->createPhiArgument(resultTy, resultOwnership);
}
SILPhiArgument *SwitchEnumInst::createDefaultResult() {
auto *f = getFunction();
if (!f->hasOwnership())
return nullptr;
if (!hasDefault())
return nullptr;
assert(getDefaultBB()->getNumArguments() == 0 && "precondition");
auto enumTy = getOperand()->getType();
NullablePtr<EnumElementDecl> uniqueCase = getUniqueCaseForDefault();
// Without a unique default case, the OSSA result simply forwards the
// switch_enum operand.
if (!uniqueCase)
return createResult(getDefaultBB(), enumTy);
// With a unique default case, the result is materialized exactly the same way
// as a matched result. It has a value iff the unique case has a payload.
if (!uniqueCase.get()->hasAssociatedValues())
return nullptr;
auto resultTy = enumTy.getEnumElementType(uniqueCase.get(), f->getModule(),
f->getTypeExpansionContext());
return createResult(getDefaultBB(), resultTy);
}
SILPhiArgument *SwitchEnumInst::createOptionalSomeResult() {
auto someDecl = getModule().getASTContext().getOptionalSomeDecl();
auto someBB = getCaseDestination(someDecl);
return createResult(someBB, getOperand()->getType().unwrapOptionalType());
}
void HasSymbolInst::getReferencedFunctions(
llvm::SmallVector<SILFunction *, 4> &fns) const {
auto &M = getModule();
enumerateFunctionsForHasSymbol(M, getDecl(), [&M, &fns](SILDeclRef declRef) {
SILFunction *fn = M.lookUpFunction(declRef);
assert(fn);
fns.push_back(fn);
});
}
TypeValueInst *TypeValueInst::create(SILFunction &F, SILDebugLocation loc,
SILType valueType, CanType paramType) {
SmallVector<SILValue, 8> typeDependentOperands;
collectTypeDependentOperands(typeDependentOperands, F, paramType);
size_t size =
totalSizeToAlloc<swift::Operand>(typeDependentOperands.size());
void *buffer =
F.getModule().allocateInst(size, alignof(TypeValueInst));
return ::new (buffer)
TypeValueInst(loc, typeDependentOperands, valueType, paramType);
}
MergeIsolationRegionInst *
MergeIsolationRegionInst::create(SILDebugLocation loc, ArrayRef<SILValue> args,
SILModule &mod) {
auto size = totalSizeToAlloc<swift::Operand>(args.size());
auto buffer = mod.allocateInst(size, alignof(MergeIsolationRegionInst));
return ::new (buffer) MergeIsolationRegionInst(loc, args);
}
ImplicitActorToOpaqueIsolationCastInst::ImplicitActorToOpaqueIsolationCastInst(
SILDebugLocation loc, SILValue value)
: UnaryInstructionBase(loc, value,
SILType::getOpaqueIsolationType(
value->getFunction()->getASTContext()),
OwnershipKind::Guaranteed) {}